1
|
Wang X, Wang Z, Liu Z, Huang F, Pan Z, Zhang Z, Liu T. Nutritional strategies in oncology: The role of dietary patterns in modulating tumor progression and treatment response. Biochim Biophys Acta Rev Cancer 2025; 1880:189322. [PMID: 40228747 DOI: 10.1016/j.bbcan.2025.189322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Dietary interventions can influence tumor growth by restricting tumor-specific nutritional requirements, altering the nutrient availability in the tumor microenvironment, or enhancing the cytotoxicity of anticancer drugs. Metabolic reprogramming of tumor cells, as a significant hallmark of tumor progression, has a profound impact on immune regulation, severely hindering tumor eradication. Dietary interventions can modify tumor metabolic processes to some extent, thereby further improving the efficacy of tumor treatment. In this review, we emphasize the impact of dietary patterns on tumor progression. By exploring the metabolic differences of nutrients in normal cells versus cancer cells, we further clarify how dietary patterns influence cancer treatment. We also discuss the effects of dietary patterns on traditional treatments such as immunotherapy, chemotherapy, radiotherapy, and the gut microbiome, thereby underscoring the importance of precision nutrition.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zeyao Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zihan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Fanxuan Huang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China; Departments of Cardiology and Pharmacy and Breast Cancer surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China.
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| |
Collapse
|
2
|
Esposito T, Pentimalli F, Giordano A, Cortellino S. Vitamins and dietary supplements in cancer treatment: is there a need for increased usage? Expert Rev Anticancer Ther 2025:1-24. [PMID: 40322898 DOI: 10.1080/14737140.2025.2501077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
INTRODUCTION Vitamins are essential for homeostasis and proper functioning of organisms. These micronutrients prevent tumor onset by functioning as antioxidants and enzymatic cofactors involved in anti-stress and immune responses, modulating epigenetic regulators, and shaping the microbiota composition. Unbalanced diets and sedentary lifestyles contribute to obesity, associated with increasing cancer risk. Cancer patients often exhibit vitamin deficiencies due to chronic inflammation, anticancer therapies, and tumor-induced metabolic changes, leading to malnutrition and cachexia. AREAS COVERED This review critically analyzes preclinical and clinical studies, sourced from PubMed and ClinicalTrials.gov databases, that investigate the potential benefits of vitamin supplementation and dietary interventions, such as intermittent fasting and ketogenic diets, in mouse tumor models and cancer patients. This analysis elucidates the limitations of such interventions and suggests optimal dietary strategies to prevent cancer and enhance patients' quality of life and prognosis. EXPERT OPINION To date, clinical studies have found no substantial benefit of over-the-counter vitamin supplements and dietary interventions on cancer patients' health and prognosis. To prevent the spread of useless and potentially harmful products by the nutraceutical industry, establishing a regulatory authority is necessary to monitor and ensure product quality and validity before commercialization.
Collapse
Affiliation(s)
- Teresa Esposito
- Department of Clinical Dietetics and Metabolic Diseases, Cavalier Raffaele Apicella Hospital, ASL Napoli 3 Sud, Naples, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University "Giuseppe De Gennaro", Bari, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Salvatore Cortellino
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, Naples, Italy
- S.H.R.O. Italia Foundation ETS, Turin, Italy
| |
Collapse
|
3
|
Kenchegowda M, Angolkar M, Hani U, Al Fatease A, Fatima F, Talath S, Dera AA, Paramshetti S, Gangadharappa HV, Osmani RAM, Kazi HS. Polymeric microneedle advancements in macromolecule drug delivery: current trends, challenges, and future perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04117-8. [PMID: 40244451 DOI: 10.1007/s00210-025-04117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Microneedles (MNs) offer a transformative solution for delivering macromolecules, including proteins, RNA, and peptides. These are critical in treating complex diseases but face significant challenges such as immunogenicity, poor stability, high molecular weight, and delivery efficiency. Unlike conventional methods, MNs efficiently bypass biological barriers like the stratum corneum, enabling precise and minimally invasive transdermal drug delivery. This review explores various MN types such as solid, coated, hollow, hydrogel-forming, and dissolving and their therapeutic applications in cancer immunotherapy, diabetes management, and osteoporosis treatment. For instance, dissolving MNs have been employed for transdermal insulin delivery, enhancing patient compliance and therapeutic outcomes. Similarly, hydrogel MNs have shown promise in sustained drug release for immunotherapy applications. By addressing cost and scalability issues, polymeric MNs demonstrate significant potential for clinical translation, paving the way for innovations in macromolecule delivery, diagnostics, and personalised medicine. This review underscores the pivotal role of MNs in redefining drug delivery systems, offering improved efficacy, patient comfort, and accessibility.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | | | - Riyaz Ali M Osmani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al-Faraa, Abha, 62223, Saudi Arabia.
| | - Heena Shijauddin Kazi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| |
Collapse
|
4
|
Abdeen SK, Mastandrea I, Stinchcombe N, Puschhof J, Elinav E. Diet-microbiome interactions in cancer. Cancer Cell 2025; 43:680-707. [PMID: 40185096 DOI: 10.1016/j.ccell.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Diet impacts cancer in diverse manners. Multiple nutritional effects on tumors are mediated by dietary modulation of commensals, residing in mucosal surfaces and possibly also within the tumor microenvironment. Mechanistically understanding such diet-microbiome-host interactions may enable to develop precision nutritional interventions impacting cancer development, dissemination, and treatment responses. However, data-driven nutritional strategies integrating diet-microbiome interactions are infrequently incorporated into cancer prevention and treatment schemes. Herein, we discuss how dietary composition affects cancer-related processes through alterations exerted by specific nutrients and complex foods on the microbiome. We highlight how dietary timing, including time-restricted feeding, impacts microbial function in modulating cancer and its therapy. We review existing and experimental nutritional approaches aimed at enhancing microbiome-mediated cancer treatment responsiveness while minimizing adverse effects, and address challenges and prospects in integrating diet-microbiome interactions into precision oncology. Collectively, mechanistically understanding diet-microbiome-host interactomes may enable to achieve a personalized and microbiome-informed optimization of nutritional cancer interventions.
Collapse
Affiliation(s)
- Suhaib K Abdeen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nina Stinchcombe
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany
| | - Jens Puschhof
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
5
|
Tripathi S, Sharma Y, Kumar D. Unveiling the link between chronic inflammation and cancer. Metabol Open 2025; 25:100347. [PMID: 39876904 PMCID: PMC11772974 DOI: 10.1016/j.metop.2025.100347] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/31/2025] Open
Abstract
The highly nuanced transition from an inflammatory process to tumorigenesis is of great scientific interest. While it is well known that environmental stimuli can cause inflammation, less is known about the oncogenic modifications that chronic inflammation in the tissue microenvironment can bring about, as well as how these modifications can set off pro-tumorigenic processes. It is clear that no matter where the environmental factors come from, maintaining an inflammatory microenvironment encourages carcinogenesis. In addition to encouraging angiogenesis and metastatic processes, sustaining the survival and proliferation of malignant transformed cells, and possibly altering the efficacy of therapeutic agents, inflammation can negatively regulate the antitumoral adaptive and innate immune responses. Because chronic inflammation has multiple pathways involved in tumorigenesis and metastasis, it has gained recognition as a marker of cancer and a desirable target for cancer therapy. Recent advances in our knowledge of the molecular mechanisms that drive cancer's progression demonstrate that inflammation promotes tumorigenesis and metastasis while suppressing anti-tumor immunity. In many solid tumor types, including breast, lung, and liver cancer, inflammation stimulates the activation of oncogenes and impairs the body's defenses against the tumor. Additionally, it alters the microenvironment of the tumor. As a tactical approach to cancer treatment, these findings have underscored the importance of targeting inflammatory pathways. This review highlights the role of inflammation in cancer development and metastasis, focusing on its impact on tumor progression, immune suppression, and therapy resistance. It examines current anti-inflammatory strategies, including NSAIDs, cytokine modulators, and STAT3 inhibitors, while addressing their potential and limitations. The review emphasizes the need for further research to unravel the complex mechanisms linking inflammation to cancer progression and identify molecular targets for specific cancer subtypes.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
6
|
Chen Z, Gong Y, Chen F, Lee HJ, Qian J, Zhao J, Zhang W, Li Y, Zhou Y, Xu Q, Xia Y, Zhou L, Cheng J. Orchestrated desaturation reprogramming from stearoyl-CoA desaturase to fatty acid desaturase 2 in cancer epithelial-mesenchymal transition and metastasis. Cancer Commun (Lond) 2025; 45:245-280. [PMID: 39722173 PMCID: PMC11947613 DOI: 10.1002/cac2.12644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/21/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Adaptative desaturation in fatty acid (FA) is an emerging hallmark of cancer metabolic plasticity. Desaturases such as stearoyl-CoA desaturase (SCD) and fatty acid desaturase 2 (FADS2) have been implicated in multiple cancers, and their dominant and compensatory effects have recently been highlighted. However, how tumors initiate and sustain their self-sufficient FA desaturation to maintain phenotypic transition remains elusive. This study aimed to explore the molecular orchestration of SCD and FADS2 and their specific reprogramming mechanisms in response to cancer progression. METHODS The potential interactions between SCD and FADS2 were explored by bioinformatics analyses across multiple cancer cohorts, which guided subsequent functional and mechanistic investigations. The expression levels of desaturases were investigated with online datasets and validated in both cancer tissues and cell lines. Specific desaturation activities were characterized through various isomer-resolved lipidomics methods and sensitivity assays using desaturase inhibitors. In-situ lipid profiling was conducted using multiplex stimulated Raman scattering imaging. Functional assays were performed both in vitro and in vivo, with RNA-sequencing employed for the mechanism verification. RESULTS After integration of the RNA-protein-metabolite levels, the data revealed that a reprogramming from SCD-dependent to FADS2-dependent desaturation was linked to cancer epithelial-mesenchymal transition (EMT) and progression in both patients and cell lines. FADS2 overexpression and SCD suppression concurrently maintained EMT plasticity. A FADS2/β-catenin self-reinforcing feedback loop facilitated the degree of lipid unsaturation, membrane fluidity, metastatic potential and EMT signaling. Moreover, SCD inhibition triggered a lethal apoptosis but boosted survival plasticity by inducing EMT and enhancing FA uptake via adenosine monophosphate-activated protein kinase activation. Notably, this desaturation reprogramming increased transforming growth factor-β2, effectively sustaining aggressive phenotypes and metabolic plasticity during EMT. CONCLUSIONS These findings revealed a metabolic reprogramming from SCD-dependent to FADS2-dependent desaturation during cancer EMT and progression, which concurrently supports EMT plasticity. Targeting desaturation reprogramming represents a potential vulnerability for cancer metabolic therapy.
