1
|
Harding KR, Malone LM, Kyte NAP, Jackson SA, Smith LM, Fineran PC. Genome-wide identification of bacterial genes contributing to nucleus-forming jumbo phage infection. Nucleic Acids Res 2024:gkae1194. [PMID: 39694477 DOI: 10.1093/nar/gkae1194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/25/2024] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
The Chimalliviridae family of bacteriophages (phages) form a proteinaceous nucleus-like structure during infection of their bacterial hosts. This phage 'nucleus' compartmentalises phage DNA replication and transcription, and shields the phage genome from DNA-targeting defence systems such as CRISPR-Cas and restriction-modification. Their insensitivity to DNA-targeting defences makes nucleus-forming jumbo phages attractive for phage therapy. However, little is known about the bacterial gene requirements during the infectious cycle of nucleus-forming phages or how phage resistance may emerge. To address this, we used the Serratia nucleus-forming jumbo phage PCH45 and exploited a combination of high-throughput transposon mutagenesis and deep sequencing (Tn-seq), and CRISPR interference (CRISPRi). We identified over 90 host genes involved in nucleus-forming phage infection, the majority of which were either involved in the biosynthesis of the primary receptor, flagella, or influenced swimming motility. In addition, the bacterial outer membrane lipopolysaccharide contributed to PCH45 adsorption. Other unrelated Serratia-flagellotropic phages used similar host genes as the nucleus-forming phage, indicating that phage resistance can lead to cross-resistance against diverse phages. Our findings demonstrate that resistance to nucleus-forming jumbo phages can readily emerge via bacterial surface receptor mutation and this should be a major factor when designing strategies for their use in phage therapy.
Collapse
Affiliation(s)
- Kate R Harding
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Lucia M Malone
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Natalie A P Kyte
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Simon A Jackson
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Leah M Smith
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Genetics Otago, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, PO Box 56, Dunedin 9054, New Zealand
- Bioprotection Aotearoa, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
2
|
Zhao J, Chen B, Wang W, Kang Y, Hu E, Zhang Y, Chen H, Xu X, Ji X, Wang Y, Teng T, Gomaa SE. Synergistic efficacy of phage Henu10 with antibiotics against Shigella dysenteriae with insight into phage resistance and fitness trade-offs. Front Cell Infect Microbiol 2024; 14:1499325. [PMID: 39711781 PMCID: PMC11659235 DOI: 10.3389/fcimb.2024.1499325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction The irrational use of antibiotics has facilitated the emergence of multidrug- resistant Shigella spp., undermining the effectiveness of the currently available antibiotics. Consequently, there is an urgent need to explore new approaches, with phage therapy emerging as a promising alternative. Methods In this study, we isolated a phage targeting Shigella dysenteriae from sewage samples using DLA methold, designated Henu10. The morphology, biological characteristics, genomic composition, and phylogenetic relationships of Henu10 were thoroughly characterized. To investigate the trade-off relationship between phage resistance and bacterial fitness, phage Henu10-resistant strains R6 and R11 were identified using continuous passage and bidirectional validation methods. Results Phage-resistant strains R6 and R11 exhibited impaired adsorption, increased sensitivity to temperature and pH stress, heightened susceptibility to certain antibiotics (such as ciprofloxacin and kanamycin), reduced biofilm-forming capacity, and diminished colonization ability in vivo compared to the wild-type strain. Discussion These results indicate that phage Henu10 may effectively control the pathogenic bacteria associated with S. dysenteriae, representing a promising new therapeutic option for treating S. dysenteriae infections.
Collapse
Affiliation(s)
- Jing Zhao
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
| | - Baohong Chen
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
| | - Weizhen Wang
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
| | - Yu Kang
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
| | - Erli Hu
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
| | - Yuan Zhang
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
| | - Huiling Chen
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
| | - Xiao Xu
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
| | - Xinying Ji
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yuhan Wang
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Tieshan Teng
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Salwa E. Gomaa
- Gynaecology Department, Hua County People’s Hospital, Anyang, China
- Institute of Biomedical Informatics, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
3
|
Castledine M, Buckling A. Critically evaluating the relative importance of phage in shaping microbial community composition. Trends Microbiol 2024; 32:957-969. [PMID: 38604881 DOI: 10.1016/j.tim.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/13/2024]
Abstract
The ubiquity of bacteriophages (phages) and the major evolutionary and ecological impacts they can have on their microbial hosts has resulted in phages often cited as key drivers shaping microbial community composition (the relative abundances of species). However, the evidence for the importance of phages is mixed. Here, we critically review the theory and data exploring the role of phages in communities, identifying the conditions when phages are likely to be important drivers of community composition. At ecological scales, we conclude that phages are often followers rather than drivers of microbial population and community dynamics. While phages can affect strain diversity within species, there is yet to be strong evidence suggesting that fluctuations in species' strains affects community composition.
Collapse
Affiliation(s)
- Meaghan Castledine
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK.
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| |
Collapse
|
4
|
Zhao M, Li H, Gan D, Wang M, Deng H, Yang QE. Antibacterial effect of phage cocktails and phage-antibiotic synergy against pathogenic Klebsiella pneumoniae. mSystems 2024; 9:e0060724. [PMID: 39166877 PMCID: PMC11406915 DOI: 10.1128/msystems.00607-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
The global rise of antibiotic resistance has renewed interest in phage therapy, as an alternative to antibiotics to eliminate multidrug-resistant (MDR) bacterial pathogens. However, optimizing the broad-spectrum efficacy of phage therapy remains a challenge. In this study, we addressed this issue by employing strategies to improve antimicrobial efficacy of phage therapy against MDR Klebsiella pneumoniae strains, which are notorious for their resistance to conventional antibiotics. This includes the selection of broad host range phages, optimization of phage formulation, and combinations with last-resort antibiotics. Our findings unveil that having a broad host range was a dominant trait of isolated phages, and increasing phage numbers in combination with antibiotics significantly enhanced the suppression of bacterial growth. The decreased incidence of bacterial infection was explained by a reduction in pathogen density and emergence of bacterial resistance. Furthermore, phage-antibiotic synergy (PAS) demonstrated considerable broad-spectrum antibacterial potential against different clades of clinical MDR K. pneumoniae pathogens. The improved treatment outcomes of optimized PAS were also evident in a murine model, where mice receiving optimized PAS therapy demonstrated a reduced bacterial burden in mouse tissues. Taken together, these findings offer an important development in optimizing PAS therapy and its efficacy in the elimination of MDR K. pneumoniae pathogens. IMPORTANCE The worldwide spread of antimicrobial resistance (AMR) has posed a great challenge to global public health. Phage therapy has become a promising alternative against difficult-to-treat pathogens. One important goal of this study was to optimize the therapeutic efficiency of phage-antibiotic combinations, known as phage-antibiotic synergy (PAS). Through comprehensive analysis of the phenotypic and genotypic characteristics of a large number of CRKp-specific phages, we developed a systematic model for phage cocktail combinations. Crucially, our finding demonstrated that PAS treatments not only enhance the bactericidal effects of colistin and tigecycline against multidrug-resistant (MDR) K. pneumoniae strains in in vitro and in vivo context but also provide a robust response when antibiotics fail. Overall, the optimized PAS therapy demonstrates considerable potential in combating diverse K. pneumoniae pathogens, highlighting its relevance as a strategy to mitigate antibiotic resistance threats effectively.
Collapse
Affiliation(s)
- Mengshi Zhao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongru Li
- Department of Infectious Disease, Shengli Medical College, Fujian Medical University, Fujian Provincial Hospital, Fuzhou University affiliated Provincial Hospital,, Fuzhou, China
| | - Dehao Gan
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mengzhu Wang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qiu E Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
5
|
Liaghat A, Yang J, Whitaker R, Pascual M. Punctuated virus-driven succession generates dynamical alternations in CRISPR-mediated microbe-virus coevolution. J R Soc Interface 2024; 21:20240195. [PMID: 39165171 PMCID: PMC11336687 DOI: 10.1098/rsif.2024.0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024] Open
Abstract
The coevolutionary dynamics of lytic viruses and microbes with CRISPR-Cas immunity exhibit alternations between sustained host control of viral proliferation and major viral epidemics in previous computational models. These alternating dynamics have yet to be observed in other host-pathogen systems. Here, we address the breakdown of control and transition to large outbreaks with a stochastic eco-evolutionary model. We establish the role of host density-dependent competition in punctuated virus-driven succession and associated diversity trends that concentrate escape pathways during control phases. Using infection and escape networks, we derive the viral emergence probability whose fluctuations of increasing size and frequency characterize the approach to large outbreaks. We explore alternation probabilities as a function of non-dimensional parameters related to the probability of viral escape and host competition. Our results demonstrate how emergent feedbacks between host competition and viral diversification render the host immune structure fragile, potentiating a dynamical transition to large epidemics.
Collapse
Affiliation(s)
- Armun Liaghat
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
- Department of Biology, New York University, New York, NY, USA
| | - Jiayue Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rachel Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Mercedes Pascual
- Department of Biology, New York University, New York, NY, USA
- Department of Environmental Studies, New York University, New York, NY, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
6
|
Guo Z, Yuan M, Chai J. Mini review advantages and limitations of lytic phages compared with chemical antibiotics to combat bacterial infections. Heliyon 2024; 10:e34849. [PMID: 39148970 PMCID: PMC11324966 DOI: 10.1016/j.heliyon.2024.e34849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 08/17/2024] Open
Abstract
The overuse of antibiotics has caused the emergence of antibiotic-resistant strains, such as multidrug-resistant, extensively drug-resistant, and pandrug-resistant bacteria. The treatment of infections caused by such strains has become a formidable challenge. In the post-antibiotic era, phage therapy is an attractive solution for this problem and some successful phase 1 and 2 studies have demonstrated the efficacy and safety of phage therapy over the last decade. It is a form of evolutionary medicine, phages exhibit immunomodulatory and anti-inflammatory properties. However, phage therapy is limited by factors, such as the narrow spectrum of host strains, the special pharmacokinetics and pharmacodynamics in vivo, immune responses, and the development of phage resistance. The aim of this minireview was to compare the potencies of lytic phages and chemical antibiotics to treat bacterial infections. The advantages of phage therapy has fewer side effects, self-replication, evolution, bacterial biofilms eradication, immunomodulatory and anti-inflammatory properties compared with chemical antibiotics. Meanwhile, the disadvantages of phage therapy include the narrow spectrum of available host strains, the special pharmacokinetics and pharmacodynamics in vivo, immune responses, and phage resistance hurdles. Recently, some researchers continue to make efforts to overcome these limitations of phage therapy. Phage therapy will be a welcome addition to the gamut of options available for treating antibiotic-resistant bacterial infections. We focus on the advantages and limitations of phage therapy with the intention of exploiting the advantages and overcoming the limitations.
