1
|
Pan Y, Qi Z, Hu J, Zheng X, Wang X. Bio-molecular analyses enable new insights into the taphonomy of feathers. PNAS NEXUS 2024; 3:pgae341. [PMID: 39228813 PMCID: PMC11368126 DOI: 10.1093/pnasnexus/pgae341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Exceptionally preserved feathers from the Mesozoic era have provided valuable insights into the early evolution of feathers and enabled color reconstruction of extinct dinosaurs, including early birds. Mounting chemical evidence for the two key components of feathers-keratins and melanins-in fossil feathers has demonstrated that exceptional preservation can be traced down to the molecular level. However, the chemical changes that keratin and eumelanin undergo during fossilization are still not fully understood, introducing uncertainty in the identification of these two molecules in fossil feathers. To address this issue, we need to examine their taphonomic process. In this study, we analyzed the structural and chemical composition of fossil feathers from the Jehol Biota and compared them with the structural and chemical changes observed in modern feathers during the process of biodegradation and thermal degradation, as well as the structural and chemical characteristics of a Cenozoic fossil feather. Our results suggest that the taphonomic process of feathers from the Cretaceous Jehol Biota is mainly controlled by the process of thermal degradation. The Cretaceous fossil feathers studied exhibited minimal keratin preservation but retained strong melanin signals, attributed to melanin's higher thermal stability. Low-maturity carbonaceous fossils can indeed preserve biosignals, especially signals from molecules with high resistance to thermal degradation. These findings provide clues about the preservation potential of keratin and melanin, and serve as a reference for searching for those two biomolecules in different geological periods and environments.
Collapse
Affiliation(s)
- Yanhong Pan
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Centre for Research and Education on Biological Evolution and Environment, Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230027, China
| | - Jianfang Hu
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiaoting Zheng
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| | - Xiaoli Wang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005, China
- Shandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China
| |
Collapse
|
2
|
Slater TS, Ito S, Wakamatsu K, Zhang F, Sjövall P, Jarenmark M, Lindgren J, McNamara ME. Taphonomic experiments reveal authentic molecular signals for fossil melanins and verify preservation of phaeomelanin in fossils. Nat Commun 2023; 14:5651. [PMID: 37803012 PMCID: PMC10558522 DOI: 10.1038/s41467-023-40570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/01/2023] [Indexed: 10/08/2023] Open
Abstract
Melanin pigments play a critical role in physiological processes and shaping animal behaviour. Fossil melanin is a unique resource for understanding the functional evolution of melanin but the impact of fossilisation on molecular signatures for eumelanin and, especially, phaeomelanin is not fully understood. Here we present a model for the chemical taphonomy of fossil eumelanin and phaeomelanin based on thermal maturation experiments using feathers from extant birds. Our results reveal which molecular signatures are authentic signals for thermally matured eumelanin and phaeomelanin, which signatures are artefacts derived from the maturation of non-melanin molecules, and how these chemical data are impacted by sample preparation. Our model correctly predicts the molecular composition of eumelanins in diverse vertebrate fossils from the Miocene and Cretaceous and, critically, identifies direct molecular evidence for phaeomelanin in these fossils. This taphonomic framework adds to the geochemical toolbox that underpins reconstructions of melanin evolution and of melanin-based coloration in fossil vertebrates.
Collapse
Affiliation(s)
- Tiffany S Slater
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi, Japan
| | - Fucheng Zhang
- Institute of Geology and Paleontology, Linyi University, Linyi City, Shandong, China
| | - Peter Sjövall
- RISE Research Institutes of Sweden, Materials and Production, 501 15, Borås, Sweden
| | | | - Johan Lindgren
- Department of Geology, Lund University, 223 62, Lund, Sweden
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland.