Collapse
Affiliation(s)
- Zhicong Chen
- Department of Obstetrics and GynecologyCenter for Reproductive MedicineGuangdong Provincial Key Laboratory of Major Obstetric DiseasesGuangdong Provincial Clinical Research Center for Obstetrics and GynecologyGuangdong‐Hong Kong‐Macao Greater Bay Area Higher Education Joint Laboratory of Maternal‐Fetal MedicineThe Third Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongP. R. China
- Department of Biomedical EngineeringDepartment of Electrical and Computer EngineeringPhotonics CenterBoston UniversityBostonMassachusettsUSA
- Department of UrologyPeking University First HospitalBeijingP. R. China
| | - Yanqing Gong
- Department of UrologyPeking University First HospitalBeijingP. R. China
| | - Fukai Chen
- Department of Biomedical EngineeringDepartment of Electrical and Computer EngineeringPhotonics CenterBoston UniversityBostonMassachusettsUSA
| | - Hyeon Jeong Lee
- Department of Biomedical EngineeringDepartment of Electrical and Computer EngineeringPhotonics CenterBoston UniversityBostonMassachusettsUSA
- College of Biomedical Engineering & Instrument ScienceKey Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhouZhejiangP. R. China
| | - Jinqin Qian
- Department of UrologyPeking University First HospitalBeijingP. R. China
| | - Jing Zhao
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua UniversityBeijingP. R. China
| | - Wenpeng Zhang
- State Key Laboratory of Precision Measurement Technology and InstrumentsDepartment of Precision InstrumentTsinghua UniversityBeijingP. R. China
| | - Yamin Li
- Department of Biomedical EngineeringTufts UniversityMedfordMassachusettsUSA
| | - Yihui Zhou
- College of Biomedical Engineering & Instrument ScienceKey Laboratory for Biomedical Engineering of Ministry of EducationZhejiang UniversityHangzhouZhejiangP. R. China
| | - Qiaobing Xu
- Department of Biomedical EngineeringTufts UniversityMedfordMassachusettsUSA
| | - Yu Xia
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyDepartment of ChemistryTsinghua UniversityBeijingP. R. China
| | - Liqun Zhou
- Department of UrologyPeking University First HospitalBeijingP. R. China
| | - Ji‐Xin Cheng
- Department of Biomedical EngineeringDepartment of Electrical and Computer EngineeringPhotonics CenterBoston UniversityBostonMassachusettsUSA
| |
Collapse
|
7
|
Li R, Ma Y, He A, Pu Y, Wan X, Sun H, Wang N, Luo M, Wang G, Xia Y. Fasting enhances the efficacy of Sorafenib in breast cancer via mitophagy mediated ROS-driven p53 pathway. Free Radic Biol Med 2025; 229:350-363. [PMID: 39864757 DOI: 10.1016/j.freeradbiomed.2025.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The multi-kinase inhibitor sorafenib has shown potential to inhibit tumor cell growth and intra-tumoral angiogenesis by targeting several kinases, including VEGFR2 and RAF. Abnormal activation of the Ras/Raf/MAPK/ERK kinase cascade and the VEGF pathway is a common feature in breast cancer. However, the efficacy of sorafenib in breast cancer treatment remains limited. Recently, fasting has emerged as a promising non-pharmacological approach to modulate cancer metabolism and enhance the effectiveness of cancer therapies. In this study, we found that fasting significantly enhances the anti-cancer effects of sorafenib monotherapy and its combination with immunotherapy in breast cancer models without causing obvious side effects. This combined treatment effectively inhibits tumor cell proliferation and intra-tumoral angiogenesis. The fasting-induced reduction in peripheral blood glucose levels strongly correlated with enhanced sensitivity to sorafenib. Mechanistically, the combined treatment induced mitophagy, characterized by mitochondrial dysfunction and activation of the PINK1-Parkin pathway. Consequently, increased mitochondrial ROS levels promoted p53 expression, amplifying cell cycle arrest and apoptosis in breast cancer cells. Furthermore, fasting reduced lactate levels within the tumor, and the consequent glucose limitation synergized with sorafenib to activate AMPK, which in turn elevated PD-L1 expression in tumor cells, potentially enhancing their sensitivity to immunotherapy. In summary, our findings demonstrate that fasting and sorafenib, as a rational combination therapy, induce mitophagy, thereby enhancing sorafenib's efficacy in treating breast cancer through the ROS-driven p53 pathway. This study underscores the potential of fasting in breast cancer therapy and provides a foundation for optimizing the clinical application of sorafenib.
Collapse
Affiliation(s)
- Ru Li
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Rehabilitation Medicine Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yimei Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Anqi He
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Rehabilitation Medicine Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yamin Pu
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuanting Wan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Hongbao Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ningyu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Min Luo
- Department of Biotherapy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Rehabilitation Medicine Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Yong Xia
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Rehabilitation Medicine Center, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu, 610041, China; Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Ligorio F, Vingiani A, Torelli T, Sposetti C, Drufuca L, Iannelli F, Zanenga L, Depretto C, Folli S, Scaperrotta G, Capri G, Bianchi GV, Ferraris C, Martelli G, Maugeri I, Provenzano L, Nichetti F, Agnelli L, Lobefaro R, Fucà G, Fotia G, Mariani L, Morelli D, Ladisa V, De Santis MC, Lozza L, Trecate G, Belfiore A, Brich S, Bertolotti A, Lorenzini D, Ficchì A, Martinetti A, Sottotetti E, Arata A, Corsetto P, Sorrentino L, Rediti M, Salvadori G, Minucci S, Foiani M, Apolone G, Pagani M, Pruneri G, de Braud F, Vernieri C. Early downmodulation of tumor glycolysis predicts response to fasting-mimicking diet in triple-negative breast cancer patients. Cell Metab 2025; 37:330-344.e7. [PMID: 39694040 DOI: 10.1016/j.cmet.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/04/2024] [Accepted: 11/08/2024] [Indexed: 12/20/2024]
Abstract
In preclinical experiments, cyclic fasting-mimicking diets (FMDs) showed broad anticancer effects in combination with chemotherapy. Among different tumor types, triple-negative breast cancer (TNBC) is exquisitely sensitive to FMD. However, the antitumor activity and efficacy of cyclic FMD in TNBC patients remain unclear. Here, we show that a severely calorie-restricted, triweekly, 5-day FMD regimen results in excellent pathologic complete response (pCR) rates (primary endpoint) and long-term clinical outcomes (secondary endpoints) when combined with preoperative chemotherapy in 30 patients with early-stage TNBC enrolled in the phase 2 trial BREAKFAST. Bulk and single-cell RNA sequencing analysis revealed that highly glycolytic cancer cells, myeloid cells, and pericytes from tumors achieving pCR undergo a significant, early downmodulation of pathways related to glycolysis and pyruvate metabolism. Our findings pave the wave for conducting larger clinical trials to investigate the efficacy of cyclic FMD in early-stage TNBC patients and to validate early changes of intratumor glycolysis as a predictor of clinical benefit from nutrient restriction. This study was registered at Clinicaltrials.gov (NCT04248998).
Collapse
Affiliation(s)
- Francesca Ligorio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Andrea Vingiani
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Tommaso Torelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Caterina Sposetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Lorenzo Drufuca
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Fabio Iannelli
- Haematopathogy Division, IEO, European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy
| | - Lucrezia Zanenga
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Catherine Depretto
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Secondo Folli
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Gianfranco Scaperrotta
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giuseppe Capri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giulia V Bianchi
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Cristina Ferraris
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Gabriele Martelli
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Ilaria Maugeri
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Leonardo Provenzano
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Federico Nichetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luca Agnelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Riccardo Lobefaro
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giovanni Fucà
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giuseppe Fotia
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Luigi Mariani
- Unit of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Daniele Morelli
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Vito Ladisa
- Hospital Pharmacy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Maria Carmen De Santis
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Laura Lozza
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Giovanna Trecate
- Department of Radiology and Radiotherapy, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Antonino Belfiore
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Silvia Brich
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Alessia Bertolotti
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Daniele Lorenzini
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Angela Ficchì
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Antonia Martinetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Elisa Sottotetti
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Alessio Arata
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Paola Corsetto
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Luca Sorrentino
- Surgical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Mattia Rediti
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Giulia Salvadori
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Saverio Minucci
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Marco Foiani
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Giovanni Apolone
- Scientific Directorate, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Massimiliano Pagani
- IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Giancarlo Pruneri
- Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy; Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy
| | - Filippo de Braud
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; Oncology and Hematology-Oncology Department, University of Milan, Via Festa del Perdono 7, 20122 Milano, Italy
| | - Claudio Vernieri
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy.
| |
Collapse
|
9
|
López-Cánovas JL, Naranjo-Martínez B, Diaz-Ruiz A. Fasting in combination with the cocktail Sorafenib:Metformin blunts cellular plasticity and promotes liver cancer cell death via poly-metabolic exhaustion. Cell Oncol (Dordr) 2025; 48:161-182. [PMID: 38990489 PMCID: PMC11850423 DOI: 10.1007/s13402-024-00966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/12/2024] Open
Abstract
PURPOSE Dual-Interventions targeting glucose and oxidative metabolism are receiving increasing attention in cancer therapy. Sorafenib (S) and Metformin (M), two gold-standards in liver cancer, are known for their mitochondrial inhibitory capacity. Fasting, a glucose-limiting strategy, is also emerging as chemotherapy adjuvant. Herein, we explore the anti-carcinogenic response of nutrient restriction in combination with sorafenib:metformin (NR-S:M). RESULTS Our data demonstrates that, independently of liver cancer aggressiveness, fasting synergistically boosts the anti-proliferative effects of S:M co-treatment. Metabolic and Cellular plasticity was determined by the examination of mitochondrial and glycolytic activity, cell cycle modulation, activation of cellular apoptosis, and regulation of key signaling and metabolic enzymes. Under NR-S:M conditions, early apoptotic events and the pro-apoptotic Bcl-xS/Bcl-xL ratio were found increased. NR-S:M induced the highest retention in cellular SubG1 phase, consistent with the presence of DNA fragments from cellular apoptosis. Mitochondrial functionality, Mitochondrial ATP-linked respiration, Maximal respiration and Spare respiratory capacity, were all found blunted under NR-S:M conditions. Basal Glycolysis, Glycolytic reserve, and glycolytic capacity, together with the expression of glycogenic (PKM), gluconeogenic (PCK1 and G6PC3), and glycogenolytic enzymes (PYGL, PGM1, and G6PC3), were also negatively impacted by NR-S:M. Lastly, a TMT-proteomic approach corroborated the synchronization of liver cancer metabolic reprogramming with the activation of molecular pathways to drive a quiescent-like status of energetic-collapse and cellular death. CONCLUSION Altogether, we show that the energy-based polytherapy NR-S:M blunts cellular, metabolic and molecular plasticity of liver cancer. Notwithstanding the in vitro design of this study, it holds a promising therapeutic tool worthy of exploration for this tumor pathology.
Collapse
Affiliation(s)
- Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain
| | - Alberto Diaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging Program, Institute IMDEA Food (CEI UAM+CSIC), Crta. de Canto Blanco nº 8, Madrid, E-28049, Spain.
- CIBER Pathophysiology of Obesity and Nutrition (CIBERobn), Córdoba, Spain.
| |
Collapse
|
10
|
Wang R, Lv X, Xu W, Li X, Tang X, Huang H, Yang M, Ma S, Wang N, Niu Y. Effects of the periodic fasting-mimicking diet on health, lifespan, and multiple diseases: a narrative review and clinical implications. Nutr Rev 2025; 83:e412-e426. [PMID: 38287649 DOI: 10.1093/nutrit/nuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024] Open
Abstract
Dietary restriction and fasting have been recognized for their beneficial effects on health and lifespan and their potential application in managing chronic metabolic diseases. However, long-term adherence to strict dietary restrictions and prolonged fasting poses challenges for most individuals and may lead to unhealthy rebound eating habits, negatively affecting overall health. As a result, a periodic fasting-mimicking diet (PFMD), involving cycles of fasting for 2 or more days while ensuring basic nutritional needs are met within a restricted caloric intake, has gained widespread acceptance. Current research indicates that a PFMD can promote stem cell regeneration, suppress inflammation, extend the health span of rodents, and improve metabolic health, among other effects. In various disease populations such as patients with diabetes, cancer, multiple sclerosis, and Alzheimer's disease, a PFMD has shown efficacy in alleviating disease symptoms and improving relevant markers. After conducting an extensive analysis of available research on the PFMD, it is evident that its advantages and potential applications are comparable to other fasting methods. Consequently, it is proposed in this review that a PFMD has the potential to fully replace water-only or very-low-energy fasting regimens and holds promise for application across multiple diseases.
Collapse
Affiliation(s)
- Ruohua Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xinyi Lv
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Wenyu Xu
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xiaoqing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Xuanfeng Tang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - He Huang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Mengxia Yang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Shuran Ma
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Nan Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| | - Yucun Niu
- Department of Nutrition and Food Hygiene, College of Public Health, Key Laboratory of Precision Nutrition and Health, Ministry of Education, Harbin Medical University, Heilongjiang, China
| |
Collapse
|
11
|
Silvestris N, Aprile G, Tessitore D, Mentrasti G, Cristina Petrella M, Speranza D, Casirati A, Caccialanza R, Cinieri S, Pedrazzoli P. Harnessing tumor metabolism during cancer treatment: A narrative review of emerging dietary approaches. Crit Rev Oncol Hematol 2025; 206:104571. [PMID: 39581244 DOI: 10.1016/j.critrevonc.2024.104571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024] Open
Abstract
Cancer is currently one of the biggest public health challenges worldwide, ranking as the second leading cause of death globally. To date, strong epidemiological associations have been demonstrated between unhealthy lifestyles and eating habits, i.e. obesity, and an increased risk of developing cancer. However, there is limited evidence regarding the impact of specific dietary regimes on cancer outcomes during conventional cancer treatments. This paper systematically reviews and evaluates preclinical and clinical evidence regarding the effects of fasting, fast-mimicking diet, ketogenic diet, vegan diet, alkaline diet, paleolithic diet, the Gerson regimen, and macrobiotic diet in the context of cancer treatments. Clinical trials on dietary regimes as complementary cancer therapy are limited by significant differences in trial design, patient characteristics, and cancer type, making it difficult to draw conclusions. In the future, more uniformly controlled clinical trials should help to better define the role of diets in cancer management.