Collapse
Affiliation(s)
- Zhimin Guo
- Department of Laboratory Medicine, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mengyao Yuan
- Department of Laboratory Medicine, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiannan Chai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, 130021, China
| |
Collapse
|
7
|
Manley R, Fitch C, Francis V, Temperton I, Turner D, Fletcher J, Phil M, Michell S, Temperton B. Resistance to bacteriophage incurs a cost to virulence in drug-resistant Acinetobacter baumannii. J Med Microbiol 2024; 73:001829. [PMID: 38743467 PMCID: PMC11170128 DOI: 10.1099/jmm.0.001829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction . Acinetobacter baumannii is a critical priority pathogen for novel antimicrobials (World Health Organization) because of the rise in nosocomial infections and its ability to evolve resistance to last resort antibiotics. A. baumannii is thus a priority target for phage therapeutics. Two strains of a novel, virulent bacteriophage (LemonAid and Tonic) able to infect carbapenem-resistant A. baumannii (strain NCTC 13420), were isolated from environmental water samples collected through a citizen science programme.Gap statement. Phage-host coevolution can lead to emergence of host resistance, with a concomitant reduction in the virulence of host bacteria; a potential benefit to phage therapy applications.Methodology. In vitro and in vivo assays, genomics and microscopy techniques were used to characterize the phages; determine mechanisms and impact of phage resistance on host virulence, and the efficacy of the phages against A. baumannii.Results. A. baumannii developed resistance to both viruses, LemonAid and Tonic. Resistance came at a cost to virulence, with the resistant variants causing significantly reduced mortality in a Galleria mellonella larval in vivo model. A replicated 8 bp insertion increased in frequency (~40 % higher frequency than in the wild-type) within phage-resistant A. baumannii mutants, putatively resulting in early truncation of a protein of unknown function. Evidence from comparative genomics and an adsorption assay suggests this protein acts as a novel phage receptor site in A. baumannii. We find no evidence linking resistance to changes in capsule structure, a known virulence factor. LemonAid efficiently suppressed growth of A. baumanni in vitro across a wide range of titres. However, in vivo, while survival of A. baumannii infected larvae significantly increased with both remedial and prophylactic treatment with LemonAid (107 p.f.u. ml-1), the effect was weak and not sufficient to save larvae from morbidity and mortality.Conclusion. While LemonAid and Tonic did not prove effective as a treatment in a Galleria larvae model, there is potential to harness their ability to attenuate virulence in drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Robyn Manley
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Christian Fitch
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Vanessa Francis
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Isaac Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Dann Turner
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Julie Fletcher
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Mitchelmore Phil
- University of Exeter, College of Medicine and Health, Department of Respiratory Medicine, Royal Devon & Exeter Hospital, Barrack Road, Exeter, EX2 5DW, UK
| | - Steve Michell
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| | - Ben Temperton
- University of Exeter, Health and Life Sciences, Streatham Campus, Exeter, EX4 4QD, UK
| |
Collapse
|
8
|
Martínez M, Rizzuto I, Molina R. Knowing Our Enemy in the Antimicrobial Resistance Era: Dissecting the Molecular Basis of Bacterial Defense Systems. Int J Mol Sci 2024; 25:4929. [PMID: 38732145 PMCID: PMC11084316 DOI: 10.3390/ijms25094929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Bacteria and their phage adversaries are engaged in an ongoing arms race, resulting in the development of a broad antiphage arsenal and corresponding viral countermeasures. In recent years, the identification and utilization of CRISPR-Cas systems have driven a renewed interest in discovering and characterizing antiphage mechanisms, revealing a richer diversity than initially anticipated. Currently, these defense systems can be categorized based on the bacteria's strategy associated with the infection cycle stage. Thus, bacterial defense systems can degrade the invading genetic material, trigger an abortive infection, or inhibit genome replication. Understanding the molecular mechanisms of processes related to bacterial immunity has significant implications for phage-based therapies and the development of new biotechnological tools. This review aims to comprehensively cover these processes, with a focus on the most recent discoveries.
Collapse
Affiliation(s)
| | | | - Rafael Molina
- Department of Crystallography and Structural Biology, Instituto de Química-Física Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
| |
Collapse
|
9
|
Zhong Q, Liao B, Liu J, Shen W, Wang J, Wei L, Ma Y, Dong PT, Bor B, McLean JS, Chang Y, Shi W, Cen L, Wu M, Liu J, Li Y, He X, Le S. Episymbiotic Saccharibacteria TM7x modulates the susceptibility of its host bacteria to phage infection and promotes their coexistence. Proc Natl Acad Sci U S A 2024; 121:e2319790121. [PMID: 38593079 PMCID: PMC11032452 DOI: 10.1073/pnas.2319790121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/21/2024] [Indexed: 04/11/2024] Open
Abstract
Bacteriophages (phages) play critical roles in modulating microbial ecology. Within the human microbiome, the factors influencing the long-term coexistence of phages and bacteria remain poorly investigated. Saccharibacteria (formerly TM7) are ubiquitous members of the human oral microbiome. These ultrasmall bacteria form episymbiotic relationships with their host bacteria and impact their physiology. Here, we showed that during surface-associated growth, a human oral Saccharibacteria isolate (named TM7x) protects its host bacterium, a Schaalia odontolytica strain (named XH001) against lytic phage LC001 predation. RNA-Sequencing analysis identified in XH001 a gene cluster with predicted functions involved in the biogenesis of cell wall polysaccharides (CWP), whose expression is significantly down-regulated when forming a symbiosis with TM7x. Through genetic work, we experimentally demonstrated the impact of the expression of this CWP gene cluster on bacterial-phage interaction by affecting phage binding. In vitro coevolution experiments further showed that the heterogeneous populations of TM7x-associated and TM7x-free XH001, which display differential susceptibility to LC001 predation, promote bacteria and phage coexistence. Our study highlights the tripartite interaction between the bacterium, episymbiont, and phage. More importantly, we present a mechanism, i.e., episymbiont-mediated modulation of gene expression in host bacteria, which impacts their susceptibility to phage predation and contributes to the formation of "source-sink" dynamics between phage and bacteria in biofilm, promoting their long-term coexistence within the human microbiome.
Collapse
Affiliation(s)
- Qiu Zhong
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| | - Binyou Liao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan610041, China
| | - Jiazhen Liu
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| | - Wei Shen
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, the Second Affiliated Hospital of Chongqing Medical University, Chongqing401336, China
| | - Jing Wang
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| | - Leilei Wei
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing400038, China
| | - Yansong Ma
- Department of Orthodontics, Capital Medical University, Beijing100050, China
| | - Pu-Ting Dong
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Batbileg Bor
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Jeffrey S. McLean
- Department of Periodontics, University of Washington, Seattle, WA98119
- Department of Microbiology, University of Washington, Seattle, WA98195
| | - Yunjie Chang
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
- Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang310058, China
| | - Wenyuan Shi
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Lujia Cen
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
| | - Miaomiao Wu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan610041, China
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT06536
| | - Yan Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan610041, China
| | - Xuesong He
- Department of Microbiology, The American Dental Association Forsyth Institute, Cambridge, MA02142
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA02115
| | - Shuai Le
- Department of Microbiology, College of Basic Medical Sciences, Key Laboratory of Microbial Engineering Under the Educational Committee in Chongqing, Army Medical University, Chongqing400038, China
| |
Collapse
|
10
|
Wang X, Tang Y, Yue X, Wang S, Yang K, Xu Y, Shen Q, Friman VP, Wei Z. The role of rhizosphere phages in soil health. FEMS Microbiol Ecol 2024; 100:fiae052. [PMID: 38678007 PMCID: PMC11065364 DOI: 10.1093/femsec/fiae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/22/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
While the One Health framework has emphasized the importance of soil microbiomes for plant and human health, one of the most diverse and abundant groups-bacterial viruses, i.e. phages-has been mostly neglected. This perspective reviews the significance of phages for plant health in rhizosphere and explores their ecological and evolutionary impacts on soil ecosystems. We first summarize our current understanding of the diversity and ecological roles of phages in soil microbiomes in terms of nutrient cycling, top-down density regulation, and pathogen suppression. We then consider how phages drive bacterial evolution in soils by promoting horizontal gene transfer, encoding auxiliary metabolic genes that increase host bacterial fitness, and selecting for phage-resistant mutants with altered ecology due to trade-offs with pathogen competitiveness and virulence. Finally, we consider challenges and avenues for phage research in soil ecosystems and how to elucidate the significance of phages for microbial ecology and evolution and soil ecosystem functioning in the future. We conclude that similar to bacteria, phages likely play important roles in connecting different One Health compartments, affecting microbiome diversity and functions in soils. From the applied perspective, phages could offer novel approaches to modulate and optimize microbial and microbe-plant interactions to enhance soil health.
Collapse
Affiliation(s)
- Xiaofang Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yike Tang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiufeng Yue
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuo Wang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Keming Yang
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangchun Xu
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Qirong Shen
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| | - Ville-Petri Friman
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
- Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Zhong Wei
- Jiangsu provincial key lab for solid organic waste utilization, Key lab of organic-based fertilizers of China,Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Alseth EO, Custodio R, Sundius SA, Kuske RA, Brown SP, Westra ER. The impact of phage and phage resistance on microbial community dynamics. PLoS Biol 2024; 22:e3002346. [PMID: 38648198 PMCID: PMC11034675 DOI: 10.1371/journal.pbio.3002346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Where there are bacteria, there will be bacteriophages. These viruses are known to be important players in shaping the wider microbial community in which they are embedded, with potential implications for human health. On the other hand, bacteria possess a range of distinct immune mechanisms that provide protection against bacteriophages, including the mutation or complete loss of the phage receptor, and CRISPR-Cas adaptive immunity. While our previous work showed how a microbial community may impact phage resistance evolution, little is known about the inverse, namely how interactions between phages and these different phage resistance mechanisms affect the wider microbial community in which they are embedded. Here, we conducted a 10-day, fully factorial evolution experiment to examine how phage impact the structure and dynamics of an artificial four-species bacterial community that includes either Pseudomonas aeruginosa wild-type or an isogenic mutant unable to evolve phage resistance through CRISPR-Cas. Additionally, we used mathematical modelling to explore the ecological interactions underlying full community behaviour, as well as to identify general principles governing the impacts of phage on community dynamics. Our results show that the microbial community structure is drastically altered by the addition of phage, with Acinetobacter baumannii becoming the dominant species and P. aeruginosa being driven nearly extinct, whereas P. aeruginosa outcompetes the other species in the absence of phage. Moreover, we find that a P. aeruginosa strain with the ability to evolve CRISPR-based resistance generally does better when in the presence of A. baumannii, but that this benefit is largely lost over time as phage is driven extinct. Finally, we show that pairwise data alone is insufficient when modelling our microbial community, both with and without phage, highlighting the importance of higher order interactions in governing multispecies dynamics in complex communities. Combined, our data clearly illustrate how phage targeting a dominant species allows for the competitive release of the strongest competitor while also contributing to community diversity maintenance and potentially preventing the reinvasion of the target species, and underline the importance of mapping community composition before therapeutically applying phage.
Collapse
Affiliation(s)
- Ellinor O. Alseth
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, United Kingdom
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Rafael Custodio
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, United Kingdom
| | - Sarah A. Sundius
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Math, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Rachel A. Kuske
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Math, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Sam P. Brown
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Edze R. Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, United Kingdom
| |
Collapse
|
12
|
Wang M, Zhang J, Wei J, Jiang L, Jiang L, Sun Y, Zeng Z, Wang Z. Phage-inspired strategies to combat antibacterial resistance. Crit Rev Microbiol 2024; 50:196-211. [PMID: 38400715 DOI: 10.1080/1040841x.2023.2181056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
Antimicrobial resistance (AMR) in clinically priority pathogensis now a major threat to public health worldwide. Phages are bacterial parasites that efficiently infect or kill specific strains and represent the most abundant biological entities on earth, showing great attraction as potential antibacterial therapeutics in combating AMR. This review provides a summary of phage-inspired strategies to combat AMR. We firstly cover the phage diversity, and then explain the biological principles of phage therapy that support the use of phages in the post-antimicrobial era. Furthermore, we state the versatility methods of phage therapy both from direct access as well as collateral access. Among the direct access approaches, we discuss the use of phage cocktail therapy, phage-encoded endolysins and the bioengineering for function improvement of used phages or endolysins. On the other hand, we introduce the collateral access, including the phages antimicrobial immunity combined therapy and phage-based novel antibacterial mimic molecules. Nowadays, more and more talented and enthusiastic scientist, doctors, pharmacists, media, authorities, and industry are promoting the progress of phage therapy, and proposed more phages-inspired strategy to make them more tractable to combat AMR and benefit more people, more animal and diverse environment in "one health" framework.
