1
|
Pierson Smela M, Kramme CC, Fortuna PRJ, Wolf B, Goel S, Adams J, Ma C, Velychko S, Widocki U, Srikar Kavirayuni V, Chen T, Vincoff S, Dong E, Kohman RE, Kobayashi M, Shioda T, Church GM, Chatterjee P. Rapid human oogonia-like cell specification via transcription factor-directed differentiation. EMBO Rep 2025:10.1038/s44319-025-00371-2. [PMID: 39849206 DOI: 10.1038/s44319-025-00371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/25/2025] Open
Abstract
The generation of germline cells from human induced pluripotent stem cells (hiPSCs) represents a milestone toward in vitro gametogenesis. Methods to recapitulate germline development beyond primordial germ cells in vitro have relied on long-term cell culture, such as 3-dimensional organoid co-culture for ~four months. Using a pipeline with highly parallelized screening, this study identifies combinations of TFs that directly and rapidly convert hiPSCs to induced oogonia-like cells (iOLCs). We demonstrate that co-expression of five TFs - namely, ZNF281, LHX8, SOHLH1, ZGLP1, and ANHX, induces high efficiency DDX4-positive iOLCs in only four days in a feeder-free monolayer culture condition. We also show improved production of human primordial germ cell-like cells (hPGCLCs) from hiPSCs by expression of DLX5, HHEX, and FIGLA. We characterize these TF-based iOLCs and hPGCLCs via gene and protein expression analyses and demonstrate their similarity to in vivo and in vitro-derived oogonia and primordial germ cells. Together, these results identify new regulatory factors that enhance human germ cell specification in vitro, and further establish unique computational and experimental tools for human in vitro oogenesis research.
Collapse
Affiliation(s)
- Merrick Pierson Smela
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Christian C Kramme
- Wyss Institute, Harvard Medical School, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Patrick R J Fortuna
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Bennett Wolf
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shrey Goel
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jessica Adams
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Carl Ma
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Sergiy Velychko
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | - Tianlai Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Sophia Vincoff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Edward Dong
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Richie E Kohman
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mutsumi Kobayashi
- Department of Obstetrics and Gynaecology, School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshi Shioda
- Massachusetts General Hospital Krantz Family Center for Cancer Research, Harvard Medical School, Boston, MA, USA
| | - George M Church
- Wyss Institute, Harvard Medical School, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Pranam Chatterjee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| |
Collapse
|
2
|
Nguyen CLK, Kuba Y, Le HT, Shawki HH, Mikami N, Aoki M, Yasuhara N, Suzuki H, Mizuno-Iijima S, Ayabe S, Osawa Y, Fujiyama T, Dinh TTH, Ishida M, Daitoku Y, Tanimoto Y, Murata K, Kang W, Ema M, Hirao Y, Ogura A, Takahashi S, Sugiyama F, Mizuno S. Exocyst complex component 1 (Exoc1) loss in dormant oocyte disrupts c-KIT and growth differentiation factor (GDF9) subcellular localization and causes female infertility in mice. Cell Death Discov 2025; 11:17. [PMID: 39833146 PMCID: PMC11747099 DOI: 10.1038/s41420-025-02291-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025] Open
Abstract
A limited number of female germ cells support reproduction in many mammals. The follicle, composed of oocytes and supporting granulosa cells, forms the basis of oogenesis. Crosstalk between oocytes and granulosa cells is essential for the formation, dormancy, re-awakening, and maturation of oocytes. The oocyte expresses c-KIT and growth differentiation factor-9 (GDF-9), which are major factors in this crosstalk. The downstream signalling pathways of c-KIT and GDF-9 have been well-documented; however, their intra-oocyte trafficking pathway remains unclear. Our study reveals that the exocyst complex, a heterotetrameric protein complex important for tethering in vesicular transport, is important for proper intra-oocyte trafficking of c-KIT and GDF9 in mice. We found that depletion of oocyte-specific EXOC1, a component of the exocyst complex, impaired oocyte re-awakening and cyst breakdown, and inhibited granulosa cell proliferation during follicle growth. The c-KIT receptor is localised on the oocyte plasma membrane. The oocyte-specific Kit conditional knockout mice were reported to exhibit impaired oocyte re-awakening and reduced oocyte cyst breakdown. GDF9 is a protein secreted extracellularly in the oocyte. Previous studies have shown that Gdf9 knockout mice impaired proliferation and granulosa cell multilayering in growing follicles. We found that both c-KIT and GDF9 abnormally stuck in the EXOC1-depleted oocyte cytoplasm. These abnormal phenotypes were also observed in oocytes depleted of exocyst complex members EXOC3 and EXOC7. These results clearly show that the exocyst complex is essential for proper intra-oocyte trafficking of c-KIT and GDF9. Inhibition of this complex causes complete loss of female fertility in mice. Our findings build a platform for research related to trafficking mechanisms of vital crosstalk factors for oogenesis.
Collapse
Affiliation(s)
- Chi Lieu Kim Nguyen
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yumeno Kuba
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hoai Thu Le
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hossam Hassan Shawki
- Department of Comparative and Experimental Medicine, Nagoya City University Graduate School of Medical Sciences, Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, 467-8601, Japan
| | - Natsuki Mikami
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Madoka Aoki
- College of Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Nanako Yasuhara
- College of Biological Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hayate Suzuki
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Saori Mizuno-Iijima
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shinya Ayabe
- Experimental Animal Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yuki Osawa
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tomoyuki Fujiyama
- International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tra Thi Huong Dinh
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
- Next Generation Human Disease Model Team, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Miyuki Ishida
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoko Daitoku
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yoko Tanimoto
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Kazuya Murata
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Woojin Kang
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Yuji Hirao
- Division of Dairy Cattle Feeding and Breeding Research, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki, 305-0901, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Trans-Border Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
3
|
Gu R, Wu T, Fu J, Sun YJ, Sun XX. Advances in the genetic etiology of female infertility. J Assist Reprod Genet 2024; 41:3261-3286. [PMID: 39320554 PMCID: PMC11707141 DOI: 10.1007/s10815-024-03248-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024] Open
Abstract
Human reproduction is a complex process involving gamete maturation, fertilization, embryo cleavage and development, blastocyst formation, implantation, and live birth. If any of these processes are abnormal or arrest, reproductive failure will occur. Infertility is a state of reproductive dysfunction caused by various factors. Advances in molecular genetics, including cell and molecular genetics, and high-throughput sequencing technologies, have found that genetic factors are important causes of infertility. Genetic variants have been identified in infertile women or men and can cause gamete maturation arrest, poor quality gametes, fertilization failure, and embryonic developmental arrest during assisted reproduction technology (ART), and thus reduce the clinical success rates of ART. This article reviews clinical studies on repeated in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) failures caused by ovarian dysfunction, oocyte maturation defects, oocyte abnormalities, fertilization disorders, and preimplantation embryonic development arrest due to female genetic etiology, the accumulation of pathogenic genes and gene pathogenic loci, and the functional mechanism and clinical significance of pathogenic genes in gametogenesis and early embryonic development.
Collapse
Affiliation(s)
- Ruihuan Gu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Tianyu Wu
- Institute of Pediatrics, State Key Laboratory of Genetic Engineering, Institutes of BiomedicalSciences, Shanghai Key Laboratory of Medical Epigenetics, Children's Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Jing Fu
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China
| | - Yi-Juan Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| | - Xiao-Xi Sun
- Department of Shanghai Ji'ai Genetics and IVF Institute, Obstetrics and Gynecology Hospital, Fudan University, 352 Dalin Road, Shanghai, 200011, China.
| |
Collapse
|
4
|
Hu H, Zhao Y, Shan C, Fu H, Cai J, Li Z. Derivation of dental epithelial-like cells from murine embryonic stem cells for tooth regeneration. Stem Cells 2024; 42:945-956. [PMID: 39177656 DOI: 10.1093/stmcls/sxae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Teeth are comprised of epithelial and mesenchymal cells, and regenerative teeth rely on the regeneration of both cell types. Transcription factors play a pivotal role in cell fate determination. In this study, we establish fluorescence models based on transcription factors to monitor and analyze dental epithelial cells. Using Pitx2-P2A-copGFP mice, we observe that Pitx2+ epithelial cells, when combined with E14.5 dental mesenchymal cells, are sufficient for the reconstitution of teeth. Induced-Pitx2+ cells, directly isolated from the embryoid body that employs the Pitx2-GFP embryonic stem cell line, exhibit the capacity to differentiate into ameloblasts and develop into teeth when combined with dental mesenchymal cells. The regenerated teeth exhibit a complete structure, including dental pulp, dentin, enamel, and periodontal ligaments. Subsequent exploration via RNA-seq reveals that induced-Pitx2+ cells exhibit enrichment in genes associated with FGF receptors and WNT ligands compared with induced-Pitx2- cells. Our results indicate that both primary Pitx2+ and induced Pitx2+ cells possess the capability to differentiate into enamel-secreting ameloblasts and grow into teeth when combined with dental mesenchymal cells.
Collapse
Affiliation(s)
- Hong Hu
- College of Basic Medical Sciences and Forensic Medicine, Henan University of Science and Technology, Luoyang 471023, People's Republic of China
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Yifan Zhao
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, People's Republic of China
| | - Ce Shan
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Huancheng Fu
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| | - Jinglei Cai
- Innovation Centre for Advanced Interdisciplinary Medicine, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, People's Republic of China
| | - Zhonghan Li
- State Key Laboratory of Oral Disease, West China Hospital of Stomatology, Center of Growth Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|
5
|
Takase HM, Mishina T, Hayashi T, Yoshimura M, Kuse M, Nikaido I, Kitajima TS. Transcriptomic signatures of WNT-driven pathways and granulosa cell-oocyte interactions during primordial follicle activation. PLoS One 2024; 19:e0311978. [PMID: 39441825 PMCID: PMC11498688 DOI: 10.1371/journal.pone.0311978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Primordial follicle activation (PFA) is a pivotal event in female reproductive biology, coordinating the transition from quiescent to growing follicles. This study employed comprehensive single-cell RNA sequencing to gain insights into the detailed regulatory mechanisms governing the synchronized dormancy and activation between granulosa cells (GCs) and oocytes with the progression of the PFA process. Wntless (Wls) conditional knockout (cKO) mice served as a unique model, suppressing the transition from pre-GCs to GCs, and disrupting somatic cell-derived WNT signaling in the ovary. Our data revealed immediate transcriptomic changes in GCs post-PFA in Wls cKO mice, leading to a divergent trajectory, while oocytes exhibited modest transcriptomic alterations. Subpopulation analysis identified the molecular pathways affected by WNT signaling on GC maturation, along with specific gene signatures linked to dormant and activated oocytes. Despite minimal evidence of continuous up-regulation of dormancy-related genes in oocytes, the loss of WNT signaling in (pre-)GCs impacted gene expression in oocytes even before PFA, subsequently influencing them globally. The infertility observed in Wls cKO mice was attributed to compromised GC-oocyte molecular crosstalk and the microenvironment for oocytes. Our study highlights the pivotal role of the WNT-signaling pathway and its molecular signature, emphasizing the importance of intercellular crosstalk between (pre-)GCs and oocytes in orchestrating folliculogenesis.