Collapse
Affiliation(s)
- Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | - Dalila Tessitore
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Giulia Mentrasti
- Medical Oncology, University Hospital-Marche Polytechnic University, Ancona, Italy
| | | | - Desirèe Speranza
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - Amanda Casirati
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Riccardo Caccialanza
- Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Saverio Cinieri
- Medical Oncology Division and Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, Brindisi, Italy.
| | - Paolo Pedrazzoli
- Department of Internal Medicine, University of Pavia, Pavia, Italy; Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
12
|
Žuža Praštalo M, Pokimica B, Arsić A, Ilich JZ, Vučić V. Current Evidence on the Impact of Diet, Food, and Supplement Intake on Breast Cancer Health Outcomes in Patients Undergoing Endocrine Therapy. Nutrients 2025; 17:456. [PMID: 39940314 PMCID: PMC11820974 DOI: 10.3390/nu17030456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND/OBJECTIVES The most common type of breast cancer (BRC) in women is estrogen/progesterone receptor positive. First-line treatment includes endocrine therapy, either with aromatase inhibitors or tamoxifen to reduce estrogen levels. Among the side effects produced by this treatment, aromatase inhibitor-induced arthralgia is the most common, affecting the patients' overall health and quality of life (QoL). The objectives here were to evaluate interventions examining the impact of modified diets, supplements, and/or some food components on health outcomes in BRC patients undergoing endocrine therapy. METHODS The literature search was performed in PubMed, Scopus, and Web of Science from June 2024, as well as manually, through the end of November 2024. The search was limited to studies of women diagnosed with estrogen/progesterone-receptor-positive BRC with selected articles reporting interventions with diet, food, or supplement intake and examining the relevant health outcomes. Studies not focusing on BRC patients undergoing endocrine therapy or not including specific health outcomes were excluded. RESULTS The search uncovered 1028 studies; after the removal of duplicates, abstracts, and irrelevant studies, 53 were closely examined, with 26 evaluated and presented here. The outcomes were changes in bone and body composition, cardiovascular disease risks, inflammation, and QoL. CONCLUSIONS The examined evidence suggests that adherence to dietary patterns such as the Mediterranean or a low-fat diet, and a higher intake of fruits and vegetables were beneficial for various outcomes. Additionally, supplementation with some foods/components (dried plum, red clover) contributed to improving/maintaining bone and body composition, especially in overweight/obese patients. Supplementation with vitamin D or omega-3 improved lipid and angiogenic parameters and QoL. Although these results are promising, the effects of each supplement/food cannot be summarized due to the diverse nature of study designs, patients, and supplement dosages. Further studies are needed to explore the effects of specific nutritional interventions (including the newest, like fasting-mimicking diets and whole-grain cereal diets) on various health outcomes in BRC survivors during endocrine therapy, and to derive universal recommendations.
Collapse
Affiliation(s)
- Milena Žuža Praštalo
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.Ž.P.); (B.P.); (A.A.); (V.V.)
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Biljana Pokimica
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.Ž.P.); (B.P.); (A.A.); (V.V.)
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Arsić
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.Ž.P.); (B.P.); (A.A.); (V.V.)
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Jasminka Z. Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32306, USA
| | - Vesna Vučić
- Group for Nutritional Biochemistry and Dietology, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (M.Ž.P.); (B.P.); (A.A.); (V.V.)
- Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| |
Collapse
|
13
|
Khalifa A, Sheweita SA, Namatalla A, Khalifa MA, Nencioni A, Sultan AS. Ruthenium(II) Complex with 8-Hydroxyquinoline Exhibits Antitumor Activity in Breast Cancer Cell Lines. Cancers (Basel) 2025; 17:195. [PMID: 39857977 PMCID: PMC11763687 DOI: 10.3390/cancers17020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Breast cancer (BC) remains one of the most prevalent and deadly cancers worldwide, with limited access to advanced treatments in developing regions. There is a critical need for novel therapies with unique mechanisms of action, especially to overcome resistance to conventional platinum-based drugs. This study investigates the anticancer potential of the ruthenium complex Bis(quinolin-8-olato)bis(triphenylphosphine)ruthenium(II) (Ru(quin)2) in ER-positive (T47D) and triple-negative (MDA-MB-231) BC cell lines. RESULTS Ru(quin)2 demonstrated dose-dependent cytotoxicity, with IC50 values of 48.3 μM in T47D cells and 45.5 μM in MDA-MB-231 cells. Its cytotoxic effects are primarily driven by apoptosis, as shown by increased BAX expression, enhanced caspase-3 activity, reduced Aurora B kinase levels, and elevated histone release. Ru(quin)2 also induced autophagy, evidenced by LC3-I to LC3-II conversion and reduced SQSTM1, partially mediated through MAPK signaling. Furthermore, Ru(quin)2 induced G0/G1 cell cycle arrest by downregulating cyclin D1, CDK4, and CDK6, alongside upregulation of the CDK inhibitor p21. CONCLUSIONS Ru(quin)2 emerges as a potent candidate for BC treatment, with multiple mechanisms of action involving apoptosis, autophagy, and cell cycle arrest. Further studies are warranted to elucidate its detailed molecular mechanisms and evaluate its therapeutic potential in vivo, moving toward clinical applications for both ER-positive and triple-negative BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (A.N.); (A.N.)
| | - Salah A. Sheweita
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria P.O. Box 21526, Egypt
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha 62521, Saudi Arabia
| | - Asmaa Namatalla
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (A.N.); (A.N.)
| | - Mohamed A. Khalifa
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21511, Egypt;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy; (A.N.); (A.N.)
- Ospedale Policlinico San Martino IRCCS, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| | - Ahmed S. Sultan
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria P.O. Box 21511, Egypt;
- Oncology Department, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
14
|
Brandhorst S, Longo VD. Fasting-mimicking diet potentiates anti-tumor effects of CDK4/6 inhibitors against breast cancer by suppressing NRAS- and IGF1-mediated mTORC1 signaling. Drug Resist Updat 2025; 78:101182. [PMID: 39665873 DOI: 10.1016/j.drup.2024.101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Fasting-mimicking diet (FMD) cycles, defined as 3-5 day periods of a calorie-restricted, low-protein, low-carbohydrate, and high-fat diet, have emerged as a dietary approach to delay cancer initiation and progression in both autograft and xenograft mouse models and as a safe and feasible approach to decrease risk factors for cancer and other age-related pathologies in humans. A substantial number of pre-clinical studies focused on various tumor types have shown that fasting/FMDs can potentiate the efficacy of various standard-of-care cancer therapies but also modulate the immune system to promote a T cell-dependent attack of tumor cells. Importantly, combining drug treatment with fasting/FMDs can overcome acquired drug resistance which frequently emerges and reduces long-term treatment benefits. However, the mechanisms by which the FMD reverts resistance to CDK4/6i remain poorly understood. Here, Li and colleagues provide evidence that FMD cycles act as a wild card to reduce the activity of a signaling network that includes IGF-1, RAS, AKT, and mTOR-S6K to delay cancer progression and reverse the acquisition of drug resistance. These findings expand the mechanistic understanding of the FMD-mediated increase in drug efficacy and provide further evidence to support trials combining hormone therapy, CDK4/6 inhibitors, and FMD in breast cancer treatment. These new results on FMD cycles add an optimistic outlook to extend the efficacy of standard-of-care drugs that eventually become ineffective because of acquired resistance.
Collapse
Affiliation(s)
- Sebastian Brandhorst
- Longevity Institute, Davis School of Gerontology, University of Southern California, USA
| | - Valter D Longo
- Longevity Institute, Davis School of Gerontology, University of Southern California, USA.
| |
Collapse
|
15
|
Zuo Q, Kang Y. Metabolic Reprogramming and Adaption in Breast Cancer Progression and Metastasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:347-370. [PMID: 39821033 DOI: 10.1007/978-3-031-70875-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Recent evidence has revealed that cancer is not solely driven by genetic abnormalities but also by significant metabolic dysregulation. Cancer cells exhibit altered metabolic demands and rewiring of cellular metabolism to sustain their malignant characteristics. Metabolic reprogramming has emerged as a hallmark of cancer, playing a complex role in breast cancer initiation, progression, and metastasis. The different molecular subtypes of breast cancer exhibit distinct metabolic genotypes and phenotypes, offering opportunities for subtype-specific therapeutic approaches. Cancer-associated metabolic phenotypes encompass dysregulated nutrient uptake, opportunistic nutrient acquisition strategies, altered utilization of glycolysis and TCA cycle intermediates, increased nitrogen demand, metabolite-driven gene regulation, and metabolic interactions with the microenvironment. The tumor microenvironment, consisting of stromal cells, immune cells, blood vessels, and extracellular matrix components, influences metabolic adaptations through modulating nutrient availability, oxygen levels, and signaling pathways. Metastasis, the process of cancer spread, involves intricate steps that present unique metabolic challenges at each stage. Successful metastasis requires cancer cells to navigate varying nutrient and oxygen availability, endure oxidative stress, and adapt their metabolic processes accordingly. The metabolic reprogramming observed in breast cancer is regulated by oncogenes, tumor suppressor genes, and signaling pathways that integrate cellular signaling with metabolic processes. Understanding the metabolic adaptations associated with metastasis holds promise for identifying therapeutic targets to disrupt the metastatic process and improve patient outcomes. This chapter explores the metabolic alterations linked to breast cancer metastasis and highlights the potential for targeted interventions in this context.
Collapse
Affiliation(s)
- Qianying Zuo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA.
| |
Collapse
|
16
|
Li N, Sun YJ, Huang LY, Li RR, Zhang JS, Qiu AH, Wang J, Yang L. Fasting-mimicking diet potentiates anti-tumor effects of CDK4/6 inhibitors against breast cancer by suppressing NRAS- and IGF1-mediated mTORC1 signaling. Drug Resist Updat 2025; 78:101161. [PMID: 39499997 DOI: 10.1016/j.drup.2024.101161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/13/2024] [Indexed: 12/18/2024]
Abstract
AIMS Acquired resistance to cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) frequently emerges, and CDK4/6i-containing therapies in triple-negative breast cancer (TNBC) remain to be determined. METHODS RNA-sequencing, cell viability analysis, immunoblotting, siRNA transfection et al. were used to investigate and verify the resistance mechanism. BALB/c nude mice xenograft models and spontaneous MMTV-PyMT models were used to explore in vivo efficacy. RESULTS The mTOR pathway was activated in acquired CDK4/6i-resistant cells and inhibition of mTORC1 restored the sensitivity. While fasting-mimicking diet (FMD) enhances the activity of anticancer agents by inhibiting the mTORC1 signaling, we assessed FMD and found that FMD restored the sensitivity of CDK4/6i-resistant cells to abemaciclib and potentiated the anti-tumor activity of CDK4/6i in TNBC. The anti-tumor effects of FMD and/or CDK4/6i were accompanied by the downregulation of S6 phosphorylation. FMD cooperated with CDK4/6i to suppress the levels of IGF1 and RAS. The combination of FMD and abemaciclib also led to a potent inhibition of tumor growth in spontaneous transgenic MMTV-PyMT mouse models. CONCLUSIONS Our data demonstrate that FMD overcomes resistance and potentiates the anti-tumor effect of CDK4/6i by inhibiting mTORC1 signaling via lowering the levels of IGF1 and RAS, providing the rationale for clinical investigation of a potential FMD-CDK4/6i strategy in breast cancer.