- Environmental Research Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
3
|
Dhami NK, Greenwood PF, Poropat SF, Tripp M, Elson A, Vijay H, Brosnan L, Holman AI, Campbell M, Hopper P, Smith L, Jian A, Grice K. Microbially mediated fossil concretions and their characterization by the latest methodologies: a review. Front Microbiol 2023; 14:1225411. [PMID: 37840715 PMCID: PMC10576451 DOI: 10.3389/fmicb.2023.1225411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/14/2023] [Indexed: 10/17/2023] Open
Abstract
The study of well-preserved organic matter (OM) within mineral concretions has provided key insights into depositional and environmental conditions in deep time. Concretions of varied compositions, including carbonate, phosphate, and iron-based minerals, have been found to host exceptionally preserved fossils. Organic geochemical characterization of concretion-encapsulated OM promises valuable new information of fossil preservation, paleoenvironments, and even direct taxonomic information to further illuminate the evolutionary dynamics of our planet and its biota. Full exploitation of this largely untapped geochemical archive, however, requires a sophisticated understanding of the prevalence, formation controls and OM sequestration properties of mineral concretions. Past research has led to the proposal of different models of concretion formation and OM preservation. Nevertheless, the formation mechanisms and controls on OM preservation in concretions remain poorly understood. Here we provide a detailed review of the main types of concretions and formation pathways with a focus on the role of microbes and their metabolic activities. In addition, we provide a comprehensive account of organic geochemical, and complimentary inorganic geochemical, morphological, microbial and paleontological, analytical methods, including recent advancements, relevant to the characterization of concretions and sequestered OM. The application and outcome of several early organic geochemical studies of concretion-impregnated OM are included to demonstrate how this underexploited geo-biological record can provide new insights into the Earth's evolutionary record. This paper also attempts to shed light on the current status of this research and major challenges that lie ahead in the further application of geo-paleo-microbial and organic geochemical research of concretions and their host fossils. Recent efforts to bridge the knowledge and communication gaps in this multidisciplinary research area are also discussed, with particular emphasis on research with significance for interpreting the molecular record in extraordinarily preserved fossils.
Collapse
Affiliation(s)
- Navdeep K. Dhami
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Paul F. Greenwood
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Stephen F. Poropat
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Madison Tripp
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Amy Elson
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Hridya Vijay
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Luke Brosnan
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Alex I. Holman
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Matthew Campbell
- The Trace and Environmental DNA lab (trEND), School of Molecular and Life Sciences, Curtin University, Perth, WA, Australia
| | - Peter Hopper
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Lisa Smith
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Andrew Jian
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| | - Kliti Grice
- Western Australian – Organic and Isotope Geochemistry Centre (WA-OIGC), School of Earth and Planetary Sciences, The Institute for Geoscience Research, Curtin University, Perth, WA, Australia
| |
Collapse
|
4
|
Wang S, McNamara ME, Wang B, Hui H, Jiang B. The origins of colour patterns in fossil insects revealed by maturation experiments. Proc Biol Sci 2023; 290:20231333. [PMID: 37727088 PMCID: PMC10509590 DOI: 10.1098/rspb.2023.1333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Many fossil insects show monochromatic colour patterns that may provide valuable insights into ancient insect behaviour and ecology. Whether these patterns reflect original pigmentary coloration is, however, unknown, and their formation mechanism has not been investigated. Here, we performed thermal maturation experiments on extant beetles with melanin-based colour patterns. Scanning electron microscopy reveals that melanin-rich cuticle is more resistant to degradation than melanin-poor cuticle: with progressive maturation, melanin-poor cuticle regions experience preferential thinning and loss, yet melanin-rich cuticle remains. Comparative analysis of fossil insects with monotonal colour patterns confirms that the variations in tone correspond to variations in preserved cuticle thickness. These preserved colour patterns can thus be plausibly explained as melanin-based patterning. Recognition of melanin-based colour patterns in fossil insects opens new avenues for interpreting the evolution of insect coloration and behaviour through deep time.