Collapse
Affiliation(s)
- Hinako M. Takase
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Tappei Mishina
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Mariko Kuse
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
- Department of Functional Genome Informatics, Division of Biological Data Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo, Japan
| | - Tomoya S. Kitajima
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
6
|
Shimada R, Ishiguro K. Female-specific mechanisms of meiotic initiation and progression in mammalian oocyte development. Genes Cells 2024; 29:797-807. [PMID: 39119753 PMCID: PMC11555627 DOI: 10.1111/gtc.13152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/16/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Meiosis is regulated in sexually dimorphic manners in mammals. In females, the commitment to and entry into meiosis are coordinated with the developmental program of oocytes. Female germ cells initiate meiosis within a short time window during the fetal period and then undergo meiotic arrest until puberty. However, the genetic mechanisms underlying the orchestration of oocyte development and meiosis to maximize the reproductive lifespan of mammalian females remain largely elusive. While meiotic initiation is regulated by a sexually common mechanism, where meiosis initiator and Stimulated by Retinoic Acid Gene 8 (STRA8) activate the meiotic genes, the female-specific mode of meiotic initiation is mediated by the interaction between retinoblastoma (RB) and STRA8. This review highlights the female-specific mechanisms of meiotic initiation and meiotic prophase progression in the context of oocyte development. Furthermore, the downstream pathway of the RB-STRA8 interaction that may regulate meiotic arrest will be discussed in the context of oocyte development, highlighting a potential genetic link between the female-specific mode of meiotic entry and meiotic arrest.
Collapse
Affiliation(s)
- Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| | - Kei‐ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
7
|
Aquino LVCD, Olindo SL, Silva YLFE, Oliveira LRMD, Moura YBF, Rodrigues ALR, Praxedes ÉA, Oliveira MFD, Silva AR, Pereira AF. Cryopreservation and passaging optimization for Galea spixii (Wagler, 1831) adult skin fibroblast lines: A step forward in species management and genetic studies. Acta Histochem 2024; 126:152185. [PMID: 39059228 DOI: 10.1016/j.acthis.2024.152185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024]
Abstract
BACKGROUND In vitro culture of fibroblasts is a technique based on cell isolation, physiological characterization, and cryopreservation. This technique has not been described for Galea spixii, therefore, it can be used to learn about its cellular biology and genetic diversity. OBJECTIVE We established fibroblast lines of six G. spixii individuals from several passages (second, fifth, eighth, and tenth) and cryopreserved them. METHODS Fibroblasts recovered from skin biopsies were identified based on morphology, immunocytochemistry, and karyotyping. The cells were analyzed for morphology, ultrastructure, viability, proliferation, metabolism, oxidative stress, bioenergetic potential, and apoptosis before and after cryopreservation. RESULTS After the eighth passage, the fibroblasts showed morphological and karyotypic changes, although their viability, metabolism, and proliferation did not change. An increase in oxidative stress and bioenergetic potential from the fifth to the eighth passages were also observed. Post cryopreservation, cell damage with respect to the ultrastructure, viability, proliferative rate, apoptotic levels, oxidative stress, and bioenergetic potential were verified. CONCLUSION Fibroblasts up to the tenth passage could be cultured in vitro. However, cells at the fifth passage were of better quality to be used for reproductive techniques. Additionally, optimization of the cryopreservation protocol is essential to improve the physiological parameters of these cells.
Collapse
Affiliation(s)
| | - Samara Lima Olindo
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil.
| | | | | | | | | | - Érika Almeida Praxedes
- Laboratory of Animal Biotechnology, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil. erikaalmeida-@hotmail.com
| | - Moacir Franco de Oliveira
- Laboratory of Applied Animal Morphophysiology, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil.
| | - Alexandre Rodrigues Silva
- Laboratory of Animal Germplasma Conservation, Federal Rural University of Semi-Arid, Mossoró, RN, Brazil.
| | | |
Collapse
|
8
|
Dong S, Liu Y, Yang Z. Transcription factor YY1 adversely governs ovarian granulosa cell growth in PCOS by transcription activation-mediated CDKN1C upregulation. Funct Integr Genomics 2024; 24:171. [PMID: 39317806 DOI: 10.1007/s10142-024-01448-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disease in women of childbearing age, making it imperative to explore more biomarkers for PCOS. Furthermore, previous studies have reported that cyclin dependent kinase inhibitor 1 C (CDKN1C) might be associated with PCOS progression. However, the molecular mechanism of CDKN1C involved in PCOS is poorly defined. METHODS CDKN1C and Yin-Yang-1 (YY1) expression levels were determined using real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. Cell viability, proliferation, cell cycle progression, and cell apoptosis were analyzed using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays. Caspase 3 activity was examined using a commercial kit. Binding between YY1 and CDKN1C promoter was predicted by JASPAR and verified using Chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays. RESULTS CDKN1C and YY1 were highly expressed in PCOS granulosa cells (GCs). Furthermore, CDKN1C silencing could promote cell proliferation and cell cycle process and repress cell apoptosis in human ovarian granulosa cell line KGN cells. For mechanistic analysis, YY1 is directly bound to the promoter of CDKN1C and transcriptional-regulated CDKN1C expression. CONCLUSION YY1-activated CDKN1C might block KGN cell proliferation and induce cell apoptosis, providing a possible therapeutic target for PCOS treatment.
Collapse
Affiliation(s)
- Shitao Dong
- Department of Reproductve Medical, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan Distyrict, Zunyi, 563000, China
| | - Youbin Liu
- Department of Reproductve Medical, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan Distyrict, Zunyi, 563000, China
| | - Zhimin Yang
- Department of Reproductve Medical, Affiliated Hospital of Zunyi Medical University, No. 149, Dalian Road, Huichuan Distyrict, Zunyi, 563000, China.
| |
Collapse
|
9
|
Taketsuru H, Hirayama R, Nakatsukasa E, Natsume R, Takao K, Abe M, Sakimura K. Generation of rat offspring from ovarian oocytes by xenotransplantation. Sci Rep 2024; 14:20109. [PMID: 39209914 PMCID: PMC11362338 DOI: 10.1038/s41598-024-71030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The idea of utilizing unused oocytes present in the ovaries has been tested in various ways to produce offspring. However, only a limited number of studies succeeded in offspring generation. They include transplantation of ovaries into autologous or allogeneic animals, and acquisition of pups from oocytes obtained by transplanting mouse ovaries into immunodeficient rats. Here we report successful production of rat oocytes by transplanting rat ovaries under the kidney capsule of immunodeficient mice with addition of hormone administration to the mice. In addition, these oocytes were developed by in vitro fertilization, and transplanted into the oviducts of pseudopregnant rats, resulting in successful delivery of pups. The modified gene of the donor rat was confirmed to be correctly inherited to the pups. These results show that xenotransplantation of ovarian tissue makes it possible to leave offspring, beginning a new phase in developmental engineering.
Collapse
Affiliation(s)
- Hiroaki Taketsuru
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
- Division of Animal Genetics, Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Runa Hirayama
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-0194, Japan
| | - Ena Nakatsukasa
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Toyama, 930-0194, Japan
- Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama, 930-0194, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| |
Collapse
|
10
|
Rooda I, Hassan J, Hao J, Wagner M, Moussaud-Lamodière E, Jääger K, Otala M, Knuus K, Lindskog C, Papaikonomou K, Gidlöf S, Langenskiöld C, Vogt H, Frisk P, Malmros J, Tuuri T, Salumets A, Jahnukainen K, Velthut-Meikas A, Damdimopoulou P. In-depth analysis of transcriptomes in ovarian cortical follicles from children and adults reveals interfollicular heterogeneity. Nat Commun 2024; 15:6989. [PMID: 39168975 PMCID: PMC11339373 DOI: 10.1038/s41467-024-51185-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
The ovarian cortical reserve of follicles is vital for fertility. Some medical treatments are toxic to follicles, leading to premature ovarian insufficiency. Ovarian tissue cryopreservation is an established method to preserve fertility in adults and even applied in prepuberty despite unproven efficacy. Here, we analyze transcriptomes of 120 cortical follicles from children and adults for detailed comparison. We discover heterogeneity with two main types of follicles in both age groups: one with expected oocyte-granulosa profiles and another with predicted role in signaling. Transcriptional changes during growth to the secondary stage are similar overall in children and adults, but variations related to extracellular matrix, theca cells, and miRNA profiles are found. Notably, cyclophosphamide dose correlates with interferon signaling in child follicles. Additionally, morphology alone is insufficient for follicle categorization suggesting a need for additional markers. Marker genes for early follicle activation are determined. These findings will help refine follicular classification and fertility preservation techniques across critical ages.
Collapse
Affiliation(s)
- Ilmatar Rooda
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden.
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| | - Jasmin Hassan
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Jie Hao
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Reproductive Medicine, Xiangya Hospital, Central South University, Changsha, PR China
| | - Magdalena Wagner
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Elisabeth Moussaud-Lamodière
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Kersti Jääger
- Institute of Computer Science, University of Tartu, Tartu, Estonia
- Competence Centre on Health Technologies, Tartu, Estonia
| | - Marjut Otala
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Katri Knuus
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kiriaki Papaikonomou
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Sebastian Gidlöf
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Cecilia Langenskiöld
- Department of Pediatric Oncology, Queen Silvia Children's Hospital, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hartmut Vogt
- Crown Princess Victoria Children's Hospital, and Division of Children's and Women's Health, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Per Frisk
- Department of Women's and Children's Health, Uppsala University Children's Hospital, Uppsala, Sweden
| | - Johan Malmros
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Andres Salumets
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
- Competence Centre on Health Technologies, Tartu, Estonia
- Department of Obstetrics and Gynaecology, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Kirsi Jahnukainen
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Women's and Children's Health, NORDFERTIL Research Lab Stockholm, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Agne Velthut-Meikas
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Huddinge, Stockholm, Sweden.