Collapse
Affiliation(s)
- Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Junxuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jingyi Wei
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Li Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhenling Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhiqiang Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou, China
| |
Collapse
|
13
|
Elliott JFK, McLeod DV, Taylor TB, Westra ER, Gandon S, Watson BNJ. Conditions for the spread of CRISPR-Cas immune systems into bacterial populations. THE ISME JOURNAL 2024; 18:wrae108. [PMID: 38896653 DOI: 10.1093/ismejo/wrae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Bacteria contain a wide variety of innate and adaptive immune systems which provide protection to the host against invading genetic material, including bacteriophages (phages). It is becoming increasingly clear that bacterial immune systems are frequently lost and gained through horizontal gene transfer. However, how and when new immune systems can become established in a bacterial population have remained largely unstudied. We developed a joint epidemiological and evolutionary model that predicts the conditions necessary for the spread of a CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) immune system into a bacterial population lacking this system. We found that whether bacteria carrying CRISPR-Cas will spread (increase in frequency) into a bacterial population depends on the abundance of phages and the difference in the frequency of phage resistance mechanisms between bacteria carrying a CRISPR-Cas immune system and those not (denoted as ${f}_{\Delta }$). Specifically, the abundance of cells carrying CRISPR-Cas will increase if there is a higher proportion of phage resistance (either via CRISPR-Cas immunity or surface modification) in the CRISPR-Cas-possessing population than in the cells lacking CRISPR-Cas. We experimentally validated these predictions in a model using Pseudomonas aeruginosa PA14 and phage DMS3vir. Specifically, by varying the initial ratios of different strains of bacteria that carry alternative forms of phage resistance, we confirmed that the spread of cells carrying CRISPR-Cas through a population can be predicted based on phage density and the relative frequency of resistance phenotypes. Understanding which conditions promote the spread of CRISPR-Cas systems helps to predict when and where these defences can become established in bacterial populations after a horizontal gene transfer event, both in ecological and clinical contexts.
Collapse
Affiliation(s)
- Josie F K Elliott
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9FE, United Kingdom
| | - David V McLeod
- Département de mathématiques et statistique, Université de Montréal, Montréal, Canada
- Institute of Ecology and Evolution, Universität Bern, Bern, Switzerland
| | - Tiffany B Taylor
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Edze R Westra
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9FE, United Kingdom
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | - Bridget N J Watson
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn TR10 9FE, United Kingdom
| |
Collapse
|
14
|
Watson BNJ, Capria L, Alseth EO, Pons BJ, Biswas A, Lenzi L, Buckling A, van Houte S, Westra ER, Meaden S. CRISPR-Cas in Pseudomonas aeruginosa provides transient population-level immunity against high phage exposures. THE ISME JOURNAL 2024; 18:wrad039. [PMID: 38366022 PMCID: PMC10873826 DOI: 10.1093/ismejo/wrad039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
The prokaryotic adaptive immune system, CRISPR-Cas (clustered regularly interspaced short palindromic repeats; CRISPR-associated), requires the acquisition of spacer sequences that target invading mobile genetic elements such as phages. Previous work has identified ecological variables that drive the evolution of CRISPR-based immunity of the model organism Pseudomonas aeruginosa PA14 against its phage DMS3vir, resulting in rapid phage extinction. However, it is unclear if and how stable such acquired immunity is within bacterial populations, and how this depends on the environment. Here, we examine the dynamics of CRISPR spacer acquisition and loss over a 30-day evolution experiment and identify conditions that tip the balance between long-term maintenance of immunity versus invasion of alternative resistance strategies that support phage persistence. Specifically, we find that both the initial phage dose and reinfection frequencies determine whether or not acquired CRISPR immunity is maintained in the long term, and whether or not phage can coexist with the bacteria. At the population genetics level, emergence and loss of CRISPR immunity are associated with high levels of spacer diversity that subsequently decline due to invasion of bacteria carrying pilus-associated mutations. Together, these results provide high resolution of the dynamics of CRISPR immunity acquisition and loss and demonstrate that the cumulative phage burden determines the effectiveness of CRISPR over ecologically relevant timeframes.
Collapse
Affiliation(s)
- Bridget N J Watson
- Biosciences, University of Exeter, Penryn, Cornwall, TR10 9FE, United Kingdom
| | - Loris Capria
- Biosciences, University of Exeter, Penryn, Cornwall, TR10 9FE, United Kingdom
| | - Ellinor O Alseth
- Biosciences, University of Exeter, Penryn, Cornwall, TR10 9FE, United Kingdom
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Benoit J Pons
- Biosciences, University of Exeter, Penryn, Cornwall, TR10 9FE, United Kingdom
| | - Ambarish Biswas
- Department of Microbiology and Immunology, University of Otago, Dunedin, 9059, Otago, New Zealand
| | - Luca Lenzi
- Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside, L69 7BE, United Kingdom
| | - Angus Buckling
- Biosciences, University of Exeter, Penryn, Cornwall, TR10 9FE, United Kingdom
| | - Stineke van Houte
- Biosciences, University of Exeter, Penryn, Cornwall, TR10 9FE, United Kingdom
| | - Edze R Westra
- Biosciences, University of Exeter, Penryn, Cornwall, TR10 9FE, United Kingdom
| | - Sean Meaden
- Biosciences, University of Exeter, Penryn, Cornwall, TR10 9FE, United Kingdom
- Department of Biology, University of York, Wentworth Way, York, North Yorkshire YO10 3DB, United Kingdom
| |
Collapse
|
15
|
Dion MB, Shah SA, Deng L, Thorsen J, Stokholm J, Krogfelt KA, Schjørring S, Horvath P, Allard A, Nielsen DS, Petit MA, Moineau S. Escherichia coli CRISPR arrays from early life fecal samples preferentially target prophages. THE ISME JOURNAL 2024; 18:wrae005. [PMID: 38366192 PMCID: PMC10910852 DOI: 10.1093/ismejo/wrae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/18/2024]
Abstract
CRISPR-Cas systems are defense mechanisms against phages and other nucleic acids that invade bacteria and archaea. In Escherichia coli, it is generally accepted that CRISPR-Cas systems are inactive in laboratory conditions due to a transcriptional repressor. In natural isolates, it has been shown that CRISPR arrays remain stable over the years and that most spacer targets (protospacers) remain unknown. Here, we re-examine CRISPR arrays in natural E. coli isolates and investigate viral and bacterial genomes for spacer targets using a bioinformatics approach coupled to a unique biological dataset. We first sequenced the CRISPR1 array of 1769 E. coli isolates from the fecal samples of 639 children obtained during their first year of life. We built a network with edges between isolates that reflect the number of shared spacers. The isolates grouped into 34 modules. A search for matching spacers in bacterial genomes showed that E. coli spacers almost exclusively target prophages. While we found instances of self-targeting spacers, those involving a prophage and a spacer within the same bacterial genome were rare. The extensive search for matching spacers also expanded the library of known E. coli protospacers to 60%. Altogether, these results favor the concept that E. coli's CRISPR-Cas is an antiprophage system and highlight the importance of reconsidering the criteria use to deem CRISPR-Cas systems active.
Collapse
Affiliation(s)
- Moïra B Dion
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
| | - Ling Deng
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Jonathan Thorsen
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jakob Stokholm
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Ledreborg Alle 34, 2820 Gentofte, Denmark
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Karen A Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300S Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Artillerivej 5, 2300S Copenhagen, Denmark
| | - Philippe Horvath
- IFF Danisco, Health & Biosciences, Dangé-Saint-Romain 86220, France
| | - Antoine Allard
- Département de physique, de génie physique et d’optique, Université Laval, Québec, QC G1V 0A6, Canada
- Centre interdisciplinaire en modélisation mathématique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Dennis S Nielsen
- Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Marie-Agnès Petit
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Micalis, Jouy-en-Josas 78350, France
| | - Sylvain Moineau
- Département de biochimie, de microbiologie, et de bio-informatique, Faculté des sciences et de génie, Université Laval, Québec, QC G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
- Félix d’Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
16
|
Spencer-Drakes TCJ, Sarabia A, Heussler G, Pierce EC, Morin M, Villareal S, Dutton RJ. Phage resistance mutations affecting the bacterial cell surface increase susceptibility to fungi in a model cheese community. ISME COMMUNICATIONS 2024; 4:ycae101. [PMID: 39296780 PMCID: PMC11409937 DOI: 10.1093/ismeco/ycae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/17/2024] [Indexed: 09/21/2024]
Abstract
Diverse populations of bacteriophages infect and coevolve with their bacterial hosts. Although host recognition and infection occur within microbiomes, the molecular mechanisms underlying host-phage interactions within a community context remain poorly studied. The biofilms (rinds) of aged cheeses contain taxonomically diverse microbial communities that follow reproducible growth patterns and can be manipulated under laboratory conditions. In this study, we use cheese as a model for studying phage-microbe interactions by identifying and characterizing a tractable host-phage pair co-occurring within a model Brie-like community. We isolated a novel bacteriophage, TS33, that kills Hafnia sp. JB232, a member of the model community. TS33 is easily propagated in the lab and naturally co-occurs in the cheese community, rendering it a prime candidate for the study of host-phage interactions. We performed growth assays of the Hafnia, TS33, and the fungal community members, Geotrichum candidum and Penicillium camemberti. Employing Random Barcode Transposon Sequencing experiments, we identified candidate host factors that contribute to TS33 infectivity, many of which are homologs of bacterial O-antigen genes. Hafnia mutants in these genes exhibit decreased susceptibility to phage infection, but experience negative fitness effects in the presence of the fungi. Therefore, mutations in O-antigen biosynthesis homologs may have antagonistic pleiotropic effects in Hafnia that have major consequences for its interactions with the rest of the community. Ongoing and future studies aim to unearth the molecular mechanisms by which the O-antigen of Hafnia mediates its interactions with its viral and fungal partners.
Collapse
Affiliation(s)
- Tara C J Spencer-Drakes
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Angel Sarabia
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA 92037, United States
| | - Gary Heussler
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Emily C Pierce
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- Arcadia Science, 3100 San Pablo Avenue, Suite #120, Berkeley, CA 94702, United States
| | - Manon Morin
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- Arcadia Science, 3100 San Pablo Avenue, Suite #120, Berkeley, CA 94702, United States
| | - Steven Villareal
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Rachel J Dutton
- Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
- Astera Institute, 2625 Alcatraz Ave, #201, Berkeley, CA 94705, United States
| |
Collapse
|
17
|
Sünderhauf D, Klümper U, Gaze WH, Westra ER, van Houte S. Interspecific competition can drive plasmid loss from a focal species in a microbial community. THE ISME JOURNAL 2023; 17:1765-1773. [PMID: 37558861 PMCID: PMC10504238 DOI: 10.1038/s41396-023-01487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Plasmids are key disseminators of antimicrobial resistance genes and virulence factors, and it is therefore critical to predict and reduce plasmid spread within microbial communities. The cost of plasmid carriage is a key metric that can be used to predict plasmids' ecological fate, and it is unclear whether plasmid costs are affected by growth partners in a microbial community. We carried out competition experiments and tracked plasmid maintenance using a model system consisting of a synthetic and stable five-species community and a broad host-range plasmid, engineered to carry different payloads. We report that both the cost of plasmid carriage and its long-term maintenance in a focal strain depended on the presence of competitors, and that these interactions were species specific. Addition of growth partners increased the cost of a high-payload plasmid to a focal strain, and accordingly, plasmid loss from the focal species occurred over a shorter time frame. We propose that the destabilising effect of interspecific competition on plasmid maintenance may be leveraged in clinical and natural environments to cure plasmids from focal strains.