Collapse
Affiliation(s)
- Ning Li
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ya-Jie Sun
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Li-Yun Huang
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Rong-Rong Li
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Shantou University Medical College, Shantou University, Shantou, Guangdong 515000, China
| | - Jun-Sheng Zhang
- Department of Breast Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ai-Hua Qiu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jing Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
| | - Lu Yang
- Department of Radiotherapy, Cancer Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China; Shantou University Medical College, Shantou University, Shantou, Guangdong 515000, China.
| |
Collapse
|
17
|
Zhang X, Zhang Y, Du W. Alleviating role of ketamine in breast cancer cell-induced osteoclastogenesis and tumor bone metastasis-induced bone cancer pain through an SRC/EGR1/CST6 axis. BMC Cancer 2024; 24:1535. [PMID: 39695463 DOI: 10.1186/s12885-024-13290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
AIMS The analgesic effect of ketamine in cancer pain remains controversial. This research investigates the role of ketamine in bone metastasis-induced cancer pain in breast cancer (BC) and its associated molecular network. METHODS BC cell lines MDA-MB-231 and ZR-75-1 were treated with ketamine and malignant behaviors were assessed through CCK-8, colony formation, and Transwell assays. To evaluate the pro-osteoclastic effect in vitro, BC cells were co-cultured with RAW 264.7 cells. Alterations in the expression of SRC proto-oncogene (SRC), early growth response 1 (EGR1), and cystatin E/M (CST6) were induced in BC cells using lentivirus. MDA-MB-231 cells were injected intracardially into nude mice to examine tumor bone metastasis in vivo. Molecular interactions between SRC and EGR1, as well as between EGR1 and CST6 were analyzed via immunoprecipitation and luciferase assays. RESULTS Ketamine treatment suppressed viability, proliferation, migration and invasiveness, epithelial-mesenchymal transition, and pro-osteoclastic effect in BC cells. Ketamine also reduced osteoclastogenesis and tumor bone metastasis burden and alleviated pain in nude mice. SRC was identified as a target of ketamine. Overexpression of SRC in BC cells blocked the effects of ketamine. SRC bound to the EGR1 promoter, suppressing EGR1 transcription, whereas EGR1 activated CST6 transcription. Either EGR1 or CST6 overexpression counteracted the function of SRC overexpression and decreased the viability of BC cells and their pro-osteoclastic effect in vitro and in vivo. CONCLUSION This study demonstrates that ketamine alleviates BC cell-induced osteoclastogenesis and tumor bone metastasis by suppressing SRC and restoring the EGR1/CST6 axis.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Yanmei Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China
| | - Wei Du
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, N0. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, China.
| |
Collapse
|
18
|
Chiang ST, Chen Q, Han T, Qian C, Shen X, Lin Y, Xu R, Cao Z, Zhou C, Lu H, Li R, Ai X. Biomimetic Nanovesicles Synergize with Short-Term Fasting for Enhanced Chemotherapy of Triple-Negative Breast Cancer. ACS NANO 2024; 18:33875-33889. [PMID: 39629661 DOI: 10.1021/acsnano.4c07074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and lethal subtype of breast cancer among women. Chemotherapy acts as the standard regimen for TNBC treatment but suffers from limited drug accumulation in tumor regions and undesired side effects. Herein, we developed a synergistic strategy by combining a red blood cell (RBC) membrane-liposome hybrid nanovesicle with short-term fasting (STF) for improved chemotherapy of TNBC. The biomimetic nanovesicles exhibited reduced phagocytosis by macrophages while displaying a significant increase in tumor cell uptake through caveolae/raft-mediated endocytosis under nutrient-deprivation conditions. Importantly, drug-loaded nanovesicles and STF treatment synergistically increased the cytotoxicity of tumor cells by inhibiting their cell cycles and aerobic glycolysis as well as amplifying the reactive oxygen species (ROS) and autophagosomes generation. In the STF-treated mice, biomimetic nanovesicles greatly improved the antitumor efficacy at a lower drug dosage and inhibited the undesired metastasis of TNBC. Overall, we demonstrated that biomimetic nanovesicles synergizing with STF therapy serve as a promising therapeutic strategy for enhanced chemotherapy of malignant TNBC.
Collapse
Affiliation(s)
- Seok Theng Chiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianzhen Han
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunxi Qian
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoshuai Shen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijing Lin
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Xu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyu Cao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Haijiao Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rongxiu Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangzhao Ai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Bahrami A, Haghighi S, Moghani MM, Khodakarim N, Hejazi E. Fasting mimicking diet during neo-adjuvant chemotherapy in breast cancer patients: a randomized controlled trial study. Front Nutr 2024; 11:1483707. [PMID: 39703333 PMCID: PMC11656309 DOI: 10.3389/fnut.2024.1483707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/22/2024] [Indexed: 12/21/2024] Open
Abstract
Objective Preclinical evidences suggests that while fasting can reduce the side effects and toxicity of chemotherapy, it can make cancer cells more susceptible to chemotherapy. This study aimed to examine the effects of fasting mimicking diet (FMD) during neo-adjuvant chemotherapy in breast cancer (BC) patients. Methods Forty-four newly diagnosed human epidermal growth factor receptor 2-negative (HER2-negative) patients with BC were randomized equally into two groups (22 each), to receive either a fasting mimicking diet (FMD) or their regular diet for 3 days prior to and during neoadjuvant chemotherapy. This FMD was repeated every 3 weeks for 8 cycles. Efficacy, toxicity, hematologic, metabolic, and inflammatory parameters were measured and compared. Results The occurrence of grade III vomiting and neutropenia in the control group was significantly higher than the FMD group (P = <0.001 and p = 0.04 respectively). Erythrocytes (p = 0.01) and neutrophils (p = 0.002) counts were significantly higher in FMD group compared to control group after cycle 8. There was a significant increase in median glucose and median insulin levels (p = 0.01 and p = 0.005, respectively) in the control group between baseline and after cycle 8. While, the median Insulin-like growth factor-1 (IGF1) (p = 0.006) and hs-CRP (p = 0.02) levels were significantly decreased in the FMD group. At the end of study (after cycle 8), the median glucose level was significantly higher in control group (p = 0.008), while the median hs-CRP level was significantly lower in FMD group (p = 0.01). The Miller and Payne pathological response 4/5 (90-100% tumor cell loss) and the radiologically complete or partial response, as measured by MRI or ultrasound before surgery occurred more frequently in FMD group compared to the controls (p = 0.01). Conclusion Fasting mimicking diet was well tolerated during chemotherapy and reduced toxicity of chemotherapy and also, had beneficial effects of some metabolic parameters. Clinical Trial Registration https://irct.behdasht.gov.ir/user/trial/61386/view.
Collapse
Affiliation(s)
- Alireza Bahrami
- Department of Clinical Nutrition and Dietetics, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Haghighi
- Department of Oncology, Gastroenterology and Liver Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Malekzadeh Moghani
- Department of Radiation Oncology, Shohada-e-Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Khodakarim
- Department of Hematology & Oncology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Hejazi
- Department of Clinical Nutrition and Dietetics, School of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Locasale JW, Goncalves MD, Di Tano M, Burgos-Barragan G. Diet and Cancer Metabolism. Cold Spring Harb Perspect Med 2024; 14:a041549. [PMID: 38621831 PMCID: PMC11610756 DOI: 10.1101/cshperspect.a041549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Diet and exercise are modifiable lifestyle factors known to have a major influence on metabolism. Clinical practice addresses diseases of altered metabolism such as diabetes or hypertension by altering these factors. Despite enormous public interest, there are limited defined diet and exercise regimens for cancer patients. Nevertheless, the molecular basis of cancer has converged over the past 15 years on an essential role for altered metabolism in cancer. However, our understanding of the molecular mechanisms that underlie the impact of diet and exercise on cancer metabolism is in its very early stages. In this work, we propose conceptual frameworks for understanding the consequences of diet and exercise on cancer cell metabolism and tumor biology and also highlight recent developments. By advancing our mechanistic understanding, we also discuss actionable ways that such interventions could eventually reach the mainstay of both medical oncology and cancer control and prevention.
Collapse
Affiliation(s)
- Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, 308 Research Drive, Durham, Norh Carolina 27710, USA
| | - Marcus D Goncalves
- Division of Endocrinology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
| | - Maira Di Tano
- Division of Endocrinology, Department of Medicine, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
| | - Guillermo Burgos-Barragan
- Department of Pharmacology, Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10056, USA
| |
Collapse
|
21
|
Javed SR, Skolariki A, Zameer MZ, Lord SR. Implications of obesity and insulin resistance for the treatment of oestrogen receptor-positive breast cancer. Br J Cancer 2024; 131:1724-1736. [PMID: 39251829 PMCID: PMC11589622 DOI: 10.1038/s41416-024-02833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is the most common cancer in women, and incidence rates are rising, it is thought in part, due to increasing levels of obesity. Endocrine therapy (ET) remains the cornerstone of systemic therapy for early and advanced oestrogen receptor-positive (ER + ) breast cancer, but despite treatment advances, it is becoming more evident that obesity and insulin resistance are associated with worse outcomes. Here, we describe the current understanding of the relationship between both obesity and diabetes and the prevalence and outcomes for ER+ breast cancer. We also discuss the mechanisms associated with resistance to ET and the relationship to treatment toxicity.
Collapse
Affiliation(s)
| | | | | | - Simon R Lord
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
22
|
Qin H, Zhang Q, Guo Y. Genome-wide identification of alternative splicing related with transcription factors and splicing regulators in breast cancer stem cells responding to fasting-mimicking diet. Comput Biol Chem 2024; 113:108272. [PMID: 39509796 DOI: 10.1016/j.compbiolchem.2024.108272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Fasting-mimicking diet (FMD) can effectively inhibit the viability of breast cancer stem cells (CSCs). However, the molecular mechanisms underlying the inhibitory function of FMD on breast CSCs remain largely unknown. Elucidating the mechanisms by which FMD suppresses breast CSCs is beneficial to targeting breast CSCs. Herein, we systematically analyze alternative splicing and RNA binding protein (RBP) expression in breast CSCs during FMD. The analysis results show that a large number of regulated alternative splicing (RAS) and differentially expressed genes (DEGs) appear responding to FMD. Further studies show that there are potential regulatory relationships between transcription factors (TFs) with RAS (RAS-TFs) and their differentially expressed target genes (RAS-TF-DEGs). Moreover, differentially expressed RNA binding proteins (DERBPs) exhibit potential regulatory functions on RAS-TFs. In short, DERBPs potentially control the alternative splicing of TFs (RAS-TFs), regulating their target gene (RAS-TF-DEG) expression, which leads to the regulation of biological processes in breast CSCs during FMD. In addition, the alternative splicing and DEGs are compared between breast CSCs and differentiated cancer cells during FMD, providing new interpretations for the different responses of the two types of cells. Our studies will shed light on the understanding of the molecular mechanisms underlying breast CSC inhibition induced by FMD.
Collapse
Affiliation(s)
- Hongshuang Qin
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi 033001, China.
| | - Qian Zhang
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi 033001, China
| | - Yanxiang Guo
- Department of Biological and Food Engineering, Lyuliang University, Lvliang, Shanxi 033001, China
| |
Collapse
|
23
|
Meng Y, Sun J, Zhang G, Yu T, Piao H. Fasting: A Complex, Double-Edged Blade in the Battle Against Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2024; 24:1395-1409. [PMID: 39354217 DOI: 10.1007/s12012-024-09925-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 09/23/2024] [Indexed: 10/03/2024]
Abstract
In recent years, there has been a surge in the popularity of fasting as a method to enhance one's health and overall well-being. Fasting is a customary practice characterized by voluntary refraining from consuming food and beverages for a specified duration, ranging from a few hours to several days. The potential advantages of fasting, including enhanced insulin sensitivity, decreased inflammation, and better cellular repair mechanisms, have been well documented. However, the effects of fasting on cancer therapy have been the focus of recent scholarly investigations. Doxorubicin (Dox) is one of the most widely used chemotherapy medications for cancer treatment. Unfortunately, cardiotoxicity, which may lead to heart failure and other cardiovascular issues, has been linked to Dox usage. This study aims to comprehensively examine the possible advantages and disadvantages of fasting concerning Dox-induced cardiotoxicity. Researchers have investigated the potential benefits of fasting in lowering the risk of Dox-induced cardiac damage to solve this problem. Nevertheless, new studies indicate that prolonged alternate-day fasting may adversely affect the heart's capacity to manage the cardiotoxic properties of Dox. Though fasting may benefit overall health, it is essential to proceed cautiously and consider the potential risks in certain circumstances.
Collapse
Affiliation(s)
- Yiming Meng
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Jing Sun
- Department of Biobank, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Guirong Zhang
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China
| | - Tao Yu
- Department of Surgery, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Medical Imaging, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| | - Haozhe Piao
- Department of Central Laboratory, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Liaoning Province Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dadong District, Shenyang, 110042, China.
| |
Collapse
|
24
|
Wang X, Guo Y, Lin P, Yu M, Song S, Xu W, Kong D, Wang Y, Zhang Y, Lu F, Xie Q, Ma X. Nuclear receptor E75/NR1D2 promotes tumor malignant transformation by integrating Hippo and Notch pathways. EMBO J 2024; 43:6336-6363. [PMID: 39516282 PMCID: PMC11649922 DOI: 10.1038/s44318-024-00290-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 10/10/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Hormone therapy resistance and the ensuing aggressive tumor progression present a significant clinical challenge. However, the mechanisms underlying the induction of tumor malignancy upon inhibition of steroid hormone signaling remain poorly understood. Here, we demonstrate that Drosophila malignant epithelial tumors show a similar reduction in ecdysone signaling, the main steroid hormone pathway. Our analysis of ecdysone-induced downstream targets reveals that overexpression of the nuclear receptor E75, particularly facilitates the malignant transformation of benign tumors. Genome-wide DNA binding profiles and biochemistry data reveal that E75 not only binds to the transcription factors of both Hippo and Notch pathways, but also exhibits widespread co-binding to their target genes, thus contributing to tumor malignancy. We further validated these findings by demonstrating that depletion of NR1D2, the mammalian homolog of E75, inhibits the activation of Hippo and Notch target genes, impeding glioblastoma progression. Together, our study unveils a novel mechanism by which hormone inhibition promotes tumor malignancy, and describes an evolutionarily conserved role of the oncogene E75/NR1D2 in integration of Hippo and Notch pathway activity during tumor progression.