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
11
|
Liu Y, Tao W, Wu S, Zhang Y, Nie H, Hou Z, Zhang J, Yang Z, Chen ZJ, Wang J, Lu F, Wu K. Maternal mRNA deadenylation is defective in in vitro matured mouse and human oocytes. Nat Commun 2024; 15:5550. [PMID: 38956014 PMCID: PMC11219934 DOI: 10.1038/s41467-024-49695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
Oocyte in vitro maturation is a technique in assisted reproductive technology. Thousands of genes show abnormally high expression in in vitro maturated metaphase II (MII) oocytes compared to those matured in vivo in bovines, mice, and humans. The mechanisms underlying this phenomenon are poorly understood. Here, we use poly(A) inclusive RNA isoform sequencing (PAIso-seq) for profiling the transcriptome-wide poly(A) tails in both in vivo and in vitro matured mouse and human oocytes. Our results demonstrate that the observed increase in maternal mRNA abundance is caused by impaired deadenylation in in vitro MII oocytes. Moreover, the cytoplasmic polyadenylation of dormant Btg4 and Cnot7 mRNAs, which encode key components of deadenylation machinery, is impaired in in vitro MII oocytes, contributing to reduced translation of these deadenylase machinery components and subsequently impaired global maternal mRNA deadenylation. Our findings highlight impaired maternal mRNA deadenylation as a distinct molecular defect in in vitro MII oocytes.
Collapse
Affiliation(s)
- Yusheng Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wenrong Tao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Shuang Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Yiwei Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Hu Nie
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenzhen Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Jingye Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Zhen Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan, Shandong, 250012, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Falong Lu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Keliang Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, 250012, China.
| |
Collapse
|
12
|
Yan B, Luo P, Qiu H, Wang J, Xiong Q, Hu W, Wang F, Liu G, Zhi Y, Fang Q, Shi C, Li W. PC4 promotes bladder cancer progression and stemness by directly interacting with Sp1 to transcriptionally activate the Wnt5a/β-catenin pathway. Pathol Res Pract 2024; 259:155369. [PMID: 38820928 DOI: 10.1016/j.prp.2024.155369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/07/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Bladder cancer is a common malignancy with a poor prognosis worldwide. Positive cofactor 4 (PC4) is widely reported to promote malignant phenotypes in various tumors. Nonetheless, the biological function and mechanism of PC4 in bladder cancer remain unclear. Here, for the first time, we report that PC4 is elevated in bladder cancer and is associated with patient survival. Moreover, PC4 deficiency obviously inhibited bladder cancer cell proliferation and metastasis by reducing the expression of genes related to cancer stemness (CD44, CD47, KLF4 and c-Myc). Through RNA-seq and experimental verification, we found that activation of the Wnt5a/β-catenin pathway is involved in the malignant function of PC4. Mechanistically, PC4 directly interacts with Sp1 to promote Wnt5a transcription. Thus, our study furthers our understanding of the role of PC4 in cancer stemness regulation and provides a promising strategy for bladder cancer therapy.
Collapse
Affiliation(s)
- Benhuang Yan
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Peng Luo
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Heping Qiu
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Jianwu Wang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qin Xiong
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Weiwei Hu
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Fulong Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoyu Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yi Zhi
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Qiang Fang
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China
| | - Chunmeng Shi
- State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| | - Weibing Li
- Department of Urology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China.
| |
Collapse
|
13
|
Guo Z, Lv L, Liu D, Ma H, Radović Č. Effect of SNPs on Litter Size in Swine. Curr Issues Mol Biol 2024; 46:6328-6345. [PMID: 39057020 PMCID: PMC11276056 DOI: 10.3390/cimb46070378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Although sows do not directly enter the market, they play an important role in piglet breeding on farms. They consume large amounts of feed, resulting in a significant environmental burden. Pig farms can increase their income and reduce environmental pollution by increasing the litter size (LS) of swine. PCR-RFLP/SSCP and GWAS are common methods to evaluate single-nucleotide polymorphisms (SNPs) in candidate genes. We conducted a systematic meta-analysis of the effect of SNPs on pig LS. We collected and analysed data published over the past 30 years using traditional and network meta-analyses. Trial sequential analysis (TSA) was used to analyse population data. Gene set enrichment analysis and protein-protein interaction network analysis were used to analyse the GWAS dataset. The results showed that the candidate genes were positively correlated with LS, and defects in PCR-RFLP/SSCP affected the reliability of candidate gene results. However, the genotypes with high and low LSs did not have a significant advantage. Current breeding and management practices for sows should consider increasing the LS while reducing lactation length and minimizing the sows' non-pregnancy period as much as possible.
Collapse
Affiliation(s)
- Zhenhua Guo
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Lei Lv
- Wood Science Research Institute, Heilongjiang Academy of Forestry, No. 134 Haping Road, Harbin 150080, China
| | - Di Liu
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Hong Ma
- Key Laboratory of Combining Farming and Animal Husbandry, Ministry of Agriculture and Rural Affairs, Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Harbin 150086, China
| | - Čedomir Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, Autoput 16, 11080 Belgrade, Serbia
| |
Collapse
|
14
|
Silber SJ, Goldsmith S, Castleman L, Hayashi K. In Vitro Maturation, In Vitro Oogenesis, and Ovarian Longevity. Reprod Sci 2024; 31:1234-1245. [PMID: 38160209 PMCID: PMC11090930 DOI: 10.1007/s43032-023-01427-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024]
Abstract
This paper will review a remarkable new approach to in vitro maturation "IVM" of oocytes from ovarian tissue, based on our results with in vitro oogenesis from somatic cells. As an aside benefit we also have derived a better understanding of ovarian longevity from ovary transplant. We have found that primordial follicle recruitment is triggered by tissue pressure gradients. Increased pressure holds the follicle in meiotic arrest and prevents recruitment. Therefore recruitment occurs first in the least dense inner tissue of the cortico-medullary junction. Many oocytes can be obtained from human ovarian tissue and mature to metaphase 2 in vitro with no need for ovarian stimulation. Ovarian stimulation may only be necessary for removing the oocyte from the ovary, but this can also be accomplished by simple dissection at the time of ovary tissue cryopreservation. By using surgical dissection of the removed ovary, rather than a needle stick, we can obtain many oocytes from very small follicles not visible with ultrasound. A clearer understanding of ovarian function has come from in vitro oogenesis experiments, and that explains why IVM has now become so simple and robust. Tissue pressure (and just a few "core genes" in the mouse) direct primordial follicle recruitment and development to mature oocyte, and therefore also control ovarian longevity. There are three distinct phases to oocyte development both in vitro and in vivo: in vitro differentiation "IVD" which is not gonadotropin sensitive (the longest phase), in vitro gonadotropin sensitivity "IVG" which is the phase of gonadotropin stimulation to prepare for meiotic competence, and IVM to metaphase II. On any given day 35% of GVs in ovarian tissue have already undergone "IVD" and "IVG" in vivo, and therefore are ready for IVM.
Collapse
Affiliation(s)
- Sherman J Silber
- Infertility Center of St. Louis at St. Luke's Hospital, St. Louis, MO, 63017, USA.
| | - Sierra Goldsmith
- Infertility Center of St. Louis at St. Luke's Hospital, St. Louis, MO, 63017, USA.
| | - Leilani Castleman
- Infertility Center of St. Louis at St. Luke's Hospital, St. Louis, MO, 63017, USA
| | - Katsuhiko Hayashi
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
15
|
Yu H, Zhao J, Shen Y, Qiao L, Liu Y, Xie G, Chang S, Ge T, Li N, Chen M, Li H, Zhang J, Wang X. The dynamic landscape of enhancer-derived RNA during mouse early embryo development. Cell Rep 2024; 43:114077. [PMID: 38592974 DOI: 10.1016/j.celrep.2024.114077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.
Collapse
Affiliation(s)
- Hua Yu
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China; School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, China; Institute of Life Sciences, Nanchang University, Nanchang 330031, China.
| | - Jing Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Yuxuan Shen
- Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lu Qiao
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yuheng Liu
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Guanglei Xie
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Shuhui Chang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Tingying Ge
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Nan Li
- HPC Center, Westlake University, Hangzhou 310024, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hu Li
- Department of Molecular Pharmacology and Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55904, USA
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Center of Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Xi Wang
- Westlake Genomics and Bioinformatics Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China; Westlake Institute for Advanced Study, Hangzhou 310024, China.