Collapse
Affiliation(s)
- David Sünderhauf
- Centre for Ecology and Conservation, University of Exeter, Environment and Sustainability Institute, Penryn, TR10 9FE, UK.
| | - Uli Klümper
- Department Hydrosciences, Technische Universität Dresden, Institute of Hydrobiology, Dresden, Germany
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn, TR10 9FE, UK
| | - Edze R Westra
- Centre for Ecology and Conservation, University of Exeter, Environment and Sustainability Institute, Penryn, TR10 9FE, UK
| | - Stineke van Houte
- Centre for Ecology and Conservation, University of Exeter, Environment and Sustainability Institute, Penryn, TR10 9FE, UK.
| |
Collapse
|
18
|
Georjon H, Bernheim A. The highly diverse antiphage defence systems of bacteria. Nat Rev Microbiol 2023; 21:686-700. [PMID: 37460672 DOI: 10.1038/s41579-023-00934-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 09/14/2023]
Abstract
Bacteria and their viruses have coevolved for billions of years. This ancient and still ongoing arms race has led bacteria to develop a vast antiphage arsenal. The development of high-throughput screening methods expanded our knowledge of defence systems from a handful to more than a hundred systems, unveiling many different molecular mechanisms. These findings reveal that bacterial immunity is much more complex than previously thought. In this Review, we explore recently discovered bacterial antiphage defence systems, with a particular focus on their molecular diversity, and discuss the ecological and evolutionary drivers and implications of the existing diversity of antiphage defence mechanisms.
Collapse
Affiliation(s)
- Héloïse Georjon
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
| | - Aude Bernheim
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, INSERM, Paris, France.
| |
Collapse
|
19
|
Alseth EO, Custodio R, Sundius SA, Kuske RA, Brown SP, Westra ER. The impact of phage and phage resistance on microbial community dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559468. [PMID: 37808693 PMCID: PMC10557685 DOI: 10.1101/2023.09.26.559468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Where there are bacteria, there will be bacteriophages. These viruses are known to be important players in shaping the wider microbial community in which they are embedded, with potential implications for human health. On the other hand, bacteria possess a range of distinct immune mechanisms that provide protection against bacteriophages, including the mutation or complete loss of the phage receptor, and CRISPR-Cas adaptive immunity. Yet little is known about how interactions between phages and these different phage resistance mechanisms affect the wider microbial community in which they are embedded. Here, we conducted a 10-day, fully factorial evolution experiment to examine how phage impact the structure and dynamics of an artificial four-species bacterial community that includes either Pseudomonas aeruginosa wild type or an isogenic mutant unable to evolve phage resistance through CRISPR-Cas. Our results show that the microbial community structure is drastically altered by the addition of phage, with Acinetobacter baumannii becoming the dominant species and P. aeruginosa being driven nearly extinct, whereas P. aeruginosa outcompetes the other species in the absence of phage. Moreover, we find that a P. aeruginosa strain with the ability to evolve CRISPR-based resistance generally does better when in the presence of A. baumannii, but that this benefit is largely lost over time as phage is driven extinct. Combined, our data highlight how phage-targeting a dominant species allows for the competitive release of the strongest competitor whilst also contributing to community diversity maintenance and potentially preventing the reinvasion of the target species, and underline the importance of mapping community composition before therapeutically applying phage.
Collapse
Affiliation(s)
- Ellinor O Alseth
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rafael Custodio
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| | - Sarah A Sundius
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Math, Georgia Institute of Technology, Atlanta, Georgia, USA
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rachel A Kuske
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Math, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Sam P. Brown
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, UK
| |
Collapse
|
20
|
Watson BNJ, Pursey E, Gandon S, Westra ER. Transient eco-evolutionary dynamics early in a phage epidemic have strong and lasting impact on the long-term evolution of bacterial defences. PLoS Biol 2023; 21:e3002122. [PMID: 37713428 PMCID: PMC10530023 DOI: 10.1371/journal.pbio.3002122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/27/2023] [Accepted: 08/07/2023] [Indexed: 09/17/2023] Open
Abstract
Organisms have evolved a range of constitutive (always active) and inducible (elicited by parasites) defence mechanisms, but we have limited understanding of what drives the evolution of these orthogonal defence strategies. Bacteria and their phages offer a tractable system to study this: Bacteria can acquire constitutive resistance by mutation of the phage receptor (surface mutation, sm) or induced resistance through their CRISPR-Cas adaptive immune system. Using a combination of theory and experiments, we demonstrate that the mechanism that establishes first has a strong advantage because it weakens selection for the alternative resistance mechanism. As a consequence, ecological factors that alter the relative frequencies at which the different resistances are acquired have a strong and lasting impact: High growth conditions promote the evolution of sm resistance by increasing the influx of receptor mutation events during the early stages of the epidemic, whereas a high infection risk during this stage of the epidemic promotes the evolution of CRISPR immunity, since it fuels the (infection-dependent) acquisition of CRISPR immunity. This work highlights the strong and lasting impact of the transient evolutionary dynamics during the early stages of an epidemic on the long-term evolution of constitutive and induced defences, which may be leveraged to manipulate phage resistance evolution in clinical and applied settings.
Collapse
Affiliation(s)
| | - Elizabeth Pursey
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Sylvain Gandon
- Centre d’Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS-Université de Montpellier-Université Paul-Valéry Montpellier-EPHE, Montpellier, France
| | - Edze Rients Westra
- ESI, Biosciences, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| |
Collapse
|
21
|
Yadalam PK, Arumuganainar D, Anegundi RV, Shrivastava D, Alftaikhah SAA, Almutairi HA, Alobaida MA, Alkaberi AA, Srivastava KC. CRISPR-Cas-Based Adaptive Immunity Mediates Phage Resistance in Periodontal Red Complex Pathogens. Microorganisms 2023; 11:2060. [PMID: 37630620 PMCID: PMC10459013 DOI: 10.3390/microorganisms11082060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/23/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontal diseases are polymicrobial immune-inflammatory diseases that can severely destroy tooth-supporting structures. The critical bacteria responsible for this destruction include red complex bacteria such as Porphoromonas gingivalis, Tanerella forsythia and Treponema denticola. These organisms have developed adaptive immune mechanisms against bacteriophages/viruses, plasmids and transposons through clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas). The CRISPR-Cas system contributes to adaptive immunity, and this acquired genetic immune system of bacteria may contribute to moderating the microbiome of chronic periodontitis. The current research examined the role of the CRISPR-Cas system of red complex bacteria in the dysbiosis of oral bacteriophages in periodontitis. Whole-genome sequences of red complex bacteria were obtained and investigated for CRISPR using the CRISPR identification tool. Repeated spacer sequences were analyzed for homologous sequences in the bacteriophage genome and viromes using BLAST algorithms. The results of the BLAST spacer analysis for T. denticola spacers had a 100% score (e value with a bacillus phage), and the results for T. forsthyia and P. gingivalis had a 56% score with a pectophage and cellulophage (e value: 0.21), respectively. The machine learning model of the identified red complex CRISPR sequences predicts with area an under the curve (AUC) accuracy of 100 percent, indicating phage inhibition. These results infer that red complex bacteria could significantly inhibit viruses and phages with CRISPR immune sequences. Therefore, the role of viruses and bacteriophages in modulating sub-gingival bacterial growth in periodontitis is limited or questionable.
Collapse
Affiliation(s)
- Pradeep Kumar Yadalam
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India;
| | - Deepavalli Arumuganainar
- Department of Periodontics, Ragas Dental College and Hospital, 2/102, East Coast Road, Uthandi, Chennai 600119, India;
| | - Raghavendra Vamsi Anegundi
- Department of Periodontics, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India;
| | - Deepti Shrivastava
- Periodontics Division, Preventive Dentistry Department, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia
| | | | - Haifa Ali Almutairi
- College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia; (S.A.A.A.); (H.A.A.)
| | - Muhanad Ali Alobaida
- General Dentist, Ministry of Health, Riyadh 12613, Saudi Arabia; (M.A.A.); (A.A.A.)
| | | | - Kumar Chandan Srivastava
- Oral Medicine & Maxillofacial Radiology Division, Department of Oral & Maxillofacial Surgery & Diagnostic Sciences, College of Dentistry, Jouf University, Sakaka 72345, Saudi Arabia;
- Department of Oral Medicine and Radiology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| |
Collapse
|
22
|
Winter M, Harms K, Johnsen PJ, Buckling A, Vos M. Testing for the fitness benefits of natural transformation during community-embedded evolution. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001375. [PMID: 37526972 PMCID: PMC10482379 DOI: 10.1099/mic.0.001375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Natural transformation is a process where bacteria actively take up DNA from the environment and recombine it into their genome or reconvert it into extra-chromosomal genetic elements. The evolutionary benefits of transformation are still under debate. One main explanation is that foreign allele and gene uptake facilitates natural selection by increasing genetic variation, analogous to meiotic sex. However, previous experimental evolution studies comparing fitness gains of evolved transforming- and isogenic non-transforming strains have yielded mixed support for the 'sex hypothesis.' Previous studies testing the sex hypothesis for natural transformation have largely ignored species interactions, which theory predicts provide conditions favourable to sex. To test for the adaptive benefits of bacterial transformation, the naturally transformable wild-type Acinetobacter baylyi and a transformation-deficient ∆comA mutant were evolved for 5 weeks. To provide strong and potentially fluctuating selection, A. baylyi was embedded in a community of five other bacterial species. DNA from a pool of different Acinetobacter strains was provided as a substrate for transformation. No effect of transformation ability on the fitness of evolved populations was found, with fitness increasing non-significantly in most treatments. Populations showed fitness improvement in their respective environments, with no apparent costs of adaptation to competing species. Despite the absence of fitness effects of transformation, wild-type populations evolved variable transformation frequencies that were slightly greater than their ancestor which potentially could be caused by genetic drift.
Collapse
Affiliation(s)
- Macaulay Winter
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, UK
| | - Klaus Harms
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Pål Jarle Johnsen
- Microbial Pharmacology and Population Biology Research Group, Department of Pharmacy, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Penryn Campus, TR10 9FE, UK
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Environment and Sustainability Institute, Penryn Campus, TR10 9FE, UK
| |
Collapse
|
23
|
Forsyth JH, Barron NL, Scott L, Watson BNJ, Chisnall MAW, Meaden S, van Houte S, Raymond B. Decolonizing drug-resistant E. coli with phage and probiotics: breaking the frequency-dependent dominance of residents. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001352. [PMID: 37418300 PMCID: PMC10433417 DOI: 10.1099/mic.0.001352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023]
Abstract
Widespread antibiotic resistance in commensal bacteria creates a persistent challenge for human health. Resident drug-resistant microbes can prevent clinical interventions, colonize wounds post-surgery, pass resistance traits to pathogens or move to more harmful niches following routine interventions such as catheterization. Accelerating the removal of resistant bacteria or actively decolonizing particular lineages from hosts could therefore have a number of long-term benefits. However, removing resident bacteria via competition with probiotics, for example, poses a number of ecological challenges. Resident microbes are likely to have physiological and numerical advantages and competition based on bacteriocins or other secreted antagonists is expected to give advantages to the dominant partner, via positive frequency dependence. Since a narrow range of Escherichia coli genotypes (primarily those belonging to the clonal group ST131) cause a significant proportion of multidrug-resistant infections, this group presents a promising target for decolonization with bacteriophage, as narrow-host-range viral predation could lead to selective removal of particular genotypes. In this study we tested how a combination of an ST131-specific phage and competition from the well-known probiotic E. coli Nissle strain could displace E. coli ST131 under aerobic and anaerobic growth conditions in vitro. We showed that the addition of phage was able to break the frequency-dependent advantage of a numerically dominant ST131 isolate. Moreover, the addition of competing E. coli Nissle could improve the ability of phage to suppress ST131 by two orders of magnitude. Low-cost phage resistance evolved readily in these experiments and was not inhibited by the presence of a probiotic competitor. Nevertheless, combinations of phage and probiotic produced stable long-term suppression of ST131 over multiple transfers and under both aerobic and anaerobic growth conditions. Combinations of phage and probiotic therefore have real potential for accelerating the removal of drug-resistant commensal targets.