Collapse
Affiliation(s)
- Xianping Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| | - Yifan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Peng Lin
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Min Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Sha Song
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Wenyan Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Du Kong
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Yin Wang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
- Department of Diabetes & Cancer Metabolism, Beckman Research Institute of City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Yanxiao Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Fei Lu
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Qi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| | - Xianjue Ma
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
25
|
Liu S, Zhang X, Wang W, Li X, Sun X, Zhao Y, Wang Q, Li Y, Hu F, Ren H. Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer. Mol Cancer 2024; 23:261. [PMID: 39574178 PMCID: PMC11580516 DOI: 10.1186/s12943-024-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024] Open
Abstract
Metabolic alterations, a hallmark of cancer, enable tumor cells to adapt to their environment by modulating glucose, lipid, and amino acid metabolism, which fuels rapid growth and contributes to treatment resistance. In primary breast cancer, metabolic shifts such as the Warburg effect and enhanced lipid synthesis are closely linked to chemotherapy failure. Similarly, metastatic lesions often display distinct metabolic profiles that not only sustain tumor growth but also confer resistance to targeted therapies and immunotherapies. The review emphasizes two major aspects: the mechanisms driving metabolic resistance in both primary and metastatic breast cancer, and how the unique metabolic environments in metastatic sites further complicate treatment. By targeting distinct metabolic vulnerabilities at both the primary and metastatic stages, new strategies could improve the efficacy of existing therapies and provide better outcomes for breast cancer patients.
Collapse
Affiliation(s)
- Shan Liu
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xingda Zhang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenzheng Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xue Sun
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuqian Zhao
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qi Wang
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingpu Li
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Fangjie Hu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - He Ren
- Department of oncological surgery, Harbin Medical University Cancer Hospital, Harbin, China.
| |
Collapse
|
26
|
Michenthaler H, Duszka K, Reinisch I, Galhuber M, Moyschewitz E, Stryeck S, Madl T, Prokesch A, Krstic J. Systemic and transcriptional response to intermittent fasting and fasting-mimicking diet in mice. BMC Biol 2024; 22:268. [PMID: 39567986 PMCID: PMC11580389 DOI: 10.1186/s12915-024-02061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Dietary restriction (DR) has multiple beneficial effects on health and longevity and can also improve the efficacy of certain therapies. Diets used to instigate DR are diverse and the corresponding response is not uniformly measured. We compared the systemic and liver-specific transcriptional response to intermittent fasting (IF) and commercially available fasting-mimicking diet (FMD) after short- and long-term use in C57BL/6 J mice. RESULTS We show that neither DR regimen causes observable adverse effects in mice. The weight loss was limited to 20% and was quickly compensated during refeeding days. The slightly higher weight loss upon FMD versus IF correlated with stronger fasting response assessed by lower glucose levels and higher ketone body, free fatty acids and especially FGF21 concentrations in blood. RNA sequencing demonstrated similar transcriptional programs in the liver after both regimens, with PPARα signalling as top enriched pathway, while on individual gene level FMD more potently increased gluconeogenesis-related, and PPARα and p53 target gene expression compared to IF. Repeated IF induced similar transcriptional responses as acute IF. However, repeated cycles of FMD resulted in blunted expression of genes involved in ketogenesis and fatty acid oxidation. CONCLUSIONS Short-term FMD causes more pronounced changes in blood parameters and slightly higher weight loss than IF, while both activate similar pathways (particularly PPARα signalling) in the liver. On individual gene level FMD induces a stronger transcriptional response, whereas cyclic application blunts transcriptional upregulation of fatty acid oxidation and ketogenesis only in FMD. Hence, our comparative characterization of IF and FMD protocols renders both as effective DR regimens and serves as resource in the fasting research field.
Collapse
Affiliation(s)
- Helene Michenthaler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
| | - Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Vienna, Austria
| | - Isabel Reinisch
- Institute of Food, Nutrition and Health, ETH Zürich, Zurich, Switzerland
| | - Markus Galhuber
- Institute of Biochemistry, University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Moyschewitz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria
| | - Sarah Stryeck
- Research Centre Pharmaceutical Engineering, Graz University of Technology, Graz, Austria
| | - Tobias Madl
- Division of Medicinal Chemistry, Otto Loewi Research Centre, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
27
|
Xie Y, Ye H, Liu Z, Liang Z, Zhu J, Zhang R, Li Y. Fasting as an Adjuvant Therapy for Cancer: Mechanism of Action and Clinical Practice. Biomolecules 2024; 14:1437. [PMID: 39595613 PMCID: PMC11591922 DOI: 10.3390/biom14111437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The fundamental biological characteristics of tumor cells are characterized by irregularities in signaling and metabolic pathways, which are evident through increased glucose uptake, altered mitochondrial function, and the ability to evade growth signals. Interventions such as fasting or fasting-mimicking diets represent a promising strategy that can elicit distinct responses in normal cells compared to tumor cells. These dietary strategies can alter the circulating levels of various hormones and metabolites, including blood glucose, insulin, glucagon, growth hormone, insulin-like growth factor, glucocorticoids, and epinephrine, thereby potentially exerting an anticancer effect. Additionally, elevated levels of insulin-like growth factor-binding proteins and ketone bodies may increase tumor cells' dependence on their own metabolites, ultimately leading to their apoptosis. The combination of fasting or fasting-mimicking diets with radiotherapy or chemotherapeutic agents has demonstrated enhanced anticancer efficacy. This paper aims to classify fasting, elucidate the mechanisms that underlie its effects, assess its impact on various cancer types, and discuss its clinical applications. We will underscore the differential effects of fasting on normal and cancer cells, the mechanisms responsible for these effects, and the imperative for clinical implementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Rongxin Zhang
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| | - Yan Li
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China; (Y.X.); (H.Y.); (Z.L.); (Z.L.); (J.Z.)
| |
Collapse
|
28
|
Ding L, Chen Q, Liang H, Shen M, Zheng M, Li Z. Physical activities and breast cancer: a Mendelian randomization study. Arch Med Sci 2024; 20:1957-1967. [PMID: 39967927 PMCID: PMC11831360 DOI: 10.5114/aoms/195271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 10/27/2024] [Indexed: 02/20/2025] Open
Abstract
Introduction Previous research suggests a potential association between physical activity (PA) and breast cancer (BC), but the causal relationship remains uncertain. The aim of this study was to explore the causal relationship between PA and BC through Mendelian randomization (MR) analysis. Material and methods Genome-wide association studies utilizing data from the UK Biobank baseline were employed to analyze PA phenotypes, encompassing 460,376 participants. Summary data for BC, comprising 122,977 cases and 105,974 controls, were obtained from the BC Association Consortium. The cases were further categorized based on estrogen receptor status into estrogen receptor-positive breast cancer (ER+ BC) and estrogen receptor-negative breast cancer (ER- BC). The inverse variance weighted method was employed as the primary approach for two-sample MR. Additionally, the MR-PRESSO (MR-Pleiotropy RESidual Sum and Outlier) method was utilized to eliminate outliers. Tests for heterogeneity and pleiotropy were conducted to enhance result accuracy. Furthermore, multivariable Mendelian randomization was performed, adjusting for potential confounders to ensure result stability. Results MR analysis was employed to assess the causal link between PA and BC. Two-sample MR analysis revealed a genetic prediction indicating that walking for pleasure was associated with decreased risk of ER+ BC (odds ratio (OR) = 0.302, 95% CI = 0.105-0.872, p = 0.027), while other physical activities were not significantly correlated with BC, ER+ BC and ER- BC. These findings remained reliable and consistent in the sensitivity analysis, including Cochran's Q and MR-Egger regression. Furthermore, reverse MR analysis suggested that BC did not exert a notable impact on PA. Conclusions Our findings suggest that engaging in leisure walking is associated with a reduced risk of ER+ BC. Nevertheless, additional research is warranted to comprehensively elucidate the underlying mechanisms and strengthen the causal relationship.
Collapse
Affiliation(s)
- Lishan Ding
- First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Henan, China
| | - Qingliang Chen
- Department of Radioactive Interventions, Henan No. 3 Provincial People’s Hospital, Henan, China
| | - Hao Liang
- Department of Radioactive Interventions, Henan No. 3 Provincial People’s Hospital, Henan, China
| | - Meng Shen
- Department of Radioactive Interventions, Henan No. 3 Provincial People’s Hospital, Henan, China
| | - Ming Zheng
- Department of Radioactive Interventions, Henan No. 3 Provincial People’s Hospital, Henan, China
| | - Zhaojun Li
- Department of Radioactive Interventions, Henan No. 3 Provincial People’s Hospital, Henan, China
| |
Collapse
|
29
|
Neagu AN, Josan CL, Jayaweera TM, Weraduwage K, Nuru N, Darie CC. Double-Edged Sword Effect of Diet and Nutrition on Carcinogenic Molecular Pathways in Breast Cancer. Int J Mol Sci 2024; 25:11078. [PMID: 39456858 PMCID: PMC11508170 DOI: 10.3390/ijms252011078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental exposure to a mixture of chemical xenobiotics acts as a double-edged sword, promoting or suppressing tumorigenesis and the development of breast cancer (BC). Before anything else, we are what we eat. In this review, we highlight both "the good" and "the bad" sides of the daily human diet and dietary patterns that could influence BC risk (BCR) and incidence. Thus, regularly eating new, diversified, colorful, clean, nutrient-rich, energy-boosting, and raw food, increases apoptosis and autophagy, antioxidation, cell cycle arrest, anti-inflammation, and the immune response against BC cells. Moreover, a healthy diet could lead to a reduction in or the inhibition of genomic instability, BC cell stemness, growth, proliferation, invasion, migration, and distant metastasis. We also emphasize that, in addition to beneficial compounds, our food is more and more contaminated by chemicals with harmful effects, which interact with each other and with endogenous proteins and lipids, resulting in synergistic or antagonistic effects. Thus, a healthy and diverse diet, combined with appropriate nutritional behaviors, can exert anti-carcinogenic effects and improve treatment efficacy, BC patient outcomes, and the overall quality of life of BC patients.
Collapse
Affiliation(s)
- Anca-Narcisa Neagu
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Claudiu-Laurentiu Josan
- Laboratory of Animal Histology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Carol I bvd. 20A, 700505 Iasi, Romania;
| | - Taniya M. Jayaweera
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Krishan Weraduwage
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Niyogushima Nuru
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| | - Costel C. Darie
- Biochemistry & Proteomics Laboratories, Department of Chemistry and Biochemistry, Clarkson University, Potsdam, NY 13699-5810, USA; (T.M.J.); (K.W.); (N.N.)
| |
Collapse
|
30
|
Dikeocha IJ, Wardill HR, Coller JK, Bowen JM. Dietary interventions and tumor response to chemotherapy in breast cancer: A comprehensive review of preclinical and clinical data. Clin Nutr ESPEN 2024; 63:462-475. [PMID: 39018241 DOI: 10.1016/j.clnesp.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND & AIMS Optimizing treatment efficacy is still a critical part in advancing the treatment of breast cancer. Dietary interventions have drawn significant attention for their potential to increase tumor sensitivity, with a plethora of strategies evaluated both preclinically and clinically. The aim of this paper is to explore these strategies, ranging from entire dietary programs to specific supplements, for their potential to directly enhance tumor sensitivity and chemotherapy adherence. METHODS PubMed, Scopus, Embase and Web of Science databases were searched up to September 2023. In this comprehensive review, preclinical and clinical research on dietary interventions used in conjunction with chemotherapy for breast cancer was examined and synthesized, to identify potential causal mechanisms. RESULTS 42 studies in total were identified and synthesized, 32 pre-clinical and 8 clinical studies. CONCLUSION Although a topic of intense interest, the heterogeneity in approaches has resulted in a large but minimally impactful evidence base, further complicated by a limited understanding of the mechanisms at play. This review highlights the areas for further research to increase opportunities for nutritional-based interventions as adjuvant to chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Ifeoma J Dikeocha
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA 5000, Australia.