| |
Collapse
|
16
|
Hou L, Hong H, Cao W, Wei L, Weng L, Yuan S, Xiao C, Zhang Q, Wang Q, Lai D. Identification and characterization of multipotential stem cells in immortalized normal ovarian surface epithelial cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:239-254. [PMID: 38243680 PMCID: PMC10984850 DOI: 10.3724/abbs.2023253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/21/2023] [Indexed: 01/21/2024] Open
Abstract
The ovarian surface epithelium (OSE) is a single layer of squamous-to-cuboidal epithelial cells that experience repetitive ovulatory rupture and subsequent repair. However, the characteristics of human immortalized ovarian surface epithelial cells (IOSE80) remain elusive. This study aims to determine whether IOSE80 cells have the characteristics of stem cell proliferation and multilineage differentiation and their application in regenerative medicine. IOSE80 cells are sequenced by high-throughput transcriptome analysis, and 5 sets of public data are used to compare the differences between IOSE80 cells and bone marrow mesenchymal stem cells, pluripotent stem cells, and oocytes in transcriptome profiling. The IOSE80 cells present a cobblestone-like monolayer and express the epithelial cell marker KRT18; the stem cell markers IFITM3, ALDH1A1, and VIM; lowly express stem cell marker LGR5 and germ cell markers DDX4 and DAZL. In addition, the GO terms "regulation of stem cell proliferation", "epithelial cell proliferation", etc., are significantly enriched ( P<0.05). IOSE80 cells have the potential to act as mesenchymal stem cells to differentiate into adipocytes with lipid droplets, osteoblasts, and chondroblasts in vitro. IOSE80 cells express pluripotent stem cell markers, including OCT4, SSEA4, TRA-1-60, and TRA-1-81, and they can be induced into three germ layers in vitro. IOSE80 cells also form oocyte-like cells in vitro and in vivo. In addition, IOSE80 cells exhibit robust proliferation, migration, and ovarian repair functions after in vivo transplantation. This study demonstrates that IOSE80 cells have the characteristics of pluripotent/multipotent stem cells, indicating their important role in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lin Hou
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Hanqing Hong
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Wenjiao Cao
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Liutong Wei
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Lichun Weng
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Shuang Yuan
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Chengqi Xiao
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qian Wang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Dongmei Lai
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| |
Collapse
|
17
|
Cowl VB, Comizzoli P, Appeltant R, Bolton RL, Browne RK, Holt WV, Penfold LM, Swegen A, Walker SL, Williams SA. Cloning for the Twenty-First Century and Its Place in Endangered Species Conservation. Annu Rev Anim Biosci 2024; 12:91-112. [PMID: 37988633 DOI: 10.1146/annurev-animal-071423-093523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Cloning as it relates to the animal kingdom generally refers to the production of genetically identical individuals. Because cloning is increasingly the subject of renewed attention as a tool for rescuing endangered or extinct species, it seems timely to dissect the role of the numerous reproductive techniques encompassed by this term in animal species conservation. Although cloning is typically associated with somatic cell nuclear transfer, the recent advent of additional techniques that allow genome replication without genetic recombination demands that the use of induced pluripotent stem cells to generate gametes or embryos, as well as older methods such as embryo splitting, all be included in this discussion. Additionally, the phenomenon of natural cloning (e.g., a subset of fish, birds, invertebrates, and reptilian species that reproduce via parthenogenesis) must also be pointed out. Beyond the biology of these techniques are practical considerations and the ethics of using cloning and associated procedures in endangered or extinct species. All of these must be examined in concert to determine whether cloning has a place in species conservation. Therefore, we synthesize progress in cloning and associated techniques and dissect the practical and ethical aspects of these methods as they pertain to endangered species conservation.
Collapse
Affiliation(s)
- Veronica B Cowl
- North of England Zoological Society (Chester Zoo), Chester, United Kingdom;
- European Association of Zoos and Aquaria, Amsterdam, The Netherlands
| | - Pierre Comizzoli
- Smithsonian's National Zoo and Conservation Biology Institute, Washington, DC, USA;
| | - Ruth Appeltant
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium;
| | | | - Robert K Browne
- Sustainability America, Sarteneja, Corozal District, Belize;
| | - William V Holt
- Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom;
| | - Linda M Penfold
- South East Zoo Alliance for Reproduction & Conservation, Yulee, Florida, USA;
| | - Aleona Swegen
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia;
| | - Susan L Walker
- North of England Zoological Society (Chester Zoo), Chester, United Kingdom;
- Nature's SAFE, Whitchurch, Shropshire, United Kingdom;
| | - Suzannah A Williams
- Nature's SAFE, Whitchurch, Shropshire, United Kingdom;
- Nuffield Department of Women's and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
18
|
Conti M, Kunitomi C. A genome-wide perspective of the maternal mRNA translation program during oocyte development. Semin Cell Dev Biol 2024; 154:88-98. [PMID: 36894378 PMCID: PMC11250054 DOI: 10.1016/j.semcdb.2023.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 02/01/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
Transcriptional and post-transcriptional regulations control gene expression in most cells. However, critical transitions during the development of the female gamete relies exclusively on regulation of mRNA translation in the absence of de novo mRNA synthesis. Specific temporal patterns of maternal mRNA translation are essential for the oocyte progression through meiosis, for generation of a haploid gamete ready for fertilization and for embryo development. In this review, we will discuss how mRNAs are translated during oocyte growth and maturation using mostly a genome-wide perspective. This broad view on how translation is regulated reveals multiple divergent translational control mechanisms required to coordinate protein synthesis with progression through the meiotic cell cycle and with development of a totipotent zygote.
Collapse
Affiliation(s)
- Marco Conti
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA.
| | - Chisato Kunitomi
- Center for Reproductive Sciences, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, and Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
19
|
Zhang Y, Lu Y, Xu F, Zhang X, Wu Y, Zhao J, Luo Q, Liu H, Chen K, Fei S, Cui X, Sun Y, Ou M. Molecular Characterization, Expression Pattern, DNA Methylation and Gene Disruption of Figla in Blotched Snakehead ( Channa maculata). Animals (Basel) 2024; 14:491. [PMID: 38338134 PMCID: PMC10854511 DOI: 10.3390/ani14030491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Figla is one of the earliest expressed genes in the oocyte during ovarian development. In this study, Figla was characterized in C. maculata, one of the main aquaculture species in China, and designated as CmFigla. The length of CmFigla cDNA was 1303 bp, encoding 197 amino acids that contained a conserved bHLH domain. CmFigla revealed a female-biased expression patterns in the gonads of adult fish, and CmFigla expression was far higher in ovaries than that in testes at all gonadal development stages, especially at 60~180 days post-fertilization (dpf). Furthermore, a noteworthy inverse relationship was observed between CmFigla expression and the methylation of its promoter in the adult gonads. Gonads at 90 dpf were used for in situ hybridization (ISH), and CmFigla transcripts were mainly concentrated in oogonia and the primary oocytes in ovaries, but undetectable in the testes. These results indicated that Figla would play vital roles in the ovarian development in C. maculata. Additionally, the frame-shift mutations of CmFigla were successfully constructed through the CRISPR/Cas9 system, which established a positive foundation for further investigation on the role of Figla in the ovarian development of C. maculata. Our study provides valuable clues for exploring the regulatory mechanism of Figla in the fish ovarian development and maintenance, which would be useful for the sex control and reproduction of fish in aquaculture.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Yuntao Lu
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Feng Xu
- Chongqing Fisheries Technical Extension Center, Chongqing 404100, China;
| | - Xiaotian Zhang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Yuxia Wu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Jian Zhao
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Qing Luo
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Kunci Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Shuzhan Fei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| | - Xiaojuan Cui
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
| | - Yuandong Sun
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
| | - Mi Ou
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; (Y.Z.); (Y.L.); (X.C.)
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; (X.Z.); (Y.W.); (J.Z.); (Q.L.); (H.L.); (K.C.); (S.F.)
| |
Collapse
|
20
|
Ducreux B, Ferreux L, Patrat C, Fauque P. Overview of Gene Expression Dynamics during Human Oogenesis/Folliculogenesis. Int J Mol Sci 2023; 25:33. [PMID: 38203203 PMCID: PMC10778858 DOI: 10.3390/ijms25010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
The oocyte transcriptome follows a tightly controlled dynamic that leads the oocyte to grow and mature. This succession of distinct transcriptional states determines embryonic development prior to embryonic genome activation. However, these oocyte maternal mRNA regulatory events have yet to be decoded in humans. We reanalyzed human single-oocyte RNA-seq datasets previously published in the literature to decrypt the transcriptomic reshuffles ensuring that the oocyte is fully competent. We applied trajectory analysis (pseudotime) and a meta-analysis and uncovered the fundamental transcriptomic requirements of the oocyte at any moment of oogenesis until reaching the metaphase II stage (MII). We identified a bunch of genes showing significant variation in expression from primordial-to-antral follicle oocyte development and characterized their temporal regulation and their biological relevance. We also revealed the selective regulation of specific transcripts during the germinal vesicle-to-MII transition. Transcripts associated with energy production and mitochondrial functions were extensively downregulated, while those associated with cytoplasmic translation, histone modification, meiotic processes, and RNA processes were conserved. From the genes identified in this study, some appeared as sensitive to environmental factors such as maternal age, polycystic ovary syndrome, cryoconservation, and in vitro maturation. In the future, the atlas of transcriptomic changes described in this study will enable more precise identification of the transcripts responsible for follicular growth and oocyte maturation failures.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France;
| | - Lucile Ferreux
- Faculty of Medicine, Inserm 1016, Université de Paris Cité, F-75014 Paris, France; (L.F.); (C.P.)
- Department of Reproductive Biology-CECOS, Aphp.Centre-Université Paris Cité, Cochin, F-75014 Paris, France
| | - Catherine Patrat
- Faculty of Medicine, Inserm 1016, Université de Paris Cité, F-75014 Paris, France; (L.F.); (C.P.)
- Department of Reproductive Biology-CECOS, Aphp.Centre-Université Paris Cité, Cochin, F-75014 Paris, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France;
- Laboratoire de Biologie de la Reproduction-CECOS, CHU Dijon Bourgogne, 14 Rue Gaffarel, F-21000 Dijon, France
| |
Collapse
|
21
|
Aizawa E, Ozonov EA, Kawamura YK, Dumeau C, Nagaoka S, Kitajima TS, Saitou M, Peters AHFM, Wutz A. Epigenetic regulation limits competence of pluripotent stem cell-derived oocytes. EMBO J 2023; 42:e113955. [PMID: 37850882 PMCID: PMC10690455 DOI: 10.15252/embj.2023113955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
Recent studies have reported the differentiation of pluripotent cells into oocytes in vitro. However, the developmental competence of in vitro-generated oocytes remains low. Here, we perform a comprehensive comparison of mouse germ cell development in vitro over all culture steps versus in vivo with the goal to understand mechanisms underlying poor oocyte quality. We show that the in vitro differentiation of primordial germ cells to growing oocytes and subsequent follicle growth is critical for competence for preimplantation development. Systematic transcriptome analysis of single oocytes that were subjected to different culture steps identifies genes that are normally upregulated during oocyte growth to be susceptible for misregulation during in vitro oogenesis. Many misregulated genes are Polycomb targets. Deregulation of Polycomb repression is therefore a key cause and the earliest defect known in in vitro oocyte differentiation. Conversely, structurally normal in vitro-derived oocytes fail at zygotic genome activation and show abnormal acquisition of 5-hydroxymethylcytosine on maternal chromosomes. Our data identify epigenetic regulation at an early stage of oogenesis limiting developmental competence and suggest opportunities for future improvements.