Collapse
Affiliation(s)
- Jessica H. Forsyth
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
- Present address: Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Natalie L. Barron
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Lucy Scott
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | | | | | - Sean Meaden
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
- Present address: Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Stineke van Houte
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Ben Raymond
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| |
Collapse
|
24
|
Wang S, Sun E, Liu Y, Yin B, Zhang X, Li M, Huang Q, Tan C, Qian P, Rao VB, Tao P. Landscape of New Nuclease-Containing Antiphage Systems in Escherichia coli and the Counterdefense Roles of Bacteriophage T4 Genome Modifications. J Virol 2023; 97:e0059923. [PMID: 37306585 PMCID: PMC10308915 DOI: 10.1128/jvi.00599-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Many phages, such as T4, protect their genomes against the nucleases of bacterial restriction-modification (R-M) and CRISPR-Cas systems through covalent modification of their genomes. Recent studies have revealed many novel nuclease-containing antiphage systems, raising the question of the role of phage genome modifications in countering these systems. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli and demonstrated the roles of T4 genome modifications in countering these systems. Our analysis identified at least 17 nuclease-containing defense systems in E. coli, with type III Druantia being the most abundant system, followed by Zorya, Septu, Gabija, AVAST type 4, and qatABCD. Of these, 8 nuclease-containing systems were found to be active against phage T4 infection. During T4 replication in E. coli, 5-hydroxymethyl dCTP is incorporated into the newly synthesized DNA instead of dCTP. The 5-hydroxymethylcytosines (hmCs) are further modified by glycosylation to form glucosyl-5-hydroxymethylcytosine (ghmC). Our data showed that the ghmC modification of the T4 genome abolished the defense activities of Gabija, Shedu, Restriction-like, type III Druantia, and qatABCD systems. The anti-phage T4 activities of the last two systems can also be counteracted by hmC modification. Interestingly, the Restriction-like system specifically restricts phage T4 containing an hmC-modified genome. The ghmC modification cannot abolish the anti-phage T4 activities of Septu, SspBCDE, and mzaABCDE, although it reduces their efficiency. Our study reveals the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of T4 genomic modification in countering these defense systems. IMPORTANCE Cleavage of foreign DNA is a well-known mechanism used by bacteria to protect themselves from phage infections. Two well-known bacterial defense systems, R-M and CRISPR-Cas, both contain nucleases that cleave the phage genomes through specific mechanisms. However, phages have evolved different strategies to modify their genomes to prevent cleavage. Recent studies have revealed many novel nuclease-containing antiphage systems from various bacteria and archaea. However, no studies have systematically investigated the nuclease-containing antiphage systems of a specific bacterial species. In addition, the role of phage genome modifications in countering these systems remains unknown. Here, by focusing on phage T4 and its host Escherichia coli, we depicted the landscape of the new nuclease-containing systems in E. coli using all 2,289 genomes available in NCBI. Our studies reveal the multidimensional defense strategies of E. coli nuclease-containing systems and the complex roles of genomic modification of phage T4 in countering these defense systems.
Collapse
Affiliation(s)
- Shuangshuang Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Erchao Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Yuepeng Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Baoqi Yin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Xueqi Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Mengling Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Qi Huang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Venigalla B. Rao
- Bacteriophage Medical Research Center, Department of Biology, The Catholic University of America, Washington, DC, USA
| | - Pan Tao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China
- Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Lab, Wuhan, Hubei, China
| |
Collapse
|
25
|
Tu Q, Pu M, Li Y, Wang Y, Li M, Song L, Li M, An X, Fan H, Tong Y. Acinetobacter Baumannii Phages: Past, Present and Future. Viruses 2023; 15:v15030673. [PMID: 36992382 PMCID: PMC10057898 DOI: 10.3390/v15030673] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is one of the most common clinical pathogens and a typical multi-drug resistant (MDR) bacterium. With the increase of drug-resistant A. baumannii infections, it is urgent to find some new treatment strategies, such as phage therapy. In this paper, we described the different drug resistances of A. baumannii and some basic properties of A. baumannii phages, analyzed the interaction between phages and their hosts, and focused on A. baumannii phage therapies. Finally, we discussed the chance and challenge of phage therapy. This paper aims to provide a more comprehensive understanding of A. baumannii phages and theoretical support for the clinical application of A. baumannii phages.
Collapse
Affiliation(s)
- Qihang Tu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Maochen Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering (BAIC-SM), Beijing University of Chemical Technology, Beijing 100029, China
- Correspondence: (H.F.); (Y.T.)
| |
Collapse
|
26
|
Wang J, Raza W, Jiang G, Yi Z, Fields B, Greenrod S, Friman VP, Jousset A, Shen Q, Wei Z. Bacterial volatile organic compounds attenuate pathogen virulence via evolutionary trade-offs. THE ISME JOURNAL 2023; 17:443-452. [PMID: 36635489 PMCID: PMC9938241 DOI: 10.1038/s41396-023-01356-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/13/2023]
Abstract
Volatile organic compounds (VOCs) produced by soil bacteria have been shown to exert plant pathogen biocontrol potential owing to their strong antimicrobial activity. While the impact of VOCs on soil microbial ecology is well established, their effect on plant pathogen evolution is yet poorly understood. Here we experimentally investigated how plant-pathogenic Ralstonia solanacearum bacterium adapts to VOC-mixture produced by a biocontrol Bacillus amyloliquefaciens T-5 bacterium and how these adaptations might affect its virulence. We found that VOC selection led to a clear increase in VOC-tolerance, which was accompanied with cross-tolerance to several antibiotics commonly produced by soil bacteria. The increasing VOC-tolerance led to trade-offs with R. solanacearum virulence, resulting in almost complete loss of pathogenicity in planta. At the genetic level, these phenotypic changes were associated with parallel mutations in genes encoding lipopolysaccharide O-antigen (wecA) and type-4 pilus biosynthesis (pilM), which both have been linked with outer membrane permeability to antimicrobials and plant pathogen virulence. Reverse genetic engineering revealed that both mutations were important, with pilM having a relatively larger negative effect on the virulence, while wecA having a relatively larger effect on increased antimicrobial tolerance. Together, our results suggest that microbial VOCs are important drivers of bacterial evolution and could potentially be used in biocontrol to select for less virulent pathogens via evolutionary trade-offs.
Collapse
Affiliation(s)
- Jianing Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Waseem Raza
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China.
- Institute for Environmental Biology, Ecology & Biodiversity, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| | - Gaofei Jiang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Zhang Yi
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Bryden Fields
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Samuel Greenrod
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Ville-Petri Friman
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China.
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK.
- Department of Microbiology, University of Helsinki, Helsinki, 00014, Finland.
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, PR China.
| |
Collapse
|
27
|
Rasmussen TS, Koefoed AK, Deng L, Muhammed MK, Rousseau GM, Kot W, Sprotte S, Neve H, Franz CMAP, Hansen AK, Vogensen FK, Moineau S, Nielsen DS. CRISPR-Cas provides limited phage immunity to a prevalent gut bacterium in gnotobiotic mice. THE ISME JOURNAL 2023; 17:432-442. [PMID: 36631688 PMCID: PMC9938214 DOI: 10.1038/s41396-023-01358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
Many bacteria and archaea harbor the adaptive CRISPR-Cas system, which stores small nucleotide fragments from previous invasions of nucleic acids via viruses or plasmids. This molecular archive blocks further invaders carrying identical or similar nucleotide sequences. However, few of these systems have been confirmed experimentally to be active in gut bacteria. Here, we demonstrate experimentally that the type I-C CRISPR-Cas system of the prevalent gut bacterium Eggerthella lenta can specifically target and cleave foreign DNA in vitro by using a plasmid transformation assay. We also show that the CRISPR-Cas system acquires new immunities (spacers) from the genome of a virulent E. lenta phage using traditional phage assays in vitro but also in vivo using gnotobiotic (GB) mice. Both high phage titer and an increased number of spacer acquisition events were observed when E. lenta was exposed to a low multiplicity of infection in vitro, and three phage genes were found to contain protospacer hotspots. Fewer new spacer acquisitions were detected in vivo than in vitro. Longitudinal analysis of phage-bacteria interactions showed sustained coexistence in the gut of GB mice, with phage abundance being approximately one log higher than the bacteria. Our findings show that while the type I-C CRISPR-Cas system is active in vitro and in vivo, a highly virulent phage in vitro was still able to co-exist with its bacterial host in vivo. Taken altogether, our results suggest that the CRISPR-Cas defense system of E. lenta provides only partial immunity in the gut.
Collapse
Affiliation(s)
- Torben Sølbeck Rasmussen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark.
| | - Anna Kirstine Koefoed
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Ling Deng
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Musemma K Muhammed
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Geneviève M Rousseau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de 1enie, Université Laval, Québec, QC, G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Witold Kot
- Section of Microbial Ecology and Biotechnology, Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Sabrina Sprotte
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103, Kiel, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103, Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, 24103, Kiel, Germany
| | - Axel Kornerup Hansen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - Finn Kvist Vogensen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark
| | - Sylvain Moineau
- Département de biochimie, de microbiologie et de bio-informatique, Faculté des sciences et de 1enie, Université Laval, Québec, QC, G1V 0A6, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Dennis Sandris Nielsen
- Section of Microbiology and Fermentation, Department of Food Science, Faculty of Science, University of Copenhagen, 1958, Frederiksberg, Denmark.
| |
Collapse
|
28
|
Unveil the Secret of the Bacteria and Phage Arms Race. Int J Mol Sci 2023; 24:ijms24054363. [PMID: 36901793 PMCID: PMC10002423 DOI: 10.3390/ijms24054363] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Bacteria have developed different mechanisms to defend against phages, such as preventing phages from being adsorbed on the surface of host bacteria; through the superinfection exclusion (Sie) block of phage's nucleic acid injection; by restricting modification (R-M) systems, CRISPR-Cas, aborting infection (Abi) and other defense systems to interfere with the replication of phage genes in the host; through the quorum sensing (QS) enhancement of phage's resistant effect. At the same time, phages have also evolved a variety of counter-defense strategies, such as degrading extracellular polymeric substances (EPS) that mask receptors or recognize new receptors, thereby regaining the ability to adsorb host cells; modifying its own genes to prevent the R-M systems from recognizing phage genes or evolving proteins that can inhibit the R-M complex; through the gene mutation itself, building nucleus-like compartments or evolving anti-CRISPR (Acr) proteins to resist CRISPR-Cas systems; and by producing antirepressors or blocking the combination of autoinducers (AIs) and its receptors to suppress the QS. The arms race between bacteria and phages is conducive to the coevolution between bacteria and phages. This review details bacterial anti-phage strategies and anti-defense strategies of phages and will provide basic theoretical support for phage therapy while deeply understanding the interaction mechanism between bacteria and phages.
Collapse
|
29
|
Wu MY, Chen L, Chen Q, Hu R, Xu X, Wang Y, Li J, Feng S, Dong C, Zhang XL, Li Z, Wang L, Chen S, Gu M. Engineered Phage with Aggregation-Induced Emission Photosensitizer in Cocktail Therapy against Sepsis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208578. [PMID: 36440662 DOI: 10.1002/adma.202208578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Sepsis, a widely recognized disease, is characterized by multiple pathogen infections. Therefore, it is imperative to develop methods that can efficiently identify and neutralize pathogen species. Phage cocktail therapy utilizes the host specificity of phages to adapt to infect resistant bacteria. However, its low sterilization stability efficiency and lack of imaging units seriously restrict its application. Here, a novel strategy combining the aggregation-induced emission photosensitizer (AIE-PS) TBTCP-PMB with phages through a nucleophilic substitution reaction between benzyl bromide and sulfhydryl groups to remove pathogenic bacteria for sepsis treatment is proposed. This strategy retains the phage's host specificity while possessing AIE-PS characteristics with a fluorescence imaging function and reactive oxygen species (ROS) for detecting and sterilizing bacteria. This synergetic strategy combining phage cocktail therapy and photodynamic therapy (PDT) shows a strong "1 + 1 > 2" bactericidal efficacy and superior performance in sepsis mouse models with good biocompatibility. Furthermore, the strategy can quickly diagnose blood infections of clinical blood samples. This simple and accurate strategy provides a promising therapeutic platform for rapid pathogen detection and point-of-care diagnosis. Moreover, it presents a new method for expanding the library of antibacterial drugs to develop new strain identification and improve infectious disease treatment, thereby demonstrating strong translational potential.