| | - Hannah R Wardill
- Supportive Oncology Research Group, Precision Cancer Medicine, The South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Janet K Coller
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA 5000, Australia
| | - Joanne M Bowen
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
31
|
Zheng C, Yu L, Zhao L, Guo M, Feng M, Li H, Zhou X, Fan Y, Liu L, Ma Z, Jia Y, Li M, Barman I, Yu Z. Label-free Raman spectroscopy reveals tumor microenvironmental changes induced by intermittent fasting for the prevention of breast cancer in animal model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 317:124387. [PMID: 38704999 DOI: 10.1016/j.saa.2024.124387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/06/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
The development of tools that can provide a holistic picture of the evolution of the tumor microenvironment in response to intermittent fasting on the prevention of breast cancer is highly desirable. Here, we show, for the first time, the use of label-free Raman spectroscopy to reveal biomolecular alterations induced by intermittent fasting in the tumor microenvironment of breast cancer using a dimethyl-benzanthracene induced rat model. To quantify biomolecular alterations in the tumor microenvironment, chemometric analysis of Raman spectra obtained from untreated and treated tumors was performed using multivariate curve resolution-alternative least squares and support vector machines. Raman measurements revealed remarkable and robust differences in lipid, protein, and glycogen content prior to morphological manifestations in a dynamically changing tumor microenvironment, consistent with the proteomic changes observed by quantitative mass spectrometry. Taken together with its non-invasive nature, this research provides prospective evidence for the clinical translation of Raman spectroscopy to identify biomolecular variations in the microenvironment induced by intermittent fasting for the prevention of breast cancer, providing new perspectives on the specific molecular effects in the tumorigenesis of breast cancer.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Lixiang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Linfeng Zhao
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Maolin Guo
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Man Feng
- Department of Pathology, The Third Affiliated Hospital of Shandong First Medical University (Affiliated Hospital of Shandong Academy of Medical Sciences), Jinan, Shandong 250031, China
| | - Hui Li
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Xingchen Zhou
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong 250033, China
| | - Yeye Fan
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Liyuan Liu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Zhongbing Ma
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Yining Jia
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China
| | - Ming Li
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University, Baltimore, MD 21287, USA.
| | - Zhigang Yu
- Department of Breast Surgery, The Second Hospital of Shandong University, Jinan, Shandong 250033, China; Institute of Translational Medicine of Breast Disease Prevention and Treatment, Shandong University, Jinan, Shandong 250033, China.
| |
Collapse
|
32
|
Guerrieri-Gonzaga A, Serrano D, Gnagnarella P, Johansson H, Zovato S, Nardi M, Pensabene M, Buccolo S, DeCensi A, Briata IM, Pistelli L, Sansone C, Mannucci S, Aristarco V, Macis D, Lazzeroni M, Aurilio G, Accornero CA, Gandini S, Bonanni B. Low dose TamOxifen and LifestylE changes for bReast cANcer prevention (TOLERANT study): Study protocol of a randomized phase II biomarker trial in women at increased risk for breast cancer. PLoS One 2024; 19:e0309511. [PMID: 39226292 PMCID: PMC11371200 DOI: 10.1371/journal.pone.0309511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Breast Cancer (BC) prevention strategies range from lifestyle changes such as increasing physical activity and reducing body weight to preventive drugs like tamoxifen, known to reduce BC incidence in high-risk women. Sex Hormone Binding Globulin (SHBG) is related to BC risk due to its ability to bind circulating estradiol at high affinity and to regulate estradiol action. A study protocol is presented based on the assessment of the effect of different interventions such as tamoxifen at 10 mg every other day (LDT), intermittent caloric restriction (ICR) two days per week, lifestyle intervention (LI, step counter use) and their combination on the modulation of SHBG and several other biomarkers associated to BC. METHODS A randomized phase II biomarker study will be conducted in 4 Italian centers. Unaffected women aged between 18 and 70 years, carriers of a germline pathogenetic variant (BRCA1, BRCA2, PALB2, or other moderate penetrance genes), or with a >5% BC risk at 10 years (according to the Tyrer-Cuzick or the Breast Cancer Surveillance Consortium Risk models) or with a previous diagnosis of intraepithelial neoplasia will be eligible. A total of 200 participants will be randomized to one of the four arms: LDT; LDT + ICR; LI; LI + ICR. Interventions will span six months, with baseline and follow-up clinic visits and interim phone calls. DISCUSSION The aim of the study is to verify whether LDT increases circulating SHBG more than LI with or without ICR after 6 months. Secondary objectives include assessing HOMA-index, inflammatory markers, adiponectin/leptin ratio, quality of life (QoL), safety, toxicity, mammographic density, and changes in microbiome composition across groups. The study's innovation lies in its inclusion of diverse BC risk categories and combination of pharmaceutical and behavioral interventions, potentially enhancing intervention efficacy while balancing tamoxifen's side effects on QoL, especially menopausal symptoms. TRIAL REGISTRATION EuCT number:2023-503994-39-00; Clinical trials.gov NCT06033092.
Collapse
Affiliation(s)
| | - Davide Serrano
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Patrizia Gnagnarella
- Division of Epidemiology and Biostatistics, European Institute of Oncology IRCCS, Milan, Italy
| | - Harriet Johansson
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Stefania Zovato
- Familial Cancer Unit, Veneto Institute of Oncology IOV IRCSS, Padova, Italy
| | - Mariateresa Nardi
- Familial Cancer Unit, Veneto Institute of Oncology IOV IRCSS, Padova, Italy
| | - Matilde Pensabene
- Division of Breast Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Naples, Italy
| | - Simona Buccolo
- Division of Breast Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Naples, Italy
| | - Andrea DeCensi
- Division of Medical Oncology, E.O. Galliera Hospital, Genoa, Italy
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | | | - Luigi Pistelli
- Division of Breast Oncology, Istituto Nazionale Tumori—IRCCS—Fondazione G. Pascale, Naples, Italy
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie Marine, University of Naples "Federico II", Naples, Italy
| | - Sara Mannucci
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Valentina Aristarco
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Debora Macis
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Lazzeroni
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | - Gaetano Aurilio
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| | | | - Sara Gandini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Bernardo Bonanni
- Division of Cancer Prevention and Genetics, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
33
|
Valerio J, Borro M, Proietti E, Pisciotta L, Olarinde IO, Fernandez Gomez M, Alvarez Pinzon AM. Systematic Review and Clinical Insights: The Role of the Ketogenic Diet in Managing Glioblastoma in Cancer Neuroscience. J Pers Med 2024; 14:929. [PMID: 39338183 PMCID: PMC11433106 DOI: 10.3390/jpm14090929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/30/2024] Open
Abstract
Recent scientific research has shown that the ketogenic diet may have potential benefits in a variety of medical fields, which has led to the diet receiving a substantial amount of attention. Clinical and experimental research on brain tumors has shown that the ketogenic diet has a satisfactory safety profile. This safety profile has been established in a variety of applications, including the management of obesity and the treatment of drug-resistant epileptic cases. However, in human studies, the impact of ketogenic therapy on the growth of tumors and the life expectancy of patients has not provided results that are well characterized. Consequently, our purpose is to improve the comprehension of these features by succinctly presenting the developments and conclusions that have been gained from the most recent study that pertains to this non-pharmacological technique. According to the findings of our study, patients with brain tumors who stick to a ketogenic diet are more likely to experience improved survival rates. However, it is required to conduct additional research on humans in order to more accurately define the anti-tumor efficiency of this diet as well as the underlying processes that support the therapeutic effects of this dieting regimen.
Collapse
Affiliation(s)
- Jose Valerio
- Neurosurgery Oncology Center of Excellence, Neurosurgery Department, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA
| | - Matteo Borro
- Internal Medicine Unit, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Elisa Proietti
- Department of Internal Medicine (DIMI), University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Livia Pisciotta
- Department of Internal Medicine (DIMI), University of Genova, Viale Benedetto XV, 6, 16132 Genova, Italy
- Operative Unit of Dietetics and Clinical Nutrition, Department of Internal Medicine, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132 Genova, Italy
| | - Immanuel O Olarinde
- Neurosurgery Department, Latino America Valerio Foundation, Weston, FL 33331, USA
| | | | - Andres Mauricio Alvarez Pinzon
- MCIFAU Cancer Center of Excellence, Memorial Cancer Institute, Memorial Healthcare System, Hollywood, FL 33021, USA
- Cancer Neuroscience Program, The Institute of Neuroscience of Castilla y León (INCYL), Universidad de Salamanca, 37007 Salamanca, Spain
- Institute for Human Health and Disease Intervention, Division of Research, FAU Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| |
Collapse
|
34
|
Yende AS, Sharma D. Obesity, dysbiosis and inflammation: interactions that modulate the efficacy of immunotherapy. Front Immunol 2024; 15:1444589. [PMID: 39253073 PMCID: PMC11381382 DOI: 10.3389/fimmu.2024.1444589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/06/2024] [Indexed: 09/11/2024] Open
Abstract
Recent years have seen an outstanding growth in the understanding of connections between diet-induced obesity, dysbiosis and alterations in the tumor microenvironment. Now we appreciate that gut dysbiosis can exert important effects in distant target tissues via specific microbes and metabolites. Multiple studies have examined how diet-induced obese state is associated with gut dysbiosis and how gut microbes direct various physiological processes that help maintain obese state in a bidirectional crosstalk. Another tightly linked factor is sustained low grade inflammation in tumor microenvironment that is modulated by both obese state and dysbiosis, and influences tumor growth as well as response to immunotherapy. Our review brings together these important aspects and explores their connections. In this review, we discuss how obese state modulates various components of the breast tumor microenvironment and gut microbiota to achieve sustained low-grade inflammation. We explore the crosstalk between different components of tumor microenvironment and microbes, and how they might modulate the response to immunotherapy. Discussing studies from multiple tumor types, we delve to find common microbial characteristics that may positively or negatively influence immunotherapy efficacy in breast cancer and may guide future studies.
Collapse
Affiliation(s)
- Ashutosh S Yende
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, United States
| |
Collapse
|
35
|
Vernieri C, Ligorio F, Tripathy D, Longo VD. Cyclic fasting-mimicking diet in cancer treatment: Preclinical and clinical evidence. Cell Metab 2024; 36:1644-1667. [PMID: 39059383 DOI: 10.1016/j.cmet.2024.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/03/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024]
Abstract
In preclinical tumor models, cyclic fasting and fasting-mimicking diets (FMDs) produce antitumor effects that become synergistic when combined with a wide range of standard anticancer treatments while protecting normal tissues from treatment-induced adverse events. More recently, results of phase 1/2 clinical trials showed that cyclic FMD is safe, feasible, and associated with positive metabolic and immunomodulatory effects in patients with different tumor types, thus paving the way for larger clinical trials to investigate FMD anticancer activity in different clinical contexts. Here, we review the tumor-cell-autonomous and immune-system-mediated mechanisms of fasting/FMD antitumor effects, and we critically discuss new metabolic interventions that could synergize with nutrient starvation to boost its anticancer activity and prevent or reverse tumor resistance while minimizing toxicity to patients. Finally, we highlight potential future applications of FMD approaches in combination with standard anticancer strategies as well as strategies to implement the design and conduction of clinical trials.
Collapse
Affiliation(s)
- Claudio Vernieri
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy.
| | - Francesca Ligorio
- Medical Oncology and Hematology-Oncology Department, University of Milan, 20122 Milan, Italy; Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Debu Tripathy
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Unit 1354, 1515 Holcombe Blvd, Houston, TX 77030-4009, USA
| | - Valter D Longo
- IFOM ETS, the AIRC Institute of Molecular Oncology, 20139 Milan, Italy; Longevity Institute, Davis School of Gerontology and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
36
|
Sirico M, Jacobs F, Molinelli C, Nader-Marta G, Debien V, Dewhurst HF, Palleschi M, Merloni F, Gianni C, De Giorgi U, de Azambuja E. Navigating the complexity of PI3K/AKT pathway in HER-2 negative breast cancer: biomarkers and beyond. Crit Rev Oncol Hematol 2024; 200:104404. [PMID: 38815877 DOI: 10.1016/j.critrevonc.2024.104404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
The results of the SOLAR-1 and CAPItello-291, highlight the benefit of the ɑ-selective phosphoinositide 3-Kinase Pathway inhibitor (PI3Ki) alpelisib and the AKT inhibitor (AKTi) capivasertib in patients with hormone receptor-positive (HR+)/Human Epidermal Growth Factor Receptor 2 (HER2)- negative metastatic breast cancer (mBC) that have PIK3CA/AKT1/PTEN tumour alterations. Although effective, these drugs are associated with significant toxicities, which often limit their use, particularly in frail patients. Following the recent incorporation of these agents into clinical practice, and with many others currently in development, significant challenges have emerged, particularly those regarding biomarkers for patient selection. This review will discuss biomarkers of response and their resistance to PI3K/AKT inhibitors (PI3K/AKTis) in HR+/HER- BC in early and advanced settings to ascertain which populations will most benefit from these drugs. Of the biomarkers that were analysed, such as PIK3CA, AKT, PTEN mutations, insulin levels, 18 F-FDG-PET/TC, only the PIK3CA-mutations (PIK3CA-mut) and the AKT pathway alterations seem to have a predictive value for treatments with alpelisib and capivasertib. However, due to the retrospective and exploratory nature of the study, the data did not provide conclusive results. In addition, the different methods used to detect PIK3CA/AKT1/PTEN alterations underline the fact that the optimal diagnostic companion has yet to be established. We have summarised the clinical data on the approved and discontinued agents targeting this pathway and have assessed the drugs development, successes, and failures. Finally, because of tumour heterogeneity, we emphasise the importance of reassessing the mutational status of PI3KCA in both metastatic tissue and blood at the time of disease progression to better tailor treatment for patients.