Collapse
Affiliation(s)
- Eishi Aizawa
- Institute of Molecular Health Sciences, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland
- RIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Evgeniy A Ozonov
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Yumiko K Kawamura
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
| | - Charles‐Etienne Dumeau
- Institute of Molecular Health Sciences, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland
| | - So Nagaoka
- Department of EmbryologyNara Medical UniversityNaraJapan
| | | | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi)Kyoto UniversityKyotoJapan
- Department of Anatomy and Cell Biology, Graduate School of MedicineKyoto UniversityKyotoJapan
- Center for iPS Cell Research and Application (CiRA)Kyoto UniversityKyotoJapan
| | - Antoine HFM Peters
- Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland
- Faculty of SciencesUniversity of BaselBaselSwitzerland
| | - Anton Wutz
- Institute of Molecular Health Sciences, Swiss Federal Institute of TechnologyETH ZurichZurichSwitzerland
| |
Collapse
|
22
|
Du T, Li M, Chen L, Shao Y, Wang Y, Wang H, Ma J, Yao B. Compound heterozygous mutations in TBPL2 were identified in an infertile woman with impaired ovarian folliculogenesis. J Assist Reprod Genet 2023; 40:2945-2950. [PMID: 37804378 PMCID: PMC10656374 DOI: 10.1007/s10815-023-02961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023] Open
Abstract
OBJECTIVE A 32-year-old female was diagnosed with unexplained primary infertility for 10 years. She had roughly normal basal hormone levels, but her basal follicle-stimulating hormone (FSH) levels were elevated. In addition, the level of anti-Mullerian hormone was within the normal range, and she had undergone two failed oocyte collection attempts. We aimed to investigate the genetic cause of female infertility in patients with impaired ovarian folliculogenesis. METHODS Genomic DNA was extracted from the peripheral blood of the patient and her family members. Whole-exome sequencing was performed on the patient, and TBPL2 mutations were identified and confirmed by Sanger sequencing. The Exome Aggregation Consortium (ExAC) Browser and Genome Aggregation Database (gnomAD) Browser Beta were used to search the allele frequencies of the variants in the general population. The harmfulness of the mutations was analyzed by SIFT, Mutation Taster, and CADD software. RESULT One novel mutation, c.802C > T (p. Arg268Ter), and one known variant, c.788 + 3A > G (p. Arg233Ter), in TBPL2 were identified in the infertile family. Compound heterozygous mutations in TBPL2 may be the cause of impaired ovarian folliculogenesis, failure of superovulation, and infertility. CONCLUSIONS We identified compound heterozygous mutations in TBPL2 that caused impaired ovarian folliculogenesis, failure of superovulation, and infertility in patients. These findings suggest an important role for compound heterozygous mutations in TBPL2 and expand the mutational spectrum of TBPL2, which might provide a new precise diagnostic marker for female infertility.
Collapse
Affiliation(s)
- Tian Du
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
| | - Meiling Li
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Li Chen
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Yong Shao
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Yichun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hui Wang
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China
| | - Jinzhao Ma
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China.
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China.
| | - Bing Yao
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Southeast University, Nanjing, 210002, Jiangsu, China.
- Center of Reproductive Medicine, Affiliated Hospital of Medical School, Jinling Hospital, Nanjing University, Nanjing, 21002, Jiangsu, China.
| |
Collapse
|
23
|
Chen B, Pei D. Genetic clues to reprogramming power and formation of mouse oocyte. Curr Opin Genet Dev 2023; 83:102110. [PMID: 37722148 DOI: 10.1016/j.gde.2023.102110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/05/2023] [Accepted: 07/29/2023] [Indexed: 09/20/2023]
Abstract
Oocyte features the unique capacity to reprogram not only sperm but also somatic nuclei to totipotency, yet the scarcity of oocytes has hindered the exploration and application of their reprogramming ability. In the meanwhile, the formation of oocytes, which involves extensive intracellular alterations and interactions, has also attracted tremendous interest. This review discusses developmental principles and regulatory mechanisms associated with ooplasm reprogramming and oocyte formation from a genetic perspective, with knowledge derived from mouse models. We also discuss future directions, especially to address the lack of insight into the regulatory networks that shape the identity of female germ cells or drive transitions in their developmental programs.
Collapse
|
24
|
Fair T, Lonergan P. The oocyte: the key player in the success of assisted reproduction technologies. Reprod Fertil Dev 2023; 36:133-148. [PMID: 38064189 DOI: 10.1071/rd23164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
The ovulation of a mature oocyte at metaphase II of meiosis, with optimal potential to undergo fertilisation by a sperm cell, complete meiosis and sustain the switch to mitotic division, and support early embryo development, involves a protracted and disrupted/delayed series of processes. Many of these are targeted for exploitation in vivo , or recapitulation in vitro , by the livestock industry. Reproductive technologies, including AI, multiple ovulation embryo transfer, ovum pick-up, in vitro embryo production, and oestrus and ovulation synchronisation, offer practitioners and producers the opportunity to produce offspring from genetically valuable dams in much greater numbers than they would normally have in their lifetime, while in vitro oocyte and follicle culture are important platforms for researchers to interrogate the physiological mechanisms driving fertility. The majority of these technologies target the ovarian follicle and the oocyte within; thus, the quality and capability of the recovered oocyte determine the success of the reproductive intervention. Molecular and microscopical technologies have grown exponentially, providing powerful platforms to interrogate the molecular mechanisms which are integral to or affected by ART. The development of the bovine oocyte from its differentiation in the ovary to ovulation is described in the light of its relevance to key aspects of individual interventions, while highlighting the historical timeline.
Collapse
Affiliation(s)
- Trudee Fair
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| | - Pat Lonergan
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
25
|
Ikeda H, Miyao S, Nagaoka S, Takashima T, Law SM, Yamamoto T, Kurimoto K. High-quality single-cell transcriptomics from ovarian histological sections during folliculogenesis. Life Sci Alliance 2023; 6:e202301929. [PMID: 37722727 PMCID: PMC10507249 DOI: 10.26508/lsa.202301929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
High-quality, straightforward single-cell RNA sequencing (RNA-seq) with spatial resolution remains challenging. Here, we developed DRaqL (direct RNA recovery and quenching for laser capture microdissection), an experimental approach for efficient cell lysis of tissue sections, directly applicable to cDNA amplification. Single-cell RNA-seq combined with DRaqL allowed transcriptomic profiling from alcohol-fixed sections with efficiency comparable with that of profiling from freshly dissociated cells, together with effective exon-exon junction profiling. The combination of DRaqL with protease treatment enabled robust and efficient single-cell transcriptome analysis from formalin-fixed tissue sections. Applying this method to mouse ovarian sections, we were able to predict the transcriptome of oocytes by their size and identified an anomaly in the size-transcriptome relationship relevant to growth retardation of oocytes, in addition to detecting oocyte-specific splice isoforms. Furthermore, we identified differentially expressed genes in granulosa cells in association with their proximity to the oocytes, suggesting distinct epigenetic regulations and cell-cycle activities governing the germ-soma relationship. Thus, DRaqL is a versatile, efficient approach for high-quality single-cell RNA-seq from tissue sections, thereby revealing histological heterogeneity in folliculogenic transcriptome.
Collapse
Affiliation(s)
- Hiroki Ikeda
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Shintaro Miyao
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - So Nagaoka
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Tomoya Takashima
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Sze-Ming Law
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Kazuki Kurimoto
- Department of Embryology, School of Medicine, Nara Medical University, Kashihara, Japan
- Advanced Medical Research Center, Nara Medical University, Kashihara, Japan
| |
Collapse
|
26
|
Shimada R, Kato Y, Takeda N, Fujimura S, Yasunaga KI, Usuki S, Niwa H, Araki K, Ishiguro KI. STRA8-RB interaction is required for timely entry of meiosis in mouse female germ cells. Nat Commun 2023; 14:6443. [PMID: 37880249 PMCID: PMC10600341 DOI: 10.1038/s41467-023-42259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023] Open
Abstract
Meiosis is differently regulated in males and females. In females, germ cells initiate meiosis within a limited time period in the fetal ovary and undergo a prolonged meiotic arrest until puberty. However, how meiosis initiation is coordinated with the cell cycle to coincide with S phase remains elusive. Here, we demonstrate that STRA8 binds to RB via the LXCXE motif. Mutation of the RB-binding site of STRA8 in female mice delays meiotic entry, which consequently delays progression of meiotic prophase and leads to precocious depletion of the oocyte pool. Single-cell RNA-sequencing analysis reveals that the STRA8-RB interaction is required for S phase entry and meiotic gene activation, ensuring precise timing of meiosis initiation in oocytes. Strikingly, the results suggest STRA8 could sequester RB from E2F during pre-meiotic G1/S transition. This study highlights the gene regulatory mechanisms underlying the female-specific mode of meiotic initiation in mice.
Collapse
Affiliation(s)
- Ryuki Shimada
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Yuzuru Kato
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka, 411-8540, Japan
| | - Naoki Takeda
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Kei-Ichiro Yasunaga
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Shingo Usuki
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, IMEG, Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811, Japan
- Center for Metabolic Regulation of Healthy Aging, Kumamoto University, 1-1-1, Honjo, Kumamoto, 860-8556, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto university, Honjo 2-2-1, Chuo-ku, Kumamoto, Kumamoto, 860-0811, Japan.
| |
Collapse
|
27
|
Romualdez-Tan MV. Modelling in vitro gametogenesis using induced pluripotent stem cells: a review. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:33. [PMID: 37843621 PMCID: PMC10579208 DOI: 10.1186/s13619-023-00176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/28/2023] [Indexed: 10/17/2023]
Abstract
In vitro gametogenesis (IVG) has been a topic of great interest in recent years not only because it allows for further exploration of mechanisms of germ cell development, but also because of its prospect for innovative medical applications especially for the treatment of infertility. Elucidation of the mechanisms underlying gamete development in vivo has inspired scientists to attempt to recapitulate the entire process of gametogenesis in vitro. While earlier studies have established IVG methods largely using pluripotent stem cells of embryonic origin, the scarcity of sources for these cells and the ethical issues involved in their use are serious limitations to the progress of IVG research especially in humans. However, with the emergence of induced pluripotent stem cells (iPSCs) due to the revolutionary discovery of dedifferentiation and reprogramming factors, IVG research has progressed remarkably in the last decade. This paper extensively reviews developments in IVG using iPSCs. First, the paper presents key concepts from groundwork studies on IVG including earlier researches demonstrating that IVG methods using embryonic stem cells (ESCs) also apply when using iPSCs. Techniques for the derivation of iPSCs are briefly discussed, highlighting the importance of generating transgene-free iPSCs with a high capacity for germline transmission to improve efficacy when used for IVG. The main part of the paper discusses recent advances in IVG research using iPSCs in various stages of gametogenesis. In addition, current clinical applications of IVG are presented, and potential future applications are discussed. Although IVG is still faced with many challenges in terms of technical issues, as well as efficacy and safety, novel IVG methodologies are emerging, and IVG using iPSCs may usher in the next era of reproductive medicine sooner than expected. This raises both ethical and social concerns and calls for the scientific community to cautiously develop IVG technology to ensure it is not only efficacious but also safe and adheres to social and ethical norms.
