Li J, Kim T, Lapusta N, Biondi E, Zhan Z. The break of earthquake asperities imaged by distributed acoustic sensing.
Nature 2023;
620:800-806. [PMID:
37532935 DOI:
10.1038/s41586-023-06227-w]
[Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/16/2023] [Indexed: 08/04/2023]
Abstract
Rupture imaging of megathrust earthquakes with global seismic arrays revealed frequency-dependent rupture signatures1-4, but the role of high-frequency radiators remains unclear3-5. Similar observations of the more abundant crustal earthquakes could provide critical constraints but are rare without ultradense local arrays6,7. Here we use distributed acoustic sensing technology8,9 to image the high-frequency earthquake rupture radiators. By converting a 100-kilometre dark-fibre cable into a 10,000-channel seismic array, we image four high-frequency subevents for the 2021 Antelope Valley, California, moment-magnitude 6.0 earthquake. After comparing our results with long-period moment-release10,11 and dynamic rupture simulations, we suggest that the imaged subevents are due to the breaking of fault asperities-stronger spots or pins on the fault-that substantially modulate the overall rupture behaviour. An otherwise fading rupture propagation could be promoted by the breaking of fault asperities in a cascading sequence. This study highlights how we can use the extensive pre-existing fibre networks12 as high-frequency seismic antennas to systematically investigate the rupture process of regional moderate-sized earthquakes. Coupled with dynamic rupture modelling, it could improve our understanding of earthquake rupture dynamics.
Collapse