Collapse
Affiliation(s)
- M Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy.
| | - F Jacobs
- Humanitas Clinical and Research Center - IRCCS, Humanitas Cancer Center, via Manzoni 56, 20089 Rozzano, Milan, Italy; Early Phase Trials Unit Institut Bergonié Bordeaux, France
| | - C Molinelli
- Early Phase Trials Unit Institut Bergonié Bordeaux, France; Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy; Department of Medical Oncology, U.O. Clinical di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - V Debien
- Early Phase Trials Unit Institut Bergonié Bordeaux, France
| | - H Faith Dewhurst
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - M Palleschi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - F Merloni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - C Gianni
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - U De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | | |
Collapse
|
37
|
Koehler FC, Späth MR, Meyer AM, Müller RU. Fueling the success of transplantation through nutrition: recent insights into nutritional interventions, their interplay with gut microbiota and cellular mechanisms. Curr Opin Organ Transplant 2024; 29:284-293. [PMID: 38861189 DOI: 10.1097/mot.0000000000001159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
PURPOSE OF REVIEW The role of nutrition in organ health including solid organ transplantation is broadly accepted, but robust data on nutritional regimens remains scarce calling for further investigation of specific dietary approaches at the different stages of organ transplantation. This review gives an update on the latest insights into nutritional interventions highlighting the potential of specific dietary regimens prior to transplantation aiming for organ protection and the interplay between dietary intake and gut microbiota. RECENT FINDINGS Nutrition holds the potential to optimize patients' health prior to and after surgery, it may enhance patients' ability to cope with the procedure-associated stress and it may accelerate their recovery from surgery. Nutrition helps to reduce morbidity and mortality in addition to preserve graft function. In the case of living organ donation, dietary preconditioning strategies promise novel approaches to limit ischemic organ damage during transplantation and to identify the underlying molecular mechanisms of diet-induced organ protection. Functioning gut microbiota are required to limit systemic inflammation and to generate protective metabolites such as short-chain fatty acids or hydrogen sulfide. SUMMARY Nutritional intervention is a promising therapeutic concept including the pre- and rehabilitation stage in order to improve the recipients' outcome after solid organ transplantation.
Collapse
Affiliation(s)
- Felix C Koehler
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Martin R Späth
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anna M Meyer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
| | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne
- CECAD Research Center, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
38
|
Xiao D, Liu T, Pan Y. Diet restriction enhances the effect of immune checkpoint block by inhibiting the intratumoral mTORC1/B7-H3 axis. J Biochem Mol Toxicol 2024; 38:e23803. [PMID: 39132973 DOI: 10.1002/jbt.23803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Immune checkpoint blockade therapy has demonstrated significant therapeutic efficacy in certain cancer types; however, the impact of dietary restriction remains scarcely reported in this context. This study aimed to investigate the influence of dietary restriction on anti-PDL-1 therapy and the interplay of immune cells within this context. Using an anti-PDL-1 regimen combined with dietary restrictions, tumor progression was assessed in LLC-bearing mice. Flow cytometry was employed to analyze immune cell infiltration and differentiation levels within the tumor microenvironment. The expression of mTORC1/B7-H3 in tumors subjected to dietary restriction was also examined. LLC tumors with elevated B7-H3 expression were validated in mice to determine its inhibitory effect on immune cell proliferation and differentiation. A CD3/B7-H3 chimeric antibody was developed for therapeutic intervention in B7-H3 overexpressing tumors, with subsequent T cell responses assessed through flow cytometry. Dietary restriction potentiated the effect of anti-PDL1 therapy by suppressing the intratumorally mTORC1/B7-H3 axis. In vivo experiments demonstrated that elevated B7-H3 expression in tumors reduced infiltration and activation of CD8 + T cells within the tumor, while it did not affect tumor-infiltrating Tregs. In vitro studies revealed that high B7-H3 expression influenced the proliferation and activation of CD8 + T cells within a Coculture system. The constructed CD3/B7-H3 chimeric antibody prominently activated TCR within B7-H3 overexpressing tumors and impeded tumor progression. The findings suggest that dietary restriction enhances the efficacy of immune checkpoint blockade by modulating the intratumoral mTORC1/B7-H3 axis.
Collapse
Affiliation(s)
- Duqing Xiao
- Department of Thoracic surgery, The First Affiliated Hospital of Jinan University, Guangzhou City, China
| | - Tingting Liu
- Department of Internal Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Youguang Pan
- Department of Thoracic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
39
|
Pan T, Tang L, Chu R, Zheng S, Wang J, Yang Y, Wang W, He J. Microfluidic-Enabled Assembly of Multicomponent Artificial Organelle for Synergistic Tumor Starvation Therapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39069732 DOI: 10.1021/acsami.4c07962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Artificial organelles (AOs) encapsulating enzymes are engineered to facilitate biocatalytic reactions for exerting therapeutic effects in various diseases. Exploiting the confinement effect, these catalytic properties exhibit significant enhancements without being influenced by the surrounding medium, enabling more efficient cascade reactions. In this study, we present a novel approach for synergistic tumor starvation therapy by developing multicomponent artificial organelles that combine enzymatic oncotherapy with chemotherapy. The construction process involves a microfluidic-based approach that enables the encapsulation of cationic cores containing doxorubicin (DOX), electrostatic adsorption of cascade enzymes, and surface assembly of the protective lipid membrane. Additionally, these multicomponent AOs possess multicompartment structures that enable the separation and sequential release of each component. By coencapsulating enzymes and chemotherapeutic agent DOX within AOs, we achieve enhanced enzymatic cascade reactions (ECR) and improved intrinsic permeability of DOX due to spatial confinement. Furthermore, exceptional therapeutic effects on 4T1 xenograft tumors are observed, demonstrating the feasibility of utilizing AOs as biomimetic implants in living organisms. This innovative approach that combines starvation therapy with chemotherapy using multicompartment AOs represents a promising paradigm in the field of precise cancer therapy.
Collapse
Affiliation(s)
- Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
| | - Shumin Zheng
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
| | - Junji Wang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, Shanghai 201203, P. R. China
| |
Collapse
|
40
|
Wang B, Wang Y, Wang W, Wang Z, Zhang Y, Pan X, Wen X, Leng H, Guo J, Ma XX. WTAP/IGF2BP3 mediated m6A modification of the EGR1/PTEN axis regulates the malignant phenotypes of endometrial cancer stem cells. J Exp Clin Cancer Res 2024; 43:204. [PMID: 39044249 PMCID: PMC11264439 DOI: 10.1186/s13046-024-03120-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024] Open
Abstract
Endometrial cancer (EC) stem cells (ECSCs) are pivotal in the oncogenesis, metastasis, immune escape, chemoresistance, and recurrence of EC. However, the specific mechanism of stem cell maintenance in EC cells (ECCs) has not been clarified. We found that WTAP and m6A levels decreased in both EC and ECSCs, and that knocking down WTAP promoted ECCs and ECSCs properties, including proliferation, invasion, migration, cisplatin resistance, and self-renewal. The downregulation of WTAP leads to a decrease in the m6A modification of EGR1 mRNA, and it is difficult for IGF2BP3, as an m6A reader, to recognize and bind to EGR1 mRNA that has lost m6A modification, resulting in a decrease in the stability of EGR1 mRNA. A decrease in the EGR1 level led to a decrease of in the expression tumor suppressor gene PTEN, resulting in deregulation and loss of cellular homeostasis and thereby fostering EC stem cell traits. Notably, the enforced overexpression of WTAP, EGR1, and PTEN inhibited the oncogenic effects of ECCs and ECSCs in vivo, and the combined overexpression of WTAP + EGR1 and EGR1 + PTEN further diminished the tumorigenic potential of these cells. Our findings revealed that the WTAP/EGR1/PTEN pathway is important regulator of EC stem cell maintenance, chemotherapeutic resistance, and tumorigenesis, suggesting a novel and promising therapeutic avenue for treating EC.
Collapse
Affiliation(s)
- Bo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Yuting Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Wantong Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Zihao Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Yunzheng Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Xin Pan
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Xin Wen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Hongrui Leng
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Jing Guo
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China
| | - Xiao-Xin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 39 Huaxiang Road, Tiexi District, Shenyang City, Liaoning Province, 110022, China.
| |
Collapse
|
41
|
Khalifa A, Guijarro A, Nencioni A. Advances in Diet and Physical Activity in Breast Cancer Prevention and Treatment. Nutrients 2024; 16:2262. [PMID: 39064705 PMCID: PMC11279876 DOI: 10.3390/nu16142262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
There is currently a growing interest in diets and physical activity patterns that may be beneficial in preventing and treating breast cancer (BC). Mounting evidence indicates that indeed, the so-called Mediterranean diet (MedDiet) and regular physical activity likely both help reduce the risk of developing BC. For those who have already received a BC diagnosis, these interventions may decrease the risk of tumor recurrence after treatment and improve quality of life. Studies also show the potential of other dietary interventions, including fasting or modified fasting, calorie restriction, ketogenic diets, and vegan or plant-based diets, to enhance the efficacy of BC therapies. In this review article, we discuss the biological rationale for utilizing these dietary interventions and physical activity in BC prevention and treatment. We highlight published and ongoing clinical studies that have applied these lifestyle interventions to BC patients. This review offers valuable insights into the potential application of these dietary interventions and physical activity as complimentary therapies in BC management.
Collapse
Affiliation(s)
- Amr Khalifa
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Ana Guijarro
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
| | - Alessio Nencioni
- Department of Internal Medicine and Medical Specialties, University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genoa, Italy
| |
Collapse
|
42
|
Reddy BL, Reddy VS, Saier MH. Health Benefits of Intermittent Fasting. Microb Physiol 2024; 34:142-152. [PMID: 38955141 PMCID: PMC11262566 DOI: 10.1159/000540068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
We propose that intermittent fasting (time-restricted eating), in agreement with the conclusions of other biologists, as revealed in recent publications, promotes the achievement of numerous health benefits including the extension of human and animal lifespans. Background: There is evidence, obtained both with animal model systems and with humans, that intermittent fasting has health benefits. These benefits include extended longevity, weight loss, and counteracting various disease conditions. Such procedures positively influence the benefits of human tissue-specific microbiomes and minimize the consequences of organellar apoptosis. Key Messages: In this review, we attempt to summarize the predominant evidence, published in the scientific literature, relevant to the conclusions that in general, and in many specific instances, intermittent fasting has long-term benefits to animals, including humans, with respect to overall and specific organismal health and longevity.
Collapse
Affiliation(s)
- B. Lakshmi Reddy
- Department of Molecular Biology, University of California at San Diego 9500 Gilman Dr. La Jolla, CA 92093-0116 USA
| | | | - Milton H. Saier
- Department of Molecular Biology, University of California at San Diego 9500 Gilman Dr. La Jolla, CA 92093-0116 USA
| |
Collapse
|
43
|
Wang M, Li B, Meng W, Chen Y, Liu H, Zhang Z, Li L. System Xc - exacerbates metabolic stress under glucose depletion in oral squamous cell carcinoma. Oral Dis 2024; 30:2952-2964. [PMID: 37856618 DOI: 10.1111/odi.14774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/12/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVE Emerging evidence suggests that glucose depletion (GD)-induced cell death depends on system Xc-, a glutamate/cystine antiporter extensively studied in ferroptosis. However, the underlying mechanism remains debated. Our study confirmed the correlation between system Xc- and GD-induced cell death and provided a strategic treatment for oral squamous cell carcinoma (OSCC). METHODS qPCR and Western blotting were performed to detect changes in xCT and CD98 expression after glucose withdrawal. Then, the cell viability of OSCCs under the indicated conditions was measured. To identify the GD-responsible transcriptional factors of SLC7A11, we performed a luciferase reporter assay and a ChIP assay. Further, metabolomics was conducted to identify changes in metabolites. Finally, mitochondrial function and ATP production were evaluated using the seahorse assay, and NADP+/NADPH dynamics were measured using a NADP+/NADPH kit. RESULTS In OSCCs, system Xc- promoted GD-induced cell death by increasing glutamate consumption, which promoted NADPH exhaustion and TCA blockade. Moreover, GD-induced xCT upregulation was governed by the p-eIF2α/ATF4 axis. CONCLUSIONS System Xc- overexpression compromised the metabolic flexibility of OSCC under GD conditions, and thus, glucose starvation therapy is effective for killing OSCC cells.