Collapse
Affiliation(s)
- Shengyu Wang
- State Key Laboratory for Mineral Deposits Research & Lunar and Planetary Science Institute, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, People's Republic of China
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, People's Republic of China
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental Research Institute, Ellen Hutchins Building, University College Cork, Cork T23 XE10, Ireland
| | - Maria E. McNamara
- School of Biological, Earth & Environmental Sciences, University College Cork, Cork T23 TK30, Ireland
- Environmental Research Institute, Ellen Hutchins Building, University College Cork, Cork T23 XE10, Ireland
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, People's Republic of China
| | - Hejiu Hui
- State Key Laboratory for Mineral Deposits Research & Lunar and Planetary Science Institute, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, People's Republic of China
| | - Baoyu Jiang
- State Key Laboratory for Mineral Deposits Research & Lunar and Planetary Science Institute, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
De La Garza RG, Madsen H, Sjövall P, Osbӕck F, Zheng W, Jarenmark M, Schweitzer MH, Engdahl A, Uvdal P, Eriksson ME, Lindgren J. An ancestral hard-shelled sea turtle with a mosaic of soft skin and scutes. Sci Rep 2022; 12:22655. [PMID: 36587051 PMCID: PMC9805447 DOI: 10.1038/s41598-022-26941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023] Open
Abstract
The transition from terrestrial to marine environments by secondarily aquatic tetrapods necessitates a suite of adaptive changes associated with life in the sea, e.g., the scaleless skin in adult individuals of the extant leatherback turtle. A partial, yet exceptionally preserved hard-shelled (Pan-Cheloniidae) sea turtle with extensive soft-tissue remains, including epidermal scutes and a virtually complete flipper outline, was recently recovered from the Eocene Fur Formation of Denmark. Examination of the fossilized limb tissue revealed an originally soft, wrinkly skin devoid of scales, together with organic residues that contain remnant eumelanin pigment and inferred epidermal transformation products. Notably, this stem cheloniid-unlike its scaly living descendants-combined scaleless limbs with a bony carapace covered in scutes. Our findings show that the adaptive transition to neritic waters by the ancestral pan-chelonioids was more complex than hitherto appreciated, and included at least one evolutionary lineage with a mosaic of integumental features not seen in any living turtle.
Collapse
Affiliation(s)
| | | | - Peter Sjövall
- grid.450998.90000 0004 0438 1242Materials and Production, RISE Research Institutes of Sweden, Borås, Sweden
| | - Frank Osbӕck
- grid.502431.10000 0004 4914 0813Museum Salling, Fur Museum, Skive, Denmark
| | - Wenxia Zheng
- grid.40803.3f0000 0001 2173 6074Department of Biological Sciences, North Carolina State University, Raleigh, NC USA
| | - Martin Jarenmark
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden
| | - Mary H. Schweitzer
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden ,grid.40803.3f0000 0001 2173 6074Department of Biological Sciences, North Carolina State University, Raleigh, NC USA ,grid.421582.80000 0001 2226 059XNorth Carolina Museum of Natural Sciences, Raleigh, NC USA
| | - Anders Engdahl
- grid.4514.40000 0001 0930 2361Medical Microspectroscopy, Biomedical Center, Lund University, Lund, Sweden
| | - Per Uvdal
- grid.4514.40000 0001 0930 2361Department of Chemistry, Lund University, Lund, Sweden
| | - Mats E. Eriksson
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden
| | - Johan Lindgren
- grid.4514.40000 0001 0930 2361Department of Geology, Lund University, Lund, Sweden
| |
Collapse
|
6
|
Jiang H, Tomaschek F, Drew Muscente A, Niu C, Nyunt TT, Fang Y, Schmidt U, Chen J, Lönartz M, Mähler B, Wappler T, Jarzembowski EA, Szwedo J, Zhang H, Rust J, Wang B. Widespread mineralization of soft-bodied insects in Cretaceous amber. GEOBIOLOGY 2022; 20:363-376. [PMID: 35212124 DOI: 10.1111/gbi.12488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Fossilized tree resin, or amber, commonly contains fossils of animals, plants and microorganisms. These inclusions have generally been interpreted as hollow moulds or mummified remains coated or filled with carbonaceous material. Here, we provide the first report of calcified and silicified insects in amber from the mid-Cretaceous Kachin (Burmese) amber. Data from light microscopy, scanning electron microscopy (SEM), energy-dispersive and wavelength-dispersive X-ray spectroscopy (EDX and WDX), X-ray micro-computed tomography (Micro-CT) and Raman spectroscopy show that these Kachin fossils owe their preservation to multiple diagenetic mineralization processes. The labile tissues (e.g. eyes, wings and trachea) mainly consist of calcite, chalcedony and quartz with minor amounts of carbonaceous material, pyrite, iron oxide and phyllosilicate minerals. Calcite, quartz and chalcedony also occur in cracks as void-filling cements, indicating that the minerals formed from chemical species that entered the fossil inclusions through cracks in the resin. The results demonstrate that resin and amber are not always closed systems. Fluids (e.g. sediment pore water, diagenetic fluid and ground water) at different burial stages have chances to interact with amber throughout its geological history and affect the preservational quality and morphological fidelity of its fossil inclusions.