Collapse
Affiliation(s)
- Maria Victoria Romualdez-Tan
- Present Address: Repro Optima Center for Reproductive Health, Inc., Ground Floor JRDC Bldg. Osmena Blvd. Capitol Site, Cebu City, 6000, Philippines.
- Cebu Doctors University Hospital, Cebu City, Philippines.
| |
Collapse
|
28
|
Kubiura-Ichimaru M, Penfold C, Kojima K, Dollet C, Yabukami H, Semi K, Takashima Y, Boroviak T, Kawaji H, Woltjen K, Minoda A, Sasaki E, Watanabe T. mRNA-based generation of marmoset PGCLCs capable of differentiation into gonocyte-like cells. Stem Cell Reports 2023; 18:1987-2002. [PMID: 37683645 PMCID: PMC10656353 DOI: 10.1016/j.stemcr.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/10/2023] Open
Abstract
Primate germ cell development remains largely unexplored due to limitations in sample collection and the long duration of development. In mice, primordial germ cell-like cells (PGCLCs) derived from pluripotent stem cells (PSCs) can develop into functional gametes by in vitro culture or in vivo transplantation. Such PGCLC-mediated induction of mature gametes in primates is highly useful for understanding human germ cell development. Since marmosets generate functional sperm earlier than other species, recapitulating the whole male germ cell development process is technically more feasible. Here, we induced the differentiation of iPSCs into gonocyte-like cells via PGCLCs in marmosets. First, we developed an mRNA transfection-based method to efficiently generate PGCLCs. Subsequently, to promote PGCLC differentiation, xenoreconstituted testes (xrtestes) were generated in the mouse kidney capsule. PGCLCs show progressive DNA demethylation and stepwise expression of developmental marker genes. This study provides an efficient platform for the study of marmoset germ cell development.
Collapse
Affiliation(s)
- Musashi Kubiura-Ichimaru
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; Division of Molecular Genetics & Epigenetics, Department of Biomolecular Science, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - Christopher Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, UK; Wellcome Trust-Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK; Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Kazuaki Kojima
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Constance Dollet
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan
| | - Haruka Yabukami
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Katsunori Semi
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasuhiro Takashima
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Thorsten Boroviak
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Hideya Kawaji
- Research Center for Genome & Medical Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Preventive Medicine and Applied Genomics Unit, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Knut Woltjen
- Department of Life Science Frontiers, Center for iPS Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Aki Minoda
- Laboratory for Cellular Epigenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan; Department of Cell Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, the Netherlands
| | - Erika Sasaki
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
| | - Toshiaki Watanabe
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan; National Center for Child Health and Development, Tokyo 157-8535, Japan.
| |
Collapse
|
29
|
Hu M, Schultz RM, Namekawa SH. Epigenetic programming in the ovarian reserve. Bioessays 2023; 45:e2300069. [PMID: 37417392 PMCID: PMC10698196 DOI: 10.1002/bies.202300069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
The ovarian reserve defines female reproductive lifespan, which in humans spans decades. The ovarian reserve consists of oocytes residing in primordial follicles arrested in meiotic prophase I and is maintained independent of DNA replication and cell proliferation, thereby lacking stem cell-based maintenance. Largely unknown is how cellular states of the ovarian reserve are established and maintained for decades. Our recent study revealed that a distinct chromatin state is established during ovarian reserve formation in mice, uncovering a novel window of epigenetic programming in female germline development. We showed that an epigenetic regulator, Polycomb Repressive Complex 1 (PRC1), establishes a repressive chromatin state in perinatal mouse oocytes that is essential for prophase I-arrested oocytes to form the ovarian reserve. Here we discuss the biological roles and mechanisms underlying epigenetic programming in ovarian reserve formation, highlighting current knowledge gaps and emerging research areas in female reproductive biology.
Collapse
Affiliation(s)
- Mengwen Hu
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| | - Richard M. Schultz
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Satoshi H. Namekawa
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| |
Collapse
|
30
|
Swegen A, Appeltant R, Williams SA. Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation? Biol Rev Camb Philos Soc 2023; 98:1225-1249. [PMID: 37016502 DOI: 10.1111/brv.12951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/06/2023]
Abstract
The term 'cloning' refers to the production of genetically identical individuals but has meant different things throughout the history of science: a natural means of reproduction in bacteria, a routine procedure in horticulture, and an ever-evolving gamut of molecular technologies in vertebrates. Mammalian cloning can be achieved through embryo splitting, somatic cell nuclear transfer, and most recently, by the use of induced pluripotent stem cells. Several emerging biotechnologies also facilitate the propagation of genomes from one generation to the next whilst bypassing the conventional reproductive processes. In this review, we examine the state of the art of available cloning technologies and their progress in species other than humans and rodent models, in order to provide a critical overview of their readiness and relevance for application in endangered animal conservation.
Collapse
Affiliation(s)
- Aleona Swegen
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Priority Research Centre for Reproductive Science, University of Newcastle, University Drive, Callaghan, NSW, 2308, Australia
| | - Ruth Appeltant
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium
| | - Suzannah A Williams
- Nuffield Department of Women's and Reproductive Health, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| |
Collapse
|
31
|
Luo YY, Jie HY, Huang KJ, Cai B, Zhou X, Liang MY, Zhou CQ, Mai QY. The dynamic expression of SOX17 in germ cells from human female foetus and adult ovaries after specification. Front Endocrinol (Lausanne) 2023; 14:1124143. [PMID: 37576970 PMCID: PMC10422046 DOI: 10.3389/fendo.2023.1124143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background SOX17 has been identified as a critical factor in specification of human primordial germ cells, but whether SOX17 regulates development of germ cells after sex differentiation is poorly understood. Methods We collected specimens of gonadal ridge from an embryo (n=1), and ovaries of foetuses (n=23) and adults (n=3). Germ cells were labelled with SOX17, VASA (classic germ cells marker), phosphohistone H3 (PHH3, mitosis marker) and synaptonemal complex protein 3 (SCP3, meiosis marker). Results SOX17 was detected in both cytoplasm and nucleus of oogonia and oocytes of primordial and primary follicles from 15 to 28 gestational weeks (GW). However, it was exclusively expressed in cytoplasm of oogonia at 7 GW, and in nucleus of oocytes in secondary follicles. Co-expression rates of SOX17 in VASA+ germ cells ranged from 81.29% to 97.81% in foetuses. Co-staining rates of SOX17 and PHH3 or SCP3 were 0%-34% and 0%-57%, respectively. Interestingly, we distinguished a subpopulation of SOX17+VASA- germ cells in fetal ovaries. These cells clustered in the cortex and could be co-stained with the mitosis marker PHH3 but not the meiosis marker SCP3. Conclusions The dynamic expression of SOX17 was detected in human female germ cells. We discovered a population of SOX17+ VASA- germ cells clustering at the cortex of ovaries. We could not find a relationship between mitosis or meiosis and SOX17 or VASA staining in germ cells. Our findings provide insight into the potential role of SOX17 involving germ cells maturation after specification, although the mechanism is unclear and needs further investigation.
Collapse
Affiliation(s)
- Ying-Yi Luo
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Reproductive Medicine Center, The First People’s Hospital of Foshan, Foshan, China
| | - Hui-Ying Jie
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ke-Jun Huang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics & Gynaecology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Bing Cai
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiu Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming-Yi Liang
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Can-Quan Zhou
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qing-Yun Mai
- Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
32
|
Luo Y, Yin M, Mu C, Hu X, Xie H, Li J, Cao T, Chen N, Wu J, Fan C. Engineering Female Germline Stem Cells with Exocytotic Polymer Dots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210458. [PMID: 37046183 DOI: 10.1002/adma.202210458] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/30/2023] [Indexed: 06/16/2023]
Abstract
Germline stem cells (GSCs) are the only cell population capable of passing genetic information to offspring, making them attractive targets in reproductive biology and fertility research. However, it is generally more difficult to introduce exogenous biomolecules into GSCs than other cell types, impeding the exploration and manipulation of these cells for biomedical purposes. Herein, semiconductor polymer dots (Pdots)-based nanocomplex Pdot-siRNA is developed and achieves effective knockdown of target genes in female germline stem cells (FGSCs). Advantage of high fluorescence brightness of Pdots is taken for comprehensive investigation of their cellular uptake, intracellular trafficking, and exocytosis in FGSCs. Importantly, Pdots show excellent biocompatibility and minimally disturb the differentiation of FGSCs. Intracellular Pdots escape from the lysosomes and undergo active exocytosis, which makes them ideal nanocarriers for bioactive cargos. Moreover, Pdot-siRNA can penetrate into 3D ovarian organoids derived from FGSCs and down-regulate the expression levels of target genes. This study investigates the interface between a type of theranostic nanoparticles and FGSCs for the first time and sheds light on the manipulation and medical application of FGSCs.