Collapse
Affiliation(s)
- Miao Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bo Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wanrong Meng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yafei Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hanghang Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
44
|
Son DS, Done KA, Son J, Izban MG, Virgous C, Lee ES, Adunyah SE. Intermittent Fasting Attenuates Obesity-Induced Triple-Negative Breast Cancer Progression by Disrupting Cell Cycle, Epithelial-Mesenchymal Transition, Immune Contexture, and Proinflammatory Signature. Nutrients 2024; 16:2101. [PMID: 38999849 PMCID: PMC11243652 DOI: 10.3390/nu16132101] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Obesity is associated with one-fifth of cancer deaths, and breast cancer is one of the obesity-related cancers. Triple-negative breast cancer (TNBC) lacks estrogen and progesterone receptors and human epidermal growth factor receptor 2, leading to the absence of these therapeutic targets, followed by poor overall survival. We investigated if obesity could hasten TNBC progression and intermittent fasting (IF) could attenuate the progression of obesity-related TNBC. Our meta-analysis of the TNBC outcomes literature showed that obesity led to poorer overall survival in TNBC patients. Fasting-mimicking media reduced cell proliferation disrupted the cell cycle, and decreased cell migration and invasion. IF decreased body weight in obese mice but no change in normal mice. Obese mice exhibited elevated plasma glucose and cholesterol levels, increased tumor volume and weight, and enhanced macrophage accumulation in tumors. The obesity-exacerbated TNBC progression was attenuated after IF, which decreased cyclin B1 and vimentin levels and reduced the proinflammatory signature in the obesity-associated tumor microenvironment. IF attenuated obesity-induced TNBC progression through reduced obesity and tumor burdens in cell and animal experiments, supporting the potential of a cost-effective adjuvant IF therapy for TNBC through lifestyle change. Further evidence is needed of these IF benefits in TNBC, including from human clinical trials.
Collapse
Affiliation(s)
- Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Kaitlyn A. Done
- Biochemistry Program, College of Arts and Sciences, Spelman College, Atlanta, GA 30314, USA
| | - Jubin Son
- Neuroscience Program, College of Arts and Sciences, The University of Tennessee, Knoxville, TN 37996, USA
| | - Michael G. Izban
- Pathology, Anatomy and Cell Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Carlos Virgous
- Animal Core Facility, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|
45
|
Luo M, Wang Q, Sun Y, Jiang Y, Wang Q, Gu Y, Hu Z, Chen Q, Xu J, Chen S, Hou T, Feng L. Fasting-mimicking diet remodels gut microbiota and suppresses colorectal cancer progression. NPJ Biofilms Microbiomes 2024; 10:53. [PMID: 38918380 PMCID: PMC11199600 DOI: 10.1038/s41522-024-00520-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
The progression of colorectal cancer is closely associated with diet. Fasting-mimicking diet (FMD) is a promising type of dietary intervention that have beneficial effects in the prevention and treatment of various cancers. We investigated the therapeutic effect of 4-day FMD against colorectal cancer in mice through immune cell analysis, microbiota composition analysis and anti-PD-1 treatment. These FMD cycles effectively suppressed colorectal cancer growth, reduced cell proliferation and angiogenesis, increased tumor-infiltration lymphocytes especially CD8+T cells. FMD stimulated protective gut microbiota, especially Lactobacillus. Supplementation of Lactobacillus johnsonii induced similar results as FMD intervention, which also suppressed tumor growth and increased CD45+ and CD8+ T cells. Additionally, FMD synthesizing with anti-PD-1 therapy effectively inhibited CRC progression. These findings suggest that Lactobacillus. johnsonii is necessary for the anticancer process of FMD in CRC. FMD through its effects on both gut microbiota and immune system, effectively suppressed colorectal cancer progression in mouse model.
Collapse
Affiliation(s)
- Man Luo
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qingyi Wang
- Medical School of Zhejiang University, Hangzhou, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yong Sun
- Medical School of Zhejiang University, Hangzhou, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Jiang
- Medical School of Zhejiang University, Hangzhou, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qiwen Wang
- Medical School of Zhejiang University, Hangzhou, China
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Yanrou Gu
- Wenzhou Medical University, Wenzhou, China
| | - Zhefang Hu
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Qianyi Chen
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Jilei Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.
| | - Lijun Feng
- Department of Clinical Nutrition, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China.
| |
Collapse
|
46
|
Brown RB. Spontaneous Tumor Regression and Reversion: Insights and Associations with Reduced Dietary Phosphate. Cancers (Basel) 2024; 16:2126. [PMID: 38893245 PMCID: PMC11172109 DOI: 10.3390/cancers16112126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/21/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Tumors that spontaneously shrink from unknown causes in tumor regression, and that return to normal cells in tumor reversion, are phenomena with the potential to contribute new knowledge and novel therapies for cancer patient survival. Tumorigenesis is associated with dysregulated phosphate metabolism and an increased transport of phosphate into tumor cells, potentially mediated by phosphate overload from excessive dietary phosphate intake, a significant problem in Western societies. This paper proposes that reduced dietary phosphate overload and reregulated phosphate metabolism may reverse an imbalance of kinases and phosphatases in cell signaling and cellular proliferation, thereby activating autophagy in tumor regression and reversion. Dietary phosphate can also be reduced by sickness-associated anorexia, fasting-mimicking diets, and other diets low in phosphate, all of which have been associated with tumor regression. Tumor reversion has also been demonstrated by transplanting cancer cells into a healthy microenvironment, plausibly associated with normal cellular phosphate concentrations. Evidence also suggests that the sequestration and containment of excessive phosphate within encapsulated tumors is protective in cancer patients, preventing the release of potentially lethal amounts of phosphate into the general circulation. Reducing dietary phosphate overload has the potential to provide a novel, safe, and effective reversion therapy for cancer patients, and further research is warranted.
Collapse
Affiliation(s)
- Ronald B Brown
- School of Public Health Sciences, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
47
|
Naser IH, Zaid M, Ali E, Jabar HI, Mustafa AN, Alubiady MHS, Ramadan MF, Muzammil K, Khalaf RM, Jalal SS, Alawadi AH, Alsalamy A. Unveiling innovative therapeutic strategies and future trajectories on stimuli-responsive drug delivery systems for targeted treatment of breast carcinoma. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3747-3770. [PMID: 38095649 DOI: 10.1007/s00210-023-02885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/02/2023] [Indexed: 05/23/2024]
Abstract
This comprehensive review delineates the latest advancements in stimuli-responsive drug delivery systems engineered for the targeted treatment of breast carcinoma. The manuscript commences by introducing mammary carcinoma and the current therapeutic methodologies, underscoring the urgency for innovative therapeutic strategies. Subsequently, it elucidates the logic behind the employment of stimuli-responsive drug delivery systems, which promise targeted drug administration and the minimization of adverse reactions. The review proffers an in-depth analysis of diverse types of stimuli-responsive systems, including thermoresponsive, pH-responsive, and enzyme-responsive nanocarriers. The paramount importance of material choice, biocompatibility, and drug loading strategies in the design of these systems is accentuated. The review explores characterization methodologies for stimuli-responsive nanocarriers and probes preclinical evaluations of their efficacy, toxicity, pharmacokinetics, and biodistribution in mammary carcinoma models. Clinical applications of stimuli-responsive systems, ongoing clinical trials, the potential of combination therapies, and the utility of multifunctional nanocarriers for the co-delivery of assorted drugs and therapies are also discussed. The manuscript addresses the persistent challenge of drug resistance in mammary carcinoma and the potential of stimuli-responsive systems in surmounting it. Regulatory and safety considerations, including FDA guidelines and biocompatibility assessments, are outlined. The review concludes by spotlighting future trajectories and emergent technologies in stimuli-responsive drug delivery, focusing on pioneering approaches, advancements in nanotechnology, and personalized medicine considerations. This review aims to serve as a valuable compendium for researchers and clinicians interested in the development of efficacious and safe stimuli-responsive drug delivery systems for the treatment of breast carcinoma.
Collapse
Affiliation(s)
- Israa Habeeb Naser
- Medical Laboratories Techniques Department, AL-Mustaqbal University, Hillah, Babil, Iraq
| | - Muhaned Zaid
- Department of Pharmacy, Al-Manara College for Medical Sciences, Maysan, Amarah, Iraq
| | - Eyhab Ali
- Al-Zahraa University for Women, Karbala, Iraq
| | - Hayder Imad Jabar
- Department of Pharmaceutics, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
| | | | | | | | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq.
| |
Collapse
|
48
|
He W, Zhang S, Qi Z, Liu W. Unveiling the potential of estrogen: Exploring its role in neuropsychiatric disorders and exercise intervention. Pharmacol Res 2024; 204:107201. [PMID: 38704108 DOI: 10.1016/j.phrs.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like β-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.
Collapse
Affiliation(s)
- Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| |
Collapse
|
49
|
Rawat V, DeLear P, Prashanth P, Ozgurses ME, Tebeje A, Burns PA, Conger KO, Solís C, Hasnain Y, Novikova A, Endress JE, González-Sánchez P, Dong W, Stephanopoulos G, DeNicola GM, Harris IS, Sept D, Mason FM, Coloff JL. Drug screening in human physiologic medium identifies uric acid as an inhibitor of rigosertib efficacy. JCI Insight 2024; 9:e174329. [PMID: 38815134 PMCID: PMC11383364 DOI: 10.1172/jci.insight.174329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
The nonphysiological nutrient levels found in traditional culture media have been shown to affect numerous aspects of cancer cell physiology, including how cells respond to certain therapeutic agents. Here, we comprehensively evaluated how physiological nutrient levels affect therapeutic response by performing drug screening in human plasma-like medium. We observed dramatic nutrient-dependent changes in sensitivity to a variety of FDA-approved and clinically trialed compounds, including rigosertib, an experimental cancer therapeutic that recently failed in phase III clinical trials. Mechanistically, we found that the ability of rigosertib to destabilize microtubules is strongly inhibited by the purine metabolism end product uric acid, which is uniquely abundant in humans relative to traditional in vitro and in vivo cancer models. These results demonstrate the broad and dramatic effects nutrient levels can have on drug response and how incorporation of human-specific physiological nutrient medium might help identify compounds whose efficacy could be influenced in humans.
Collapse
Affiliation(s)
- Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Patrick DeLear
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Prarthana Prashanth
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anteneh Tebeje
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Philippa A. Burns
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Kelly O. Conger
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Christopher Solís
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, Florida, USA
| | - Yasir Hasnain
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | - Anna Novikova
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| | | | | | - Wentao Dong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Greg Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Isaac S. Harris
- Department of Biomedical Genetics, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank M. Mason
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jonathan L. Coloff
- Department of Physiology and Biophysics, University of Illinois College of Medicine, University of Illinois Cancer Center, Chicago, Illinois, USA
| |
Collapse
|
50
|
Zhou Y, Tao L, Qiu J, Xu J, Yang X, Zhang Y, Tian X, Guan X, Cen X, Zhao Y. Tumor biomarkers for diagnosis, prognosis and targeted therapy. Signal Transduct Target Ther 2024; 9:132. [PMID: 38763973 PMCID: PMC11102923 DOI: 10.1038/s41392-024-01823-2] [Citation(s) in RCA: 128] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/21/2024] Open
Abstract
Tumor biomarkers, the substances which are produced by tumors or the body's responses to tumors during tumorigenesis and progression, have been demonstrated to possess critical and encouraging value in screening and early diagnosis, prognosis prediction, recurrence detection, and therapeutic efficacy monitoring of cancers. Over the past decades, continuous progress has been made in exploring and discovering novel, sensitive, specific, and accurate tumor biomarkers, which has significantly promoted personalized medicine and improved the outcomes of cancer patients, especially advances in molecular biology technologies developed for the detection of tumor biomarkers. Herein, we summarize the discovery and development of tumor biomarkers, including the history of tumor biomarkers, the conventional and innovative technologies used for biomarker discovery and detection, the classification of tumor biomarkers based on tissue origins, and the application of tumor biomarkers in clinical cancer management. In particular, we highlight the recent advancements in biomarker-based anticancer-targeted therapies which are emerging as breakthroughs and promising cancer therapeutic strategies. We also discuss limitations and challenges that need to be addressed and provide insights and perspectives to turn challenges into opportunities in this field. Collectively, the discovery and application of multiple tumor biomarkers emphasized in this review may provide guidance on improved precision medicine, broaden horizons in future research directions, and expedite the clinical classification of cancer patients according to their molecular biomarkers rather than organs of origin.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Tao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiahao Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinyu Yang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yu Zhang
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
- School of Medicine, Tibet University, Lhasa, 850000, China
| | - Xinyu Tian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinqi Guan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinglan Zhao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|