Collapse
Affiliation(s)
- Hui Jiang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
- University of the Chinese Academy of Sciences, Beijing, China
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Frank Tomaschek
- Section Geochemistry/Petrology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | | | - Changtai Niu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
- University of Science and Technology of China, Hefei, China
| | - Thet Tin Nyunt
- Department of Geological Survey and Mineral Exploration, Myanmar Gems Museum, Ministry of Natural Resources and Environmental Conservation, Nay Pyi Taw, Myanmar
| | - Yan Fang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | | | - Jun Chen
- Institute of Geology and Paleontology, Linyi University, Linyi, China
| | - Mara Lönartz
- Section Geochemistry/Petrology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Institute of Energy and Climate Research (IEK-6): Nuclear Waste Management and Reactor Safety, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Bastian Mähler
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Torsten Wappler
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
- Natural History Department, Hessisches Landesmuseum Darmstadt, Darmstadt, Germany
| | - Edmund A Jarzembowski
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Jacek Szwedo
- Laboratory of Evolutionary Entomology and Museum of Amber Inclusions, Department of Invertebrate Zoology and Parasitology, University of Gdańsk, Gdańsk, Poland
| | - Haichun Zhang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| | - Jes Rust
- Section Palaeontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Bo Wang
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
7
|
Preservation and Taphonomy of Fossil Insects from the Earliest Eocene of Denmark. BIOLOGY 2022; 11:biology11030395. [PMID: 35336769 PMCID: PMC8945194 DOI: 10.3390/biology11030395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/20/2022]
Abstract
Simple Summary Insect fossils dating 55 million-years-old from the Stolleklint Clay and Fur Formation of Denmark are known to preserve both fine morphological details and color patterns. To enhance our understanding on how such fragile animals are retained in the fossil record, we examined a pair of beetle elytra, a wasp and a damselfly using sensitive analytical techniques. In our paper, we demonstrate that all three insect fossils are composed of cuticular remains (that is, traces of the exoskeleton) that, in turn, are dominated by the natural pigment eumelanin. In addition, the beetle elytra show evidence of a delicate lamellar structure comparable to multilayered reflectors that produce metallic hues in modern insects. Our results contribute to improved knowledge on the process of fossilization of insect body fossils in marine environments. Abstract Marine sediments of the lowermost Eocene Stolleklint Clay and Fur Formation of north-western Denmark have yielded abundant well-preserved insects. However, despite a long history of research, in-depth information pertaining to preservational modes and taphonomic pathways of these exceptional animal fossils remains scarce. In this paper, we use a combination of scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) to assess the ultrastructural and molecular composition of three insect fossils: a wasp (Hymenoptera), a damselfly (Odonata) and a pair of beetle elytra (Coleoptera). Our analyses show that all specimens are preserved as organic remnants that originate from the exoskeleton, with the elytra displaying a greater level of morphological fidelity than the other fossils. TEM analysis of the elytra revealed minute features, including a multilayered epicuticle comparable to those nanostructures that generate metallic colors in modern insects. Additionally, ToF-SIMS analyses provided spectral evidence for chemical residues of the pigment eumelanin as part of the cuticular remains. To the best of our knowledge, this is the first occasion where both structural colors and chemical traces of an endogenous pigment have been documented in a single fossil specimen. Overall, our results provide novel insights into the nature of insect body fossils and additionally shed light on exceptionally preserved terrestrial insect faunas found in marine paleoenvironments.