Collapse
Affiliation(s)
- Ming-Yu Wu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Luojia Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Qingrong Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Rui Hu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Xiaoyu Xu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Yifei Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, P. R. China
| | - Jie Li
- Department of Medical Intensive Care Unit, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430070, P. R. China
| | - Shun Feng
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
| | - Changjiang Dong
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Xiao-Lian Zhang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology of School of Basic Medical Sciences and Department of Allergy of Zhongnan Hospital, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Zhiqiang Li
- Brain Center, Department of Neurosurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Lianrong Wang
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| | - Shi Chen
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
- Department of Burn and Plastic Surgery, Shenzhen Institute of Translational Medicine, Health Science Center, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, P. R. China
| | - Meijia Gu
- Department of Gastroenterology, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, TaiKang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, 430071, P. R. China
| |
Collapse
|
30
|
McMullen JG, Lennon JT. Mark-recapture of microorganisms. Environ Microbiol 2023; 25:150-157. [PMID: 36310117 DOI: 10.1111/1462-2920.16267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 01/21/2023]
Affiliation(s)
| | - Jay T Lennon
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
31
|
Hardy A, Kever L, Frunzke J. Antiphage small molecules produced by bacteria - beyond protein-mediated defenses. Trends Microbiol 2023; 31:92-106. [PMID: 36038409 DOI: 10.1016/j.tim.2022.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/27/2022] [Accepted: 08/01/2022] [Indexed: 11/15/2022]
Abstract
Bacterial populations face the constant threat of viral predation exerted by bacteriophages ('phages'). In response, bacteria have evolved a wide range of defense mechanisms against phage challenges. Yet the vast majority of antiphage defense systems described until now are mediated by proteins or RNA complexes acting at the single-cell level. Here, we review small molecule-based defense strategies against phage infection, with a focus on the antiphage molecules described recently. Importantly, inhibition of phage infection by excreted small molecules has the potential to protect entire bacterial communities, highlighting the ecological significance of these antiphage strategies. Considering the immense repertoire of bacterial metabolites, we envision that the list of antiphage small molecules will be further expanded in the future.
Collapse
Affiliation(s)
- Aël Hardy
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Larissa Kever
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
32
|
Guillemet M, Chabas H, Nicot A, Gatchich F, Ortega-Abboud E, Buus C, Hindhede L, Rousseau GM, Bataillon T, Moineau S, Gandon S. Competition and coevolution drive the evolution and the diversification of CRISPR immunity. Nat Ecol Evol 2022; 6:1480-1488. [PMID: 35970864 DOI: 10.1038/s41559-022-01841-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/28/2022] [Indexed: 01/21/2023]
Abstract
The diversity of resistance challenges the ability of pathogens to spread and to exploit host populations. Yet, how this host diversity evolves over time remains unclear because it depends on the interplay between intraspecific competition among host genotypes and coevolution with pathogens. Here we study experimentally the effect of coevolving phage populations on the diversification of bacterial CRISPR immunity across space and time. We demonstrate that the negative-frequency-dependent selection generated by coevolution is a powerful force that maintains host resistance diversity and selects for new resistance mutations in the host. We also find that host evolution is driven by asymmetries in competitive abilities among different host genotypes. Even if the fittest host genotypes are targeted preferentially by the evolving phages, they often escape extinctions through the acquisition of new CRISPR immunity. Together, these fluctuating selective pressures maintain diversity, but not by preserving the pre-existing host composition. Instead, we repeatedly observe the introduction of new resistance genotypes stemming from the fittest hosts in each population. These results highlight the importance of competition on the transient dynamics of host-pathogen coevolution.
Collapse
Affiliation(s)
| | - Hélène Chabas
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
- Institute of Integrative Biology, Department for Environmental System Science, ETH Zurich, Zurich, Switzerland
| | - Antoine Nicot
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France
| | | | | | - Cornelia Buus
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Lotte Hindhede
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Geneviève M Rousseau
- Département de biochimie, microbiologie, et bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
| | - Thomas Bataillon
- Bioinformatics Research Centre, Aarhus University, Aarhus, Denmark
| | - Sylvain Moineau
- Département de biochimie, microbiologie, et bio-informatique, Faculté des sciences et de génie, Université Laval, Québec City, Canada
- Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Université Laval, Québec City, Canada
- Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Canada
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| |
Collapse
|
33
|
Dela Ahator S, Liu Y, Wang J, Zhang LH. The virulence factor regulator and quorum sensing regulate the type I-F CRISPR-Cas mediated horizontal gene transfer in Pseudomonas aeruginosa. Front Microbiol 2022; 13:987656. [PMID: 36246261 PMCID: PMC9563714 DOI: 10.3389/fmicb.2022.987656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is capable of thriving in diverse environments due to its network of regulatory components for effective response to stress factors. The survival of the bacteria is also dependent on the ability to discriminate between the acquisition of beneficial and non-beneficial genetic materials via horizontal gene transfer (HGT). Thus, bacteria have evolved the CRISPR-Cas adaptive immune system for defense against the deleterious effect of phage infection and HGT. By using the transposon mutagenesis approach, we identified the virulence factor regulator (Vfr) as a key regulator of the type I-F CRISPR-Cas system in P. aeruginosa. We showed that Vfr influences the expression of the CRISPR-Cas system through two signaling pathways in response to changes in calcium levels. Under calcium-rich conditions, Vfr indirectly regulates the CRISPR-Cas system via modulation of the AHL-QS gene expression, which could be vital for defense against phage infection at high cell density. When encountering calcium deficiency, however, Vfr can directly regulate the CRISPR-Cas system via a cAMP-dependent pathway. Furthermore, we provide evidence that mutation of vfr reduces the CRISPR-Cas spacer acquisition and interference of HGT. The results from this study add to the regulatory network of factors controlling the CRISPR-Cas system in response to abiotic factors in the environment. The findings may facilitate the design of effective and reliable phage therapies against P. aeruginosa infections, as targeting Vfr could prevent the development of the CRISPR-Cas mediated phage resistance.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
- Research Group for Host Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Yang Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Jianhe Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
- *Correspondence: Lian-Hui Zhang,
| |
Collapse
|
34
|
Ahator SD, Sagar S, Zhu M, Wang J, Zhang LH. Nutrient Availability and Phage Exposure Alter the Quorum-Sensing and CRISPR-Cas-Controlled Population Dynamics of Pseudomonas aeruginosa. mSystems 2022; 7:e0009222. [PMID: 35699339 PMCID: PMC9426516 DOI: 10.1128/msystems.00092-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/10/2022] [Indexed: 11/20/2022] Open
Abstract
Quorum sensing (QS) coordinates bacterial communication and cooperation essential for virulence and dominance in polymicrobial settings. QS also regulates the CRISPR-Cas system for targeted defense against parasitic genomes from phages and horizontal gene transfer. Although the QS and CRISPR-Cas systems are vital for bacterial survival, they undergo frequent selection in response to biotic and abiotic factors. Using the opportunistic Pseudomonas aeruginosa with well-established QS and CRISPR-Cas systems, we show how the social interactions between the acyl-homoserine lactone (AHL)-QS signal-blind mutants (ΔlasRrhlR) and the CRISPR-Cas mutants are affected by phage exposure and nutrient availability. We demonstrate that media conditions and phage exposure alter the resistance and relative fitness of ΔlasRrhlR and CRISPR-Cas mutants while tipping the fitness advantage in favor of the QS signal-blind mutants under nutrient-limiting conditions. We also show that the AHL signal-blind mutants are less selected by phages under QS-inducing conditions than the CRISPR-Cas mutants, whereas the mixed population of the CRISPR-Cas and AHL signal-blind mutants reduce phage infectivity, which can improve survival during phage exposure. Our data reveal that phage exposure and nutrient availability reshape the population dynamics between the ΔlasRrhlR QS mutants and CRISPR-Cas mutants, with key indications for cooperation and conflict between the strains. IMPORTANCE The increase in antimicrobial resistance has created the need for alternative interventions such as phage therapy. However, as previously observed with antimicrobial resistance, phage therapy will not be effective if bacteria evolve resistance and persist in the presence of the phages. The QS is commonly known as an arsenal for bacteria communication, virulence, and regulation of the phage defense mechanism, the CRISPR-Cas system. The QS and CRISPR-Cas systems are widespread in bacteria. However, they are known to evolve rapidly under the influence of biotic and abiotic factors in the bacterial environment, resulting in alteration in bacterial genotypes, which enhance phage resistance and fitness. We believe that adequate knowledge of the influence of environmental factors on the bacterial community lifestyle and phage defense mechanisms driven by the QS and CRISPR-Cas system is necessary for developing effective phage therapy.
Collapse
Affiliation(s)
- Stephen Dela Ahator
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Centre for New Antibacterial Strategies (CANS) & Research Group for Host-Microbe Interactions, Faculty of Health Sciences, The Arctic University of Norway, Tromsø, Norway
| | - Sadhanna Sagar
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Minya Zhu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jianhe Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
35
|
Phage resistance-mediated trade-offs with antibiotic resistance in Salmonella Typhimurium. Microb Pathog 2022; 171:105732. [PMID: 36002113 DOI: 10.1016/j.micpath.2022.105732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/20/2022] [Accepted: 08/16/2022] [Indexed: 11/24/2022]
Abstract
This study was designed to evaluate the trade-offs between phage resistance and antibiotic resistance of Salmonella Typhimurium (STKCCM) exposed to bacteriophage PBST10 and antibiotics (ampicillin and ciprofloxacin). STKCCM was serially exposed to control (no PBST10/antibiotic added), phage alone, ampicillin alone, ampicillin with phage, ciprofloxacin alone, and ciprofloxacin with phage for 8 days at 37 °C. The treated cells were used to evaluate the antibiotic susceptibility, β-lactamase activity, relative fitness, gene expression, and phage-resistance frequency. The antibiotic susceptibility of STKCCM to ampicillin was increased in the presence of phages. The β-lactamase activity was significantly increased in the phage alone and ampicillin with phage. The combination treatments of phages and antibiotics resulted in a greater fitness cost. The efflux pump-associated tolC was suppressed in STKCCM exposed to phage alone. The highest phage-resistance frequencies were observed at phage alone, followed by ampicillin with phage and ciprofloxacin with phage. The tolC-suppressed cells showed the enhanced antibiotic susceptibility. This study provides useful information for designing effective phage-antibiotic combination treatments. The evolutionary trade-offs of phage-resistant bacteria with antibiotic resistance might be good targets for controlling antibiotic-resistant bacteria.
