1
|
Chen J, Sun MY, Wang ZH, Zhang Z, Zhang K, Wang S, Zhang Y, Wu X, Ren TL, Liu H, Han L. Performance Limits and Advancements in Single 2D Transition Metal Dichalcogenide Transistor. NANO-MICRO LETTERS 2024; 16:264. [PMID: 39120835 PMCID: PMC11315877 DOI: 10.1007/s40820-024-01461-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) allow for atomic-scale manipulation, challenging the conventional limitations of semiconductor materials. This capability may overcome the short-channel effect, sparking significant advancements in electronic devices that utilize 2D TMDs. Exploring the dimension and performance limits of transistors based on 2D TMDs has gained substantial importance. This review provides a comprehensive investigation into these limits of the single 2D-TMD transistor. It delves into the impacts of miniaturization, including the reduction of channel length, gate length, source/drain contact length, and dielectric thickness on transistor operation and performance. In addition, this review provides a detailed analysis of performance parameters such as source/drain contact resistance, subthreshold swing, hysteresis loop, carrier mobility, on/off ratio, and the development of p-type and single logic transistors. This review details the two logical expressions of the single 2D-TMD logic transistor, including current and voltage. It also emphasizes the role of 2D TMD-based transistors as memory devices, focusing on enhancing memory operation speed, endurance, data retention, and extinction ratio, as well as reducing energy consumption in memory devices functioning as artificial synapses. This review demonstrates the two calculating methods for dynamic energy consumption of 2D synaptic devices. This review not only summarizes the current state of the art in this field but also highlights potential future research directions and applications. It underscores the anticipated challenges, opportunities, and potential solutions in navigating the dimension and performance boundaries of 2D transistors.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
- BNRist, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ming-Yuan Sun
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Zhen-Hua Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Zheng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Kai Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Shuai Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, People's Republic of China
| | - Xiaoming Wu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, Shandong, People's Republic of China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, People's Republic of China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, People's Republic of China.
- Shandong Engineering Research Center of Biomarker and Artificial Intelligence Application, Jinan, 250100, People's Republic of China.
| |
Collapse
|
2
|
Bai C, Wu G, Yang J, Zeng J, Liu Y, Wang J. 2D materials-based photodetectors combined with ferroelectrics. NANOTECHNOLOGY 2024; 35:352001. [PMID: 38697050 DOI: 10.1088/1361-6528/ad4652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Photodetectors are essential optoelectronic devices that play a critical role in modern technology by converting optical signals into electrical signals, which are one of the most important sensors of the informational devices in current 'Internet of Things' era. Two-dimensional (2D) material-based photodetectors have excellent performance, simple design and effortless fabrication processes, as well as enormous potential for fabricating highly integrated and efficient optoelectronic devices, which has attracted extensive research attention in recent years. The introduction of spontaneous polarization ferroelectric materials further enhances the performance of 2D photodetectors, moreover, companying with the reduction of power consumption. This article reviews the recent advances of materials, devices in ferroelectric-modulated photodetectors. This review starts with the introduce of the basic terms and concepts of the photodetector and various ferroelectric materials applied in 2D photodetectors, then presents a variety of typical device structures, fundamental mechanisms and potential applications under ferroelectric polarization modulation. Finally, we summarize the leading challenges currently confronting ferroelectric-modulated photodetectors and outline their future perspectives.
Collapse
Affiliation(s)
- Chongyang Bai
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
| | - Guangjian Wu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200433, People's Republic of China
| | - Jing Yang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Science, East China Normal University, Shanghai 200241, People's Republic of China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, People's Republic of China
| | - Jinhua Zeng
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200433, People's Republic of China
| | - Yihan Liu
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200433, People's Republic of China
| | - Jianlu Wang
- State Key Laboratory of Integrated Chips and Systems, Frontier Institute of Chip and System, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
3
|
Li YC, Huang T, Li XX, Zhu XN, Zhang DW, Lu HL. Domain Switching Characteristics in Ga-Doped HfO 2 Ferroelectric Thin Films with Low Coercive Field. NANO LETTERS 2024; 24:6585-6591. [PMID: 38785400 DOI: 10.1021/acs.nanolett.4c00263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The gallium-doped hafnium oxide (Ga-HfO2) films with different Ga doping concentrations were prepared by adjusting the HfO2/Ga2O3 atomic layer deposition cycle ratio for high-speed and low-voltage operation in HfO2-based ferroelectric memory. The Ga-HfO2 ferroelectric films reveal a finely modulated coercive field (Ec) from 1.1 (HfO2/Ga2O3 = 32:1) to an exceptionally low 0.6 MV/cm (HfO2/Ga2O3 = 11:1). This modulation arises from the competition between domain nucleation and propagation speed during polarization switching, influenced by the intrinsic domain density and phase dispersion in the film with specific Ga doping concentrations. Higher Ec samples exhibit a nucleation-dominant switching mechanism, while lower Ec samples undergo a transition from a nucleation-dominant to a propagation-dominant reversal mechanism as the electric field increases. This work introduces Ga as a viable dopant for low Ec and offers insights into material design strategies for HfO2-based ferroelectric memory applications.
Collapse
Affiliation(s)
- Yu-Chun Li
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Teng Huang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xiao-Xi Li
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
| | - Xiao-Na Zhu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
- Jiashan Fudan Institute, Jiaxing, Zhejiang Province 314100, China
| | - David Wei Zhang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
- Jiashan Fudan Institute, Jiaxing, Zhejiang Province 314100, China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics & Systems, School of Microelectronics, Fudan University, Shanghai 200433, China
- Jiashan Fudan Institute, Jiaxing, Zhejiang Province 314100, China
| |
Collapse
|
4
|
Go KJ, Kim MS, Lee K, Lee JH, Chae SC, Choi SY. Pinning and Depinning of Domain Switching in Ferroelectric HfO2 Freestanding Membrane. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1822. [PMID: 37613855 DOI: 10.1093/micmic/ozad067.942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Affiliation(s)
- Kyoung-June Go
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Min-Su Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Kyoungjun Lee
- Department of Physics Education, Seoul National University, Seoul, Republic of Korea
| | - Jun Hee Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seung Chul Chae
- Department of Physics Education, Seoul National University, Seoul, Republic of Korea
| | - Si-Young Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Semiconductor Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Center for Van der Waals Quantum Solids, Institute for Basic Science (IBS), Pohang, Republic of Korea
| |
Collapse
|