Collapse
|
8
|
Reconstructing the ecology of a Cretaceous cockroach: destructive and high-resolution imaging of its micro sensory organs. Naturwissenschaften 2021; 108:45. [PMID: 34581877 DOI: 10.1007/s00114-021-01755-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/02/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
Animals highly depend on their sensory organs to detect information about their surrounding environment. Among animal sensory organs, those of insects have a notable ability to detect information despite their small size, which might be, therefore, one of the reasons for the evolutionary success of insects. However, insect sensory organs are seldom fossilized in sediments due to their small size and fragility. A potential solution for this problem is the study of exceptionally well-preserved fossil material from amber. Unfortunately, the resolution of existing non-destructive analysis is insufficient to observe details of these micro sensory organs even with amber preservation. Here, we focus on the analysis of the micro sensory organs of an extinct male cockroach (Huablattula hui Qiu et al., 2019) in Cretaceous amber by combining destructive and non-destructive methods. Compared to extant species inhabiting dark environments, H. hui has relatively large compound eyes, and all the antennal sensilla for detecting multimodal information observed here are fewer or smaller. The characteristics of these sensory organs support the diurnality of the bright habitats of H. hui in contrast to many extant cockroaches. Like extant male mantises, grooved basiconic type sensilla exist abundantly on the antenna of the fossilized specimen. The abundance of grooved basiconic sensilla in mantid males results from using sex pheromones, and therefore, H. hui may have likewise used mantis-like intersexual communication. These lines of evidence suggest that the ecology and behavior of Cretaceous cockroaches were more diverse than those of related extant species.
Collapse
|
9
|
Schoenemann B, Clarkson ENK. Points of view in understanding trilobite eyes. Nat Commun 2021; 12:2081. [PMID: 33828091 PMCID: PMC8027602 DOI: 10.1038/s41467-021-22227-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Brigitte Schoenemann
- Department of Zoology, Neurobiology/Animal Physiology and Biology Education, University of Cologne, Cologne, Germany.
| | - Euan N K Clarkson
- Grant Institute, School of Geosciences, The Kings Buildings, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Schoenemann B. An overview on trilobite eyes and their functioning. ARTHROPOD STRUCTURE & DEVELOPMENT 2021; 61:101032. [PMID: 33711677 DOI: 10.1016/j.asd.2021.101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 01/21/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Great progress has been made during the last decades in understanding visual systems of arthropods living today. Thus it seems worthwhile to review what is known about structure and function of the eyes of trilobites, the most important group of marine arthropods during the Paleozoic. There are three types of compound eyes in trilobites. The oldest and most abundant is the so-called holochroal eye. The sensory system represents a typical apposition eye, and all units are covered by one cornea in common. The so-called abathochroal eye (only in eodiscid trilobites) consists of small lenses, each individually covered by a thin cuticular cornea. The schizochroal eye is represented just in the suborder Phacopina, and probably is a highly specialized visual system. We discuss the calcitic character of trilobite lenses, the phylogenetic relevance of the existence of crystalline cones in trilobites, and consider adaptations of trilobite's compound eyes to different ecological constraints. The aim of this article is to give a resumé of what is known so far about trilobite vision, and to open perspectives to what still might be done.
Collapse
Affiliation(s)
- Brigitte Schoenemann
- University of Cologne, Zoology Department (Neurobiology/Animal Physiology and Biology Education), Herbert-Lewin-Straße 10, D-50931, Cologne, Germany.
| |
Collapse
|
11
|
Jarenmark M, Sjövall P, Ito S, Wakamatsu K, Lindgren J. Chemical Evaluation of Eumelanin Maturation by ToF-SIMS and Alkaline Peroxide Oxidation HPLC Analysis. Int J Mol Sci 2020; 22:ijms22010161. [PMID: 33375233 PMCID: PMC7796430 DOI: 10.3390/ijms22010161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Residual melanins have been detected in multimillion-year-old animal body fossils; however, confident identification and characterization of these natural pigments remain challenging due to loss of chemical signatures during diagenesis. Here, we simulate this post-burial process through artificial maturation experiments using three synthetic and one natural eumelanin exposed to mild (100 °C/100 bar) and harsh (250 °C/200 bar) environmental conditions, followed by chemical analysis employing alkaline hydrogen peroxide oxidation (AHPO) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). Our results show that AHPO is sensitive to changes in the melanin molecular structure already during mild heat and pressure treatment (resulting, e.g., in increased C-C cross-linking), whereas harsh maturation leads to extensive loss of eumelanin-specific chemical markers. In contrast, negative-ion ToF-SIMS spectra are considerably less affected by mild maturation conditions, and eumelanin-specific features remain even after harsh treatment. Detailed analysis of ToF-SIMS spectra acquired prior to experimental treatment revealed significant differences between the investigated eumelanins. However, systematic spectral changes upon maturation reduced these dissimilarities, indicating that intense heat and pressure treatment leads to the formation of a common, partially degraded, eumelanin molecular structure. Our findings elucidate the complementary nature of AHPO and ToF-SIMS during chemical characterization of eumelanin traces in fossilized organismal remains.