Collapse
|
36
|
Liu M, Tian Y, Zaki HEM, Ahmed T, Yao R, Yan C, Leptihn S, Loh B, Shahid MS, Wang F, Chen J, Li B. Phage Resistance Reduced the Pathogenicity of Xanthomonas oryzae pv. oryzae on Rice. Viruses 2022; 14:v14081770. [PMID: 36016392 PMCID: PMC9416502 DOI: 10.3390/v14081770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
Plants grow together with microbes that have both negative and positive impacts on the host, while prokaryotes are in turn also hosts for viruses, co-evolving together in a complex interrelationship. Most research focuses on the interaction of either bacterial pathogens interacting with the plant host, or the impact on viruses on their pathogenic bacterial hosts. Few studies have investigated the co-evolution of bacterial pathogens with their host plants as well as with their bacterial viruses. In this work, we aimed to identify the genes that were associated with both phage sensitivity and host pathogenicity of the bacterium Xanthomonas oryzae pv. oryzae (Xoo), which is the most important bacterial rice pathogen. Using the Tn5 transposon mutation technology, we created a library of Xoo strain C2 comprising 4524 mutants, which were subsequently tested for phage infectability. The phage infection tests showed that less than 1% of the mutants (n = 36) were resistant to phage infection, which was attributed to the Tn5 insertion in 19 genes. Interestingly, three out of 19 genes that conveyed resistance to the phage resulted in reduced pathogenicity to rice seedlings compared to the wild type. We identified three genes involved in both phage infection and bacterial virulence, which were studied by knockout mutants and complementation experiments. All of the three knockout mutants were resistant to infection by phage X2, while the complemented strains restored the susceptibility to the bacterial virus. Surprisingly, the genes are also essential for pathogenicity, which we confirmed by single knockout mutants corresponding to the Tn5 mutants. All three genes are involved in lipopolysaccharide synthesis, thus changing the cell envelope surface molecule composition. Our work shows a possible balance in terms of the connection between bacterial virulence and phage resistance, supporting the deployment of phages for the biocontrol of plant pathogens.
Collapse
Affiliation(s)
- Mengju Liu
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Ye Tian
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Haitham E. M. Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Rong Yao
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
| | - Sebastian Leptihn
- University of Edinburgh Institute, Zhejiang University, Hangzhou 314400, China
| | - Belinda Loh
- Fraunhofer Institute for Cell Therapy & Immunology (IZI), Department of Vaccines and Infection Models, Perlickstr. 1, 04103 Leipzig, Germany
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khod 123, Oman
| | - Fang Wang
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
- Correspondence: (F.W.); (J.C.); (B.L.) Tel.: +86-0571-88982412 (B.L.)
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Correspondence: (F.W.); (J.C.); (B.L.) Tel.: +86-0571-88982412 (B.L.)
| | - Bin Li
- State Key Laboratory of Rice Biology, and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, and Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Correspondence: (F.W.); (J.C.); (B.L.) Tel.: +86-0571-88982412 (B.L.)
| |
Collapse
|
37
|
Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria. Antibiotics (Basel) 2022; 11:antibiotics11070915. [PMID: 35884169 PMCID: PMC9311878 DOI: 10.3390/antibiotics11070915] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023] Open
Abstract
With the increasing global threat of antibiotic resistance, there is an urgent need to develop new effective therapies to tackle antibiotic-resistant bacterial infections. Bacteriophage therapy is considered as a possible alternative over antibiotics to treat antibiotic-resistant bacteria. However, bacteria can evolve resistance towards bacteriophages through antiphage defense mechanisms, which is a major limitation of phage therapy. The antiphage mechanisms target the phage life cycle, including adsorption, the injection of DNA, synthesis, the assembly of phage particles, and the release of progeny virions. The non-specific bacterial defense mechanisms include adsorption inhibition, superinfection exclusion, restriction-modification, and abortive infection systems. The antiphage defense mechanism includes a clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR-associated (Cas) system. At the same time, phages can execute a counterstrategy against antiphage defense mechanisms. However, the antibiotic susceptibility and antibiotic resistance in bacteriophage-resistant bacteria still remain unclear in terms of evolutionary trade-offs and trade-ups between phages and bacteria. Since phage resistance has been a major barrier in phage therapy, the trade-offs can be a possible approach to design effective bacteriophage-mediated intervention strategies. Specifically, the trade-offs between phage resistance and antibiotic resistance can be used as therapeutic models for promoting antibiotic susceptibility and reducing virulence traits, known as bacteriophage steering or evolutionary medicine. Therefore, this review highlights the synergistic application of bacteriophages and antibiotics in association with the pleiotropic trade-offs of bacteriophage resistance.
Collapse
|
38
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
39
|
Phage-host coevolution in natural populations. Nat Microbiol 2022; 7:1075-1086. [PMID: 35760840 DOI: 10.1038/s41564-022-01157-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/23/2022] [Indexed: 01/21/2023]
Abstract
Coevolution between bacteriophages (phages) and their bacterial hosts occurs through changes in resistance and counter-resistance mechanisms. To assess phage-host evolution in wild populations, we isolated 195 Vibrio crassostreae strains and 243 vibriophages during a 5-month time series from an oyster farm and combined these isolates with existing V. crassostreae and phage isolates. Cross-infection studies of 81,926 host-phage pairs delineated a modular network where phages are best at infecting co-occurring hosts, indicating local adaptation. Successful propagation of phage is restricted by the ability to adsorb to closely related bacteria and further constrained by strain-specific defence systems. These defences are highly diverse and predominantly located on mobile genetic elements, and multiple defences are active within a single genome. We further show that epigenetic and genomic modifications enable phage to adapt to bacterial defences and alter host range. Our findings reveal that the evolution of bacterial defences and phage counter-defences is underpinned by frequent genetic exchanges with, and between, mobile genetic elements.
Collapse
|
40
|
Shkoporov AN, Turkington CJ, Hill C. Mutualistic interplay between bacteriophages and bacteria in the human gut. Nat Rev Microbiol 2022; 20:737-749. [PMID: 35773472 DOI: 10.1038/s41579-022-00755-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Bacteriophages (phages) are often described as obligate predators of their bacterial hosts, and phage predation is one of the leading forces controlling the density and distribution of bacterial populations. Every 48 h half of all bacteria on Earth are killed by phages. Efficient killing also forms the basis of phage therapy in humans and animals and the use of phages as food preservatives. In turn, bacteria have a plethora of resistance systems against phage attack, but very few bacterial species, if any, have entirely escaped phage predation. However, in complex communities and environments such as the human gut, this antagonistic model of attack and counter-defence does not fully describe the scope of phage-bacterium interactions. In this Review, we explore some of the more mutualistic aspects of phage-bacterium interactions in the human gut, and we suggest that the relationship between phages and their bacterial hosts in the gut is best characterized not as a fight to the death between enemies but rather as a mutualistic relationship between partners.
Collapse
Affiliation(s)
- Andrey N Shkoporov
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland. .,Department of Medicine, University College Cork, Cork, Ireland.
| | | | - Colin Hill
- APC Microbiome Ireland & School of Microbiology, University College Cork, Cork, Ireland.
| |
Collapse
|
41
|
de Freitas Almeida GM, Hoikkala V, Ravantti J, Rantanen N, Sundberg LR. Mucin induces CRISPR-Cas defense in an opportunistic pathogen. Nat Commun 2022; 13:3653. [PMID: 35752617 PMCID: PMC9233685 DOI: 10.1038/s41467-022-31330-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/14/2022] [Indexed: 01/21/2023] Open
Abstract
Parasitism by bacteriophages has led to the evolution of a variety of defense mechanisms in their host bacteria. However, it is unclear what factors lead to specific defenses being deployed upon phage infection. To explore this question, we co-evolved the bacterial fish pathogen Flavobacterium columnare and its virulent phage V156 in presence and absence of a eukaryotic host signal (mucin) for sixteen weeks. The presence of mucin leads to a dramatic increase in CRISPR spacer acquisition, especially in low nutrient conditions where over 60% of colonies obtain at least one new spacer. Additionally, we show that the presence of a competitor bacterium further increases CRISPR spacer acquisition in F. columnare. These results suggest that ecological factors are important in determining defense strategies against phages, and that the phage-bacterium interactions on mucosal surfaces may select for the diversification of bacterial immune systems.
Collapse
Affiliation(s)
- Gabriel Magno de Freitas Almeida
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center, Jyväskylä, Finland
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ville Hoikkala
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center, Jyväskylä, Finland
| | - Janne Ravantti
- University of Helsinki, Molecular and Integrative Biosciences Research Programme, Helsinki, Finland
| | - Noora Rantanen
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center, Jyväskylä, Finland.
| |
Collapse
|
42
|
Qin S, Xiao W, Zhou C, Pu Q, Deng X, Lan L, Liang H, Song X, Wu M. Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct Target Ther 2022; 7:199. [PMID: 35752612 PMCID: PMC9233671 DOI: 10.1038/s41392-022-01056-1] [Citation(s) in RCA: 384] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen that infects patients with cystic fibrosis, burn wounds, immunodeficiency, chronic obstructive pulmonary disorder (COPD), cancer, and severe infection requiring ventilation, such as COVID-19. P. aeruginosa is also a widely-used model bacterium for all biological areas. In addition to continued, intense efforts in understanding bacterial pathogenesis of P. aeruginosa including virulence factors (LPS, quorum sensing, two-component systems, 6 type secretion systems, outer membrane vesicles (OMVs), CRISPR-Cas and their regulation), rapid progress has been made in further studying host-pathogen interaction, particularly host immune networks involving autophagy, inflammasome, non-coding RNAs, cGAS, etc. Furthermore, numerous technologic advances, such as bioinformatics, metabolomics, scRNA-seq, nanoparticles, drug screening, and phage therapy, have been used to improve our understanding of P. aeruginosa pathogenesis and host defense. Nevertheless, much remains to be uncovered about interactions between P. aeruginosa and host immune responses, including mechanisms of drug resistance by known or unannotated bacterial virulence factors as well as mammalian cell signaling pathways. The widespread use of antibiotics and the slow development of effective antimicrobials present daunting challenges and necessitate new theoretical and practical platforms to screen and develop mechanism-tested novel drugs to treat intractable infections, especially those caused by multi-drug resistance strains. Benefited from has advancing in research tools and technology, dissecting this pathogen's feature has entered into molecular and mechanistic details as well as dynamic and holistic views. Herein, we comprehensively review the progress and discuss the current status of P. aeruginosa biophysical traits, behaviors, virulence factors, invasive regulators, and host defense patterns against its infection, which point out new directions for future investigation and add to the design of novel and/or alternative therapeutics to combat this clinically significant pathogen.
Collapse
Affiliation(s)
- Shugang Qin
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Xiao
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Chuanmin Zhou
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan, 430071, P.R. China
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, People's Republic of China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haihua Liang
- College of Life Sciences, Northwest University, Xi'an, ShaanXi, 710069, China
| | - Xiangrong Song
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Min Wu
- Department of Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, 58203, USA.
| |
Collapse
|
43
|
de Freitas Almeida GM, Hoikkala V, Ravantti J, Rantanen N, Sundberg LR. Mucin induces CRISPR-Cas defense in an opportunistic pathogen. Nat Commun 2022; 13:3653. [PMID: 35752617 DOI: 10.1101/2021.08.10.455787v1.abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/14/2022] [Indexed: 05/27/2023] Open
Abstract
Parasitism by bacteriophages has led to the evolution of a variety of defense mechanisms in their host bacteria. However, it is unclear what factors lead to specific defenses being deployed upon phage infection. To explore this question, we co-evolved the bacterial fish pathogen Flavobacterium columnare and its virulent phage V156 in presence and absence of a eukaryotic host signal (mucin) for sixteen weeks. The presence of mucin leads to a dramatic increase in CRISPR spacer acquisition, especially in low nutrient conditions where over 60% of colonies obtain at least one new spacer. Additionally, we show that the presence of a competitor bacterium further increases CRISPR spacer acquisition in F. columnare. These results suggest that ecological factors are important in determining defense strategies against phages, and that the phage-bacterium interactions on mucosal surfaces may select for the diversification of bacterial immune systems.