Collapse
Affiliation(s)
- Yao Luo
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Yin
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Chunlan Mu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Xingjie Hu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Xie
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Jingyi Li
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Tingting Cao
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Engineering Research Center of Green Energy Chemical Engineering, Shanghai Normal University, Shanghai, 200234, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Science, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
33
|
Hu B, Wang R, Wu D, Long R, Ruan J, Jin L, Ma D, Sun C, Liao S. Prospects for fertility preservation: the ovarian organ function reconstruction techniques for oogenesis, growth and maturation in vitro. Front Physiol 2023; 14:1177443. [PMID: 37250136 PMCID: PMC10213246 DOI: 10.3389/fphys.2023.1177443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
Today, fertility preservation is receiving more attention than ever. Cryopreservation, which preserves ovarian tissue to preserve fertility in young women and reduce the risk of infertility, is currently the most widely practiced. Transplantation, however, is less feasible for women with blood-borne leukemia or cancers with a high risk of ovarian metastasis because of the risk of cancer recurrence. In addition to cryopreservation and re-implantation of embryos, in vitro ovarian organ reconstruction techniques have been considered as an alternative strategy for fertility preservation. In vitro culture of oocytes in vitro Culture, female germ cells induction from pluripotent stem cells (PSC) in vitro, artificial ovary construction, and ovaria-related organoids construction have provided new solutions for fertility preservation, which will therefore maximize the potential for all patients undergoing fertility preservation. In this review, we discussed and thought about the latest ovarian organ function reconstruction techniques in vitro to provide new ideas for future ovarian disease research and fertility preservation of patients with cancer and premature ovarian failure.
Collapse
Affiliation(s)
- Bai Hu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Wang
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Long
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Ruan
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
34
|
Wesevich VG, Arkfeld C, Seifer DB. In Vitro Gametogenesis in Oncofertility: A Review of Its Potential Use and Present-Day Challenges in Moving toward Fertility Preservation and Restoration. J Clin Med 2023; 12:3305. [PMID: 37176745 PMCID: PMC10179531 DOI: 10.3390/jcm12093305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Current fertility preservation options are limited for cancer survivor patients who wish to have their own biological children. Human in vitro gametogenesis (IVG) has the hypothetical ability to offer a unique solution to individuals receiving treatment for cancer which subsequently shortens their reproductive lifespan. Through a simple skin punch biopsy, a patient's fertility could be restored via reprogramming of dermal fibroblast cells to induced pluripotent stem cells, then from primordial germ cell-like cells into viable oocytes and spermatocytes which could be used for embryogenesis. Induced pluripotent stem cells could also be used to form in vitro environments, similar to the ovary or testes, necessary for the maturation of oogonia. This would allow for the entire creation of embryos outside the body, ex vivo. While this area in stem cell biology research offers the potential to revolutionize reproduction as we know it, there are many critical barriers, both scientific and ethical, that need to be overcome to one day see this technology utilized clinically.
Collapse
Affiliation(s)
- Victoria G Wesevich
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| | - Christopher Arkfeld
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale New Haven Hospital, New Haven, CT 06510, USA
| | - David B Seifer
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
35
|
Strange A, Alberio R. Review: A barnyard in the lab: prospect of generating animal germ cells for breeding and conservation. Animal 2023; 17 Suppl 1:100753. [PMID: 37567650 DOI: 10.1016/j.animal.2023.100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
In vitro gametogenesis (IVG) offers broad opportunities for gaining detailed new mechanistic knowledge of germ cell biology that will enable progress in the understanding of human infertility, as well as for applications in the conservation of endangered species and for accelerating genetic selection of livestock. The realisation of this potential depends on overcoming key technical challenges and of gaining more detailed knowledge of the ontogeny and developmental programme in different species. Important differences in the molecular mechanisms of germ cell determination and epigenetic reprogramming between mice and other animals have been elucidated in recent years. These must be carefully considered when developing IVG protocols, as cellular kinetics in mice may not accurately reflect mechanisms in other mammals. Similarly, diverse stem cell models with potential for germ cell differentiation may reflect alternative routes to successful IVG. In conclusion, the fidelity of the developmental programme recapitulated during IVG must be assessed against reference information from each species to ensure the production of healthy animals using these methods, as well as for developing genuine models of gametogenesis.
Collapse
Affiliation(s)
- A Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - R Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK.
| |
Collapse
|
36
|
Ledford H, Kozlov M. The mice with two dads: scientists create eggs from male cells. Nature 2023; 615:379-380. [PMID: 36894725 DOI: 10.1038/d41586-023-00717-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
37
|
KYOGOKU H, KITAJIMA TS. The large cytoplasmic volume of oocyte. J Reprod Dev 2023; 69:1-9. [PMID: 36436912 PMCID: PMC9939283 DOI: 10.1262/jrd.2022-101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The study of the size of cells and organelles has a long history, dating back to the 1600s when cells were defined. In particular, various methods have elucidated the size of the nucleus and the mitotic spindle in several species. However, little research has been conducted on oocyte size and organelles in mammals, and many questions remain to be answered. The appropriate size is essential to cell function properly. Oocytes have a very large cytoplasm, which is more than 100 times larger than that of general somatic cells in mammals. In this review, we discuss how oocytes acquire an enormous cytoplasmic size and the adverse effects of a large cytoplasmic size on cellular functions.
Collapse
Affiliation(s)
- Hirohisa KYOGOKU
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan,Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Tomoya S KITAJIMA
- Laboratory for Chromosome Segregation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| |
Collapse
|
38
|
Patton BK, Madadi S, Briley SM, Ahmed AA, Pangas SA. Sumoylation regulates functional properties of the oocyte transcription factors SOHLH1 and NOBOX. FASEB J 2023; 37:e22747. [PMID: 36607631 PMCID: PMC10129296 DOI: 10.1096/fj.202201481r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023]
Abstract
SOHLH1 and NOBOX are oocyte-expressed transcription factors with critical roles in ovary development and fertility. In mice, Sohlh1 and Nobox are essential for fertility through their regulation of the oocyte transcriptional network and cross-talk to somatic cells. Sumoylation is a posttranslational modification that regulates transcription factor function, and we previously showed that mouse oocytes deficient for sumoylation had an altered transcriptional landscape that included significant changes in NOBOX target genes. Here, we show that mouse SOHLH1 is modified by SUMO2/3 at lysine 345 and mutation of this residue alters SOHLH1 nuclear to cytoplasmic localization. In NOBOX, we identify a non-consensus SUMO site, K97, that eliminates NOBOX mono-SUMO2/3 conjugation, while a point mutation at K125 had no effect on NOBOX sumoylation. However, NOBOXK97R/K125R double mutants showed loss of mono-SUMO2/3 and altered higher molecular weight modifications, suggesting cooperation between these lysine's. NOBOXK97R and NOBOXK97R/K125R differentially regulated NOBOX promoter targets, with increased activity on the Gdf9 promoter, but no effect on the Pou5f1 promoter. These data implicate sumoylation as a novel regulatory mechanism for SOHLH1 and NOBOX, which may prove useful in refining their roles during oogenesis as well as their function during reprogramming to generate de novo germ cells.
Collapse
Affiliation(s)
- Bethany K. Patton
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Surabhi Madadi
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Rice University, Houston, TX 77005
| | - Shawn M. Briley
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Avery A. Ahmed
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030
| | - Stephanie A. Pangas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030
- Graduate Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
39
|
Zhou J, Lin L, Cai H, Liu L, Wang H, Zhang J, Xia G, Wang J, Wang F, Wang C. SP1 impacts the primordial to primary follicle transition by regulating cholesterol metabolism in granulosa cells. FASEB J 2023; 37:e22767. [PMID: 36624701 DOI: 10.1096/fj.202201274rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023]
Abstract
The primordial to primary follicle transition (PPT) in the ovary is critical to maintain sustainable reproductive resources in female mammals. However, it is unclear how granulosa cells (GCs) of the primary follicle participate in regulating PPT. This study focused on exploring the role of transcription factor Sp1 (SP1) in regulating PPT based on the fact that SP1 is pivotal for pregranulosa cell proliferation before primordial follicle formation. The results showed that mice fertility was prolonged when Sp1 was specifically depleted from GCs (GC- Sp1 -/- ). Besides, the PPT in GC- Sp1 -/- mice was reduced, resulting in more primordial follicles being preserved. Single-cell RNA-seq also indicated that the level of cholesterol metabolism was downregulated in GC- Sp1 -/- mice. Additionally, the PPT was promoted by either overexpression of ferredoxin-1 (FDX1), one of the key genes in mediating cholesterol metabolism or supplementing cholesterol for cultured fetal ovaries. Collectively, SP1 in GCs participates in the metabolism of cholesterol partially by regulating the transcription of Fdx1 during the PPT.
Collapse
Affiliation(s)
- Jiaqi Zhou
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lin Lin
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Han Cai
- School of Life Sciences, Xiamen University, Xiamen, China
| | - Longping Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Huarong Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jingwen Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guoliang Xia
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China.,Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, School of Life Sciences, Ningxia University, Yinchuan, China
| | - Jianbin Wang
- School of Life Sciences and Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
MitoQ Protects Ovarian Organoids against Oxidative Stress during Oogenesis and Folliculogenesis In Vitro. Int J Mol Sci 2023; 24:ijms24020924. [PMID: 36674435 PMCID: PMC9865946 DOI: 10.3390/ijms24020924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Ovarian organoids, based on mouse female germline stem cells (FGSCs), have great value in basic research and are a vast prospect in pre-clinical drug screening due to their properties, but the competency of these in vitro-generated oocytes was generally low, especially, in vitro maturation (IVM) rate. Recently, it has been demonstrated that the 3D microenvironment triggers mitochondrial dysfunction during follicle growth in vitro. Therefore, therapies that protect mitochondria and enhance their function in oocytes warrant investigation. Here, we reported that exposure to 100 nM MitoQ promoted follicle growth and maturation in vitro, accompanied by scavenging ROS, reduced oxidative injury, and restored mitochondrial membrane potential in oocytes. Mechanistically, using mice granulosa cells (GCs) as a cellular model, it was shown that MitoQ protects GCs against H2O2-induced apoptosis by inhibiting the oxidative stress pathway. Together, these results reveal that MitoQ reduces oxidative stress in ovarian follicles via its antioxidative action, thereby protecting oocytes and granulosa cells and providing an efficient way to improve the quality of in vitro-generated oocytes.
Collapse
|
41
|
Miura F, Shibata Y, Miura M, Ito T. Post-bisulfite Adaptor Tagging Based on an ssDNA Ligation Technique (tPBAT). Methods Mol Biol 2023; 2577:21-37. [PMID: 36173563 DOI: 10.1007/978-1-0716-2724-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Post-bisulfite adaptor tagging (PBAT) is a concept that enables the preparation of an efficient sequencing library from bisulfite-treated DNA, and it also means the protocol implemented the concept. Although the previous PBAT or rPBAT was sensitive enough for single-cell methylome analysis, the protocol had several drawbacks owing to the repeated random priming reactions. To resolve these problems, we developed a unique single-strand DNA ligation technique, termed TACS ligation, and established a new protocol called tPBAT. With tPBAT, the data quality improved, with a longer insert and higher mapping rate than that obtained with rPBAT. In addition, paired-end sequencing and indexing were supported by the default. In this chapter, the tPBAT protocol is introduced, and a thorough description of its application to small samples is provided.