Collapse
Affiliation(s)
- Martin Jarenmark
- Department of Geology, Lund University, 223 62 Lund, Sweden;
- Correspondence: (M.J.); (P.S.)
| | - Peter Sjövall
- The Materials and Production Division, RISE Research Institutes of Sweden, 501 15 Borås, Sweden
- Correspondence: (M.J.); (P.S.)
| | - Shosuke Ito
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192, Japan; (S.I.); (K.W.)
| | - Kazumasa Wakamatsu
- Institute for Melanin Chemistry, Fujita Health University, Toyoake, Aichi 470-1192, Japan; (S.I.); (K.W.)
| | - Johan Lindgren
- Department of Geology, Lund University, 223 62 Lund, Sweden;
| |
Collapse
|
12
|
Abstract
In all arthropods the plesiomorphic (ancestral character state) kind of visual system commonly is considered to be the compound eye. Here we are able to show the excellently preserved internal structures of the compound eye of a 429 Mya old Silurian trilobite, Aulacopleura koninckii (Barrande, 1846). It shows the characteristic elements of a modern apposition eye, consisting of 8 (visible) receptor cells, a rhabdom, a thick lens, screening pigment (cells), and in contrast to a modern type, putatively just a very thin crystalline cone. Functionally the latter underlines the idea of a primarily calcitic character of the lens because of its high refractive properties. Perhaps the trilobite was translucent. We show that this Palaeozoic trilobite in principle was equipped with a fully modern type of visual system, a compound eye comparable to that of living bees, dragonflies and many diurnal crustaceans. It is an example of excellent preservation, and we hope that this manuscript will be a starting point for more research work on fossil evidence, and to develop a deeper understanding of the evolution of vision.
Collapse
|
13
|
Ito S, Del Bino S, Hirobe T, Wakamatsu K. Improved HPLC Conditions to Determine Eumelanin and Pheomelanin Contents in Biological Samples Using an Ion Pair Reagent. Int J Mol Sci 2020; 21:ijms21145134. [PMID: 32698502 PMCID: PMC7404343 DOI: 10.3390/ijms21145134] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Alkaline hydrogen peroxide oxidation (AHPO) of eumelanin and pheomelanin, two major classes of melanin pigments, affords pyrrole-2,3,5-tricarboxylic acid (PTCA), pyrrole-2,3-dicarboxylic acid (PDCA) and pyrrole-2,3,4,5-tetracarboxylic acid (PTeCA) from eumelanin and thiazole-2,4,5-tricarboxylic acid (TTCA) and thiazole-4,5-dicarboxylic acid (TDCA) from pheomelanin. Quantification of these five markers by HPLC provides useful information on the quantity and structural diversity of melanins in various biological samples. HPLC analysis of these markers using the original method of 0.1 M potassium phosphate buffer (pH 2.1):methanol = 99:1 (85:15 for PTeCA) on a reversed-phase column had some problems, including the short lifetime of the column and, except for the major eumelanin marker PTCA, other markers were occasionally overlapped by interfering peaks in samples containing only trace levels of these markers. These problems can be overcome by the addition of an ion pair reagent for anions, such as tetra-n-butylammonium bromide (1 mM), to retard the elution of di-, tri- and tetra-carboxylic acids. The methanol concentration was increased to 17% (30% for PTeCA) and the linearity, reproducibility, and recovery of the markers with this improved method is good to excellent. This improved HPLC method was compared to the original method using synthetic melanins, mouse hair, human hair, and human epidermal samples. In addition to PTCA, TTCA, a major marker for pheomelanin, showed excellent correlations between both HPLC methods. The other markers showed an attenuation of the interfering peaks with the improved method. We recommend this improved HPLC method for the quantitative analysis of melanin markers following AHPO because of its simplicity, accuracy, and reproducibility.