Collapse
Affiliation(s)
- Gabriel Magno de Freitas Almeida
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center, Jyväskylä, Finland
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ville Hoikkala
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center, Jyväskylä, Finland
| | - Janne Ravantti
- University of Helsinki, Molecular and Integrative Biosciences Research Programme, Helsinki, Finland
| | - Noora Rantanen
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center, Jyväskylä, Finland
| | - Lotta-Riina Sundberg
- University of Jyväskylä, Department of Biological and Environmental Science and Nanoscience Center, Jyväskylä, Finland.
| |
Collapse
|
44
|
Sadiq FA, Hansen MF, Burmølle M, Heyndrickx M, Flint S, Lu W, Chen W, Zhang H. Towards understanding mechanisms and functional consequences of bacterial interactions with members of various kingdoms in complex biofilms that abound in nature. FEMS Microbiol Rev 2022; 46:6595875. [PMID: 35640890 DOI: 10.1093/femsre/fuac024] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/11/2022] [Accepted: 05/27/2022] [Indexed: 11/12/2022] Open
Abstract
The microbial world represents a phenomenal diversity of microorganisms from different kingdoms of life which occupy an impressive set of ecological niches. Most, if not all, microorganisms once colonise a surface develop architecturally complex surface-adhered communities which we refer to as biofilms. They are embedded in polymeric structural scaffolds serve as a dynamic milieu for intercellular communication through physical and chemical signalling. Deciphering microbial ecology of biofilms in various natural or engineered settings has revealed co-existence of microorganisms from all domains of life, including Bacteria, Archaea and Eukarya. The coexistence of these dynamic microbes is not arbitrary, as a highly coordinated architectural setup and physiological complexity show ecological interdependence and myriads of underlying interactions. In this review, we describe how species from different kingdoms interact in biofilms and discuss the functional consequences of such interactions. We highlight metabolic advances of collaboration among species from different kingdoms, and advocate that these interactions are of great importance and need to be addressed in future research. Since trans-kingdom biofilms impact diverse contexts, ranging from complicated infections to efficient growth of plants, future knowledge within this field will be beneficial for medical microbiology, biotechnology, and our general understanding of microbial life in nature.
Collapse
Affiliation(s)
- Faizan Ahmed Sadiq
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Denmark
| | - Marc Heyndrickx
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Technology & Food Sciences Unit, Melle, Belgium.,Department of Pathology, Bacteriology and Poultry Diseases, Ghent University, Merelbeke, Belgium
| | - Steve Flint
- School of Food and Advanced Technology, Massey University, Private Bag, 11222, Palmerston North, New Zealand
| | - Wenwei Lu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
45
|
Barron-Montenegro R, Rivera D, Serrano MJ, García R, Álvarez DM, Benavides J, Arredondo F, Álvarez FP, Bastías R, Ruiz S, Hamilton-West C, Castro-Nallar E, Moreno-Switt AI. Long-Term Interactions of Salmonella Enteritidis With a Lytic Phage for 21 Days in High Nutrients Media. Front Cell Infect Microbiol 2022; 12:897171. [PMID: 35711664 PMCID: PMC9196899 DOI: 10.3389/fcimb.2022.897171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022] Open
Abstract
Salmonella spp. is a relevant foodborne pathogen with worldwide distribution. To mitigate Salmonella infections, bacteriophages represent an alternative to antimicrobials and chemicals in food animals and food in general. Bacteriophages (phages) are viruses that infect bacteria, which interact constantly with their host. Importantly, the study of these interactions is crucial for the use of phages as a mitigation strategy. In this study, experimental coevolution of Salmonella Enteritidis (S. Enteritidis) and a lytic phage was conducted in tryptic soy broth for 21 days. Transfer to fresh media was conducted daily and every 24 hours, 2 mL of the sample was collected to quantify Salmonella OD600 and phage titter. Additionally, time-shift experiments were conducted on 20 colonies selected on days 1, 12, and 21 to evaluate the evolution of resistance to past (day 1), present (day 12), and future (day 21) phage populations. The behavior of the dynamics was modeled and simulated with mathematical mass-action models. Bacteria and phage from days 1 and 21 were sequenced to determine the emergence of mutations. We found that S. Enteritidis grew for 21 days in the presence and absence of the phage and developed resistance to the phage from day 1. Also, the phage was also able to survive in the media for 21 days, however, the phage titer decreased in approx. 3 logs PFU/mL. The stability of the lytic phage population was consistent with the leaky resistance model. The time-shift experiments showed resistance to phages from day 1 of at least 85% to the past, present, and future phages. Sequencing of S. Enteritidis showed mutations in genes involved in lipopolysaccharide biosynthesis genes rfbP and rfbN at day 21. The phage showed mutations in the tail phage proteins responsible for recognizing the cell surface receptors. These results suggest that interactions between bacteria and phage in a rich resource media generate a rapid resistance to the infective phage but a fraction of the population remains susceptible. Interactions between Salmonella and lytic phages are an important component for the rational use of phages to control this important foodborne pathogen.
Collapse
Affiliation(s)
- Rocio Barron-Montenegro
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Dácil Rivera
- Escuela de Medicina Veterinaria, Universidad Andres Bello, Santiago, Chile
| | - María Jesus Serrano
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Rodrigo García
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Department of Biology, Emory University, Atlanta, GA, United States
| | - Diana M. Álvarez
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Benavides
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- MIVEGEC, MIVEGEC, IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Fernanda Arredondo
- Centro de Bioinformática y Biología Integrativa, Universidad Andres Bello, Santiago, Chile
| | - Francisca P. Álvarez
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto Bastías
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Soledad Ruiz
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Christopher Hamilton-West
- Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Eduardo Castro-Nallar
- Instituto de Investigaciones Interdisciplinarias, Universidad de Talca, Talca, Chile
- Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca, Chile
| | - Andrea I. Moreno-Switt
- Escuela de Medicina Veterinaria, Facultad de Agronomía e Ingeniería Forestal, Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
46
|
Polymicrobial infections can select against Pseudomonas aeruginosa mutators because of quorum-sensing trade-offs. Nat Ecol Evol 2022; 6:979-988. [PMID: 35618819 DOI: 10.1038/s41559-022-01768-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/13/2022] [Indexed: 11/08/2022]
Abstract
Bacteria with increased mutation rates (mutators) are common in chronic infections and are associated with poorer clinical outcomes, especially in the case of Pseudomonas aeruginosa infecting cystic fibrosis (CF) patients. There is, however, considerable between-patient variation in both P. aeruginosa mutator frequency and the composition of co-infecting pathogen communities. We investigated whether community context might affect selection of mutators. Using an in vitro CF model community, we show that P. aeruginosa mutators were favoured in the absence of other species but not in their presence. This was because there were trade-offs between adaptation to the biotic and abiotic environments (for example, loss of quorum sensing and associated toxin production was beneficial in the latter but not the former in our in vitro model community) limiting the evolvability advantage of an elevated mutation rate. Consistent with a role of co-infecting pathogens selecting against P. aeruginosa mutators in vivo, we show that the mutation frequency of P. aeruginosa population was negatively correlated with the frequency and diversity of co-infecting bacteria in CF infections. Our results suggest that co-infecting taxa can select against P. aeruginosa mutators, which may have potentially beneficial clinical consequences.
Collapse
|
47
|
Isolation, characterization, and application of bacteriophages to reduce and inhibit Listeria monocytogenes in celery and enoki mushroom. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
48
|
Lourenço M, Chaffringeon L, Lamy-Besnier Q, Titécat M, Pédron T, Sismeiro O, Legendre R, Varet H, Coppée JY, Bérard M, De Sordi L, Debarbieux L. The gut environment regulates bacterial gene expression which modulates susceptibility to bacteriophage infection. Cell Host Microbe 2022; 30:556-569.e5. [PMID: 35421351 DOI: 10.1016/j.chom.2022.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/14/2022] [Accepted: 03/10/2022] [Indexed: 11/24/2022]
Abstract
Abundance and diversity of bacteria and their viral predators, bacteriophages (phages), in the digestive tract are associated with human health. Particularly intriguing is the long-term coexistence of these two antagonistic populations. We performed genome-wide RNA sequencing on a human enteroaggregative Escherichia coli isolate to identify genes differentially expressed between in vitro conditions and in murine intestines. We experimentally demonstrated that four of these differentially expressed genes modified the interactions between E. coli and three virulent phages by either increasing or decreasing its susceptibility/resistance pattern and also by interfering with biofilm formation. Therefore, the regulation of bacterial genes expression during the colonization of the digestive tract influences the coexistence of phages and bacteria, highlighting the intricacy of tripartite relationships between phages, bacteria, and the animal host in intestinal homeostasis.
Collapse
Affiliation(s)
- Marta Lourenço
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Lorenzo Chaffringeon
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Quentin Lamy-Besnier
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Marie Titécat
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Université de Lille, INSERM, CHU Lille, U1286-INFINITE-Institute for Translational Research in Inflammation, 59000 Lille, France
| | - Thierry Pédron
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France
| | - Odile Sismeiro
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Rachel Legendre
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Hugo Varet
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France; Bioinformatics and Biostatistics Hub, Department of Computational Biology, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Jean-Yves Coppée
- Transcriptome and EpiGenome Platform, Biomics, Center for Technological Resources and Research (C2RT), Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Marion Bérard
- Institut Pasteur, Université Paris Cité, DT, Animalerie Centrale, Centre de Gnotobiologie, 75724 Paris, France
| | - Luisa De Sordi
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France; Sorbonne Université, INSERM, Centre de Recherche St Antoine, UMRS_938, Paris, France; Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR 6047, Bacteriophage Bacterium Host, 75015 Paris, France.
| |
Collapse
|
49
|
Abstract
RNA-guided CRISPR-Cas nucleases efficiently protect bacterial cells from phage infection and plasmid transformation. Yet, the efficiency of CRISPR-Cas defense is not absolute. Mutations in either CRISPR-Cas components of the host or mobile genetic elements regions targeted by CRISPR-Cas inactivate the defensive action. Here, we show that even at conditions of active CRISPR-Cas and unaltered targeted plasmids, a kinetic equilibrium between CRISPR-Cas nucleases action and plasmid replication processes allows for existence of a small subpopulation of plasmid-bearing cells on the background of cells that have been cured from the plasmid. In nature, the observed diversification of phenotypes may allow rapid changes in the population structure to meet the demands of the environment. CRISPR-Cas systems provide prokaryotes with an RNA-guided defense against foreign mobile genetic elements (MGEs) such as plasmids and viruses. A common mechanism by which MGEs avoid interference by CRISPR consists of acquisition of escape mutations in regions targeted by CRISPR. Here, using microbiological, live microscopy and microfluidics analyses we demonstrate that plasmids can persist for multiple generations in some Escherichia coli cell lineages at conditions of continuous targeting by the type I-E CRISPR-Cas system. We used mathematical modeling to show how plasmid persistence in a subpopulation of cells mounting CRISPR interference is achieved due to the stochastic nature of CRISPR interference and plasmid replication events. We hypothesize that the observed complex dynamics provides bacterial populations with long-term benefits due to continuous maintenance of mobile genetic elements in some cells, which leads to diversification of phenotypes in the entire community and allows rapid changes in the population structure to meet the demands of a changing environment.
Collapse
|
50
|
Amábile-Cuevas CF. Phage Therapies: Lessons (Not) Learned from the "Antibiotic Era". PHAGE (NEW ROCHELLE, N.Y.) 2022; 3:12-14. [PMID: 36161197 PMCID: PMC9436267 DOI: 10.1089/phage.2022.0001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The use of phages as therapeutic or prophylactic approaches is gaining increased interest amid the growing menace of antibiotic resistance. Phages, along with other new anti-infective strategies, are certainly welcome as much needed additions to the medicinal arsenal. However, we can easily make with phages the same mistakes we made with antibiotics, which caused the current resistance crisis. The oversimplification of the ecological role of antibiotics, neglecting ancient resistance and the role of horizontal gene transfer; the active search for wide spectrum, and the massive agricultural abuse; and, most importantly, the financial greed behind the development and use of antibiotics; these are all trends that are now visible in phage research. Should we bring phages to the same track that wasted antibiotics, we could be looking at a "postphage era" in our near future.
Collapse
|