Collapse
Affiliation(s)
- Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Yukiko Shibata
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Miki Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
42
|
Cyranoski D, Contreras JL, Carrington VT. Intellectual property and assisted reproductive technology. Nat Biotechnol 2023; 41:14-20. [PMID: 36653491 DOI: 10.1038/s41587-022-01592-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- David Cyranoski
- Institute for the Advanced Studies of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
| | - Jorge L Contreras
- S.J. Quinney College of Law, University of Utah, Salt Lake City, UT, USA
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | |
Collapse
|
43
|
Miura F, Ito T. Post-bisulfite Adaptor Tagging with a Highly Efficient Single-Stranded DNA Ligation Technique. Methods Mol Biol 2023; 2594:45-57. [PMID: 36264487 DOI: 10.1007/978-1-0716-2815-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Post-bisulfite adaptor tagging (PBAT) is a procedure for efficiently preparing a sequencing library for whole-genome bisulfite sequencing (WGBS). The original version of the PBAT protocol was highly efficient, such that it helped realize library preparation from samples of limited amounts. However, two rounds of random priming reactions employed in the original protocol limited further improvement of the PBAT protocol in terms of read length and mapping rate. In this chapter, an improved version of the PBAT protocol called tPBAT is described.
Collapse
Affiliation(s)
- Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| |
Collapse
|
44
|
Arkoun B, Moison P, Guerquin MJ, Messiaen S, Moison D, Tourpin S, Monville C, Livera G. Sorting and Manipulation of Human PGC-LC Using PDPN and Hanging Drop Cultures. Cells 2022; 11:3832. [PMID: 36497094 PMCID: PMC9736549 DOI: 10.3390/cells11233832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
The generation of oocytes from induced pluripotent stem cells (iPSCs) was proven efficient with mouse cells. However, no human iPSCs have yet been reported to generate cells able to complete oogenesis. Additionally, efficient sorting of human Primordial Germ Cell-like Cells (hPGC-LCs) without genomic integration of fluorescent reporter for their downstream manipulation is still lacking. Here, we aimed to develop a model that allows human germ cell differentiation in vitro in order to study the developing human germline. The hPGC-LCs specified from two iPS cell lines were sorted and manipulated using the PDPN surface marker without genetic modification. hPGC-LCs obtained remain arrested at early stages of maturation and no further differentiation nor meiotic onset occurred when these were cultured with human or mouse fetal ovarian somatic cells. However, when cultured independently of somatic ovarian cells, using BMP4 and the hanging drop-transferred EBs system, early hPGC-LCs further differentiate efficiently and express late PGC (DDX4) and meiotic gene markers, although no SYCP3 protein was detected. Altogether, we characterized a tool to sort hPGC-LCs and an efficient in vitro differentiation system to obtain pre-meiotic germ cell-like cells without using a gonadal niche.
Collapse
Affiliation(s)
- Brahim Arkoun
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Pauline Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Marie-Justine Guerquin
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Sébastien Messiaen
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Delphine Moison
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Sophie Tourpin
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100 Corbeil-Essonnes, France
- Paris-Saclay Evry, U861, 91100 Corbeil-Essonnes, France
| | - Gabriel Livera
- Laboratoire de Développement des Gonades, UMRE008 Stabilité Génétique Cellules Souches et Radiations, Université Paris Cité, Université Paris-Saclay, CEA, 92265 Fontenay-aux-Roses, France
| |
Collapse
|
45
|
Ramakrishna NB, Alberio R. In preprints: towards reconstituting an ovary. Development 2022; 149:278086. [DOI: 10.1242/dev.201354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Navin B. Ramakrishna
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore, A*STAR 1 , Biopolis 138672 , Singapore
| | - Ramiro Alberio
- School of Biosciences, University of Nottingham 2 , Sutton Bonington Campus, Sutton Bonington, LE12 5RD , UK
| |
Collapse
|
46
|
Clarke HJ. Transzonal projections: Essential structures mediating intercellular communication in the mammalian ovarian follicle. Mol Reprod Dev 2022; 89:509-525. [PMID: 36112806 DOI: 10.1002/mrd.23645] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/22/2022] [Accepted: 08/31/2022] [Indexed: 12/25/2022]
Abstract
The development of germ cells relies on contact and communication with neighboring somatic cells that provide metabolic support and regulatory signals. In females, contact is achieved through thin cytoplasmic processes that project from follicle cells surrounding the oocyte, extend through an extracellular matrix (ECM) that lies between them, and reach its surface. In mammals, the ECM is termed the zona pellucida and the follicular cell processes are termed transzonal projections (TZPs). TZPs become detectable when the zona pellucida is laid down during early folliculogenesis and subsequently increase in number as oocyte growth progresses. They then rapidly disappear at the time of ovulation, permanently breaking germ-soma contact. Here we review the life cycle and functions of the TZPs. We begin with an overview of the morphology and cytoskeletal structure of TZPs, in the context of actin- and tubulin-based cytoplasmic processes in other cell types. Next, we review the roles played by TZPs in mediating progression through successive stages of oocyte development. We then discuss two mechanisms that may generate TZPs-stretching at pre-existing points of granulosa cell-oocyte contact and elaboration of new processes that push through the zona pellucida-as well as gene products implicated in their formation or function. Finally, we describe the signaling pathways that cause TZPs to be retracted in response to signals that also trigger meiotic maturation and ovulation of the oocyte. The principles and mechanisms that govern TZP behavior may be relevant to understanding communication between physically separated cells in other physiological contexts.
Collapse
Affiliation(s)
- Hugh J Clarke
- Program in Child Health and Human Development, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Department of Obstetrics and Gynecology, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
47
|
Female Germ Cell Development in Chickens and Humans: The Chicken Oocyte Enriched Genes Convergent and Divergent with the Human Oocyte. Int J Mol Sci 2022; 23:ijms231911412. [PMID: 36232712 PMCID: PMC9570461 DOI: 10.3390/ijms231911412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The development of germ cells and other physiological events in the differentiated ovary of humans are highly conserved with several mammalian species, except for the differences in timing. However, comparative knowledge on this topic is very scarce with respect to humans and lower vertebrates, such as chickens. In chickens, female germ cells enter into meiosis around embryonic day (E) 15.5 and are arrested in meiotic prophase I as primary oocytes. The oocytes arrested in meiosis I are accumulated in germ-cell cysts; shortly after hatching, they are enclosed by flattened granulosa cells in order to form primordial follicles. In humans, the process of meiotic recombination in female germ cells begins in the 10–11th week of gestation, and primordial follicles are formed at around week 20. In this review, we comprehensively elucidate both the conservation and the species-specific differences between chickens and humans with respect to germ cell, oocyte, and follicle development. Importantly, we provide functional insights into a set of chicken oocyte enriched genes (from E16 to 1 week post-hatch) that show convergent and divergent expression patterns with respect to the human oocyte (from week 11 to 26).
Collapse
|
48
|
The programmed death of fetal oocytes and the correlated surveillance mechanisms. REPRODUCTIVE AND DEVELOPMENTAL MEDICINE 2022. [DOI: 10.1097/rd9.0000000000000016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
49
|
PRC1-mediated epigenetic programming is required to generate the ovarian reserve. Nat Commun 2022; 13:4510. [PMID: 35948547 PMCID: PMC9365831 DOI: 10.1038/s41467-022-31759-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
The ovarian reserve defines the female reproductive lifespan, which in humans spans decades due to robust maintenance of meiotic arrest in oocytes residing in primordial follicles. Epigenetic reprogramming, including DNA demethylation, accompanies meiotic entry, but the chromatin changes that underpin the generation and preservation of ovarian reserves are poorly defined. We report that the Polycomb Repressive Complex 1 (PRC1) establishes repressive chromatin states in perinatal mouse oocytes that directly suppress the gene expression program of meiotic prophase-I and thereby enable the transition to dictyate arrest. PRC1 dysfuction causes depletion of the ovarian reserve and leads to premature ovarian failure. Our study demonstrates a fundamental role for PRC1-mediated gene silencing in female reproductive lifespan, and reveals a critical window of epigenetic programming required to establish ovarian reserve. In humans, the ovarian reserve is maintained over decades by meiotic arrest of oocytes. Here the authors show that Polycomb Repressive Complex 1 (PRC1)-mediated epigenetic programming is essential for formation of ovarian reserve and thus female reproductive lifespan.
Collapse
|
50
|
Huang X, Sun MX. H3K27 methylation regulates the fate of two cell lineages in male gametophytes. THE PLANT CELL 2022; 34:2989-3005. [PMID: 35543471 PMCID: PMC9338816 DOI: 10.1093/plcell/koac136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/03/2022] [Indexed: 05/14/2023]
Abstract
During angiosperm male gametogenesis, microspores divide to produce a vegetative cell (VC) and a male germline (MG), each with distinct cell fates. The mechanism underlying determination of the MG cell/VC fate remains an important area of research, with many unanswered questions. Here, we report that H3K27me3 is essential for VC fate commitment in male Arabidopsis thaliana gametophytes; H3K27me3 erasure contributes to MG cell fate initiation. VC-targeted H3K27me3 erasure disturbed VC development and shifted the VC fate toward a gamete destination, which suggests that MG cells require H3K27me3 erasure to trigger gamete cell fate. Multi-omics and cytological analyses confirmed the occurrence of extensive cell identity transition due to H3K27me3 erasure. Therefore, we experimentally confirmed that MG cell/VC fate is epigenetically regulated. H3K27 methylation plays a critical role in guiding MG cell/VC fate determination for pollen fertility in Arabidopsis. Our work also provides evidence for two previous hypotheses: the germline cell fate is specified by the differential distribution of unknown determinants and VC maintains the default microspore program (i.e. the H3K27me3 setting) while MG requires reprogramming.
Collapse
Affiliation(s)
- Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Science, Wuhan University, Wuhan 430072, China
| | | |
Collapse
|