Collapse
Affiliation(s)
- Shosuke Ito
- Department of Chemistry, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
- Correspondence: (S.I.); (K.W.); Tel.: +81-562-93-9849 (S.I. & K.W.); Fax: +81-562-93-4595 (S.I. & K.W.)
| | - Sandra Del Bino
- L’Oreal Research and Innovation, 93600 Aulnay-sous-Bois, France;
| | - Tomohisa Hirobe
- Shinjuku Skin Clinic, 10F Shinjuku M-SQUARE, 3-24-1 Shinjuku, Shinjuku-ku, Tokyo 160-0022, Japan;
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Medical Sciences, Toyoake 470-1192, Japan
- Correspondence: (S.I.); (K.W.); Tel.: +81-562-93-9849 (S.I. & K.W.); Fax: +81-562-93-4595 (S.I. & K.W.)
| |
Collapse
|
14
|
Lakkaraju A, Umapathy A, Tan LX, Daniele L, Philp NJ, Boesze-Battaglia K, Williams DS. The cell biology of the retinal pigment epithelium. Prog Retin Eye Res 2020; 78:100846. [PMID: 32105772 PMCID: PMC8941496 DOI: 10.1016/j.preteyeres.2020.100846] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/19/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023]
Abstract
The retinal pigment epithelium (RPE), a monolayer of post-mitotic polarized epithelial cells, strategically situated between the photoreceptors and the choroid, is the primary caretaker of photoreceptor health and function. Dysfunction of the RPE underlies many inherited and acquired diseases that cause permanent blindness. Decades of research have yielded valuable insight into the cell biology of the RPE. In recent years, new technologies such as live-cell imaging have resulted in major advancement in our understanding of areas such as the daily phagocytosis and clearance of photoreceptor outer segment tips, autophagy, endolysosome function, and the metabolic interplay between the RPE and photoreceptors. In this review, we aim to integrate these studies with an emphasis on appropriate models and techniques to investigate RPE cell biology and metabolism, and discuss how RPE cell biology informs our understanding of retinal disease.
Collapse
Affiliation(s)
- Aparna Lakkaraju
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Ankita Umapathy
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Li Xuan Tan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Daniele
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy J Philp
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Kathleen Boesze-Battaglia
- Department of Biochemistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
15
|
Rogers CS, Astrop TI, Webb SM, Ito S, Wakamatsu K, McNamara ME. Synchrotron X-ray absorption spectroscopy of melanosomes in vertebrates and cephalopods: implications for the affinity of Tullimonstrum. Proc Biol Sci 2019; 286:20191649. [PMID: 31640518 DOI: 10.1098/rspb.2019.1649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Screening pigments are essential for vision in animals. Vertebrates use melanins bound in melanosomes as screening pigments, whereas cephalopods are assumed to use ommochromes. Preserved eye melanosomes in the controversial fossil Tullimonstrum (Mazon Creek, IL, USA) are partitioned by size and/or shape into distinct layers. These layers resemble tissue-specific melanosome populations considered unique to the vertebrate eye. Here, we show that extant cephalopod eyes also show tissue-specific size- and/or shape-specific partitioning of melanosomes; these differ from vertebrate melanosomes in the relative abundance of trace metals and in the binding environment of copper. Chemical signatures of melanosomes in the eyes of Tullimonstrum more closely resemble those of modern cephalopods than those of vertebrates, suggesting that an invertebrate affinity for Tullimonstrum is plausible. Melanosome chemistry may thus provide insights into the phylogenetic affinities of enigmatic fossils where melanosome size and/or shape are equivocal.
Collapse
Affiliation(s)
- Christopher S Rogers
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Republic of Ireland
| | - Timothy I Astrop
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Republic of Ireland
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Shosuke Ito
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Kazumasa Wakamatsu
- Department of Chemistry, Fujita Health University School of Health Sciences, Toyoake, Aichi 470-1192, Japan
| | - Maria E McNamara
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork T23 TK30, Republic of Ireland
| |
Collapse
|