1
|
Liu YX, Zhu L, Luke J, Babin MC, Gronowski M, Ladjimi H, Tomza M, Bohn JL, Tscherbul TV, Ni KK. Hyperfine-to-rotational energy transfer in ultracold atom-molecule collisions of Rb and KRb. Nat Chem 2025:10.1038/s41557-025-01778-z. [PMID: 40195434 DOI: 10.1038/s41557-025-01778-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/13/2025] [Indexed: 04/09/2025]
Abstract
Energy transfer between different mechanical degrees of freedom in atom-molecule collisions has been studied and largely understood. However, systems involving spins remain less explored. In this study, we directly observed energy transfer from atomic hyperfine to molecular rotation in the 87Rb ( ∣ F a , M F a = ∣ 2 , 2 ) + 40K87Rb (X1Σ+, rotational state N = 0) ⟶ Rb ( ∣ 1 , 1 ) + KRb (N = 0, 1, 2) collision with state-to-state precision. We also performed quantum scattering calculations that rigorously included the coupling between spin and rotational degrees of freedom at short range under the assumption of rigid-rotor KRb monomers moving along a single potential energy surface. The calculated product rotational state distribution deviates from the observations even after extensive tuning of the atom-molecule potential energy surface. In addition, our ab initio calculations indicate that spin-rotation coupling is enhanced close to a conical intersection that is energetically accessible at short range. This, together with the deviation, suggests that vibrational degrees of freedom and conical intersections play an important part in the coupling. Our observations confirm that spin is coupled to mechanical rotation at short range and establish a benchmark for future theoretical studies.
Collapse
Affiliation(s)
- Yi-Xiang Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Lingbang Zhu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Jeshurun Luke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | - Mark C Babin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA
| | | | - Hela Ladjimi
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Michał Tomza
- Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - John L Bohn
- JILA, NIST and Department of Physics, University of Colorado, Boulder, CO, USA
| | | | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Department of Physics, Harvard University, Cambridge, MA, USA.
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA, USA.
| |
Collapse
|
2
|
Devolder A, Tscherbul TV, Brumer P. Time-Reversal Symmetry-Protected Coherent Control of Ultracold Molecular Collisions. J Phys Chem Lett 2025; 16:2808-2814. [PMID: 40059667 DOI: 10.1021/acs.jpclett.4c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Coherent control of atomic and molecular scattering relies on the preparation of colliding particles in superpositions of internal states, establishing interfering pathways that can be used to tune the outcome of a scattering process. However, the incoherent addition of different partial wave contributions to the integral cross-sections, commonly encountered in systems with complex collisional dynamics, poses a significant challenge, often limiting the control. This work demonstrates that time-reversal symmetry can be used to overcome these limitations by constraining the relation between the S-matrix elements. For example, the preparation of a superposition of two states related by the time-reversal superposition can provide extensive control for transitions to a time-reversal invariant final state, such as the J = 0, M = 0. Using the example of ultracold O2-O2 scattering, we show that for such states coherent control is robust against short-range dynamical complexity. Furthermore, the time-reversal symmetry also protects the control against a distribution of collisional energies. Beyond the ultracold regime, we observe significant differences in the controllability of crossed-molecular beam vs trap experiments with complete control achievable in the former case at any temperature, emphasizing the cooperative role of time-reversal and permutation symmetries in maintaining control at any temperature. These results open new avenues for the coherent control of complex inelastic collisions and chemical reactions both in and outside of the ultracold regime.
Collapse
Affiliation(s)
- Adrien Devolder
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Timur V Tscherbul
- Department of Physics, University of Nevada, Reno, Nevada 89557, United States
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
3
|
Yang D, Guo H. Full-dimensional coupled-channel statistical approach to atom-triatom systems and applications to H/D + O 3 reaction. J Comput Chem 2024; 45:2941-2948. [PMID: 39221711 DOI: 10.1002/jcc.27500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
The statistical quantum model (SQM), which assumes that the reactivity is controlled by entrance/exit channel quantum capture probabilities, is well suited for chemical reactions with a long-lived intermediate complex. In this work, a time-independent coupled-channel implementation of the SQM approach is developed for atom-triatom systems in full dimensionality. As SQM treats the capture dynamics quantum mechanically, it is capable of handling quantum effects such as tunneling. A detailed study of the H/D + O3 capture dynamics was performed by applying the newly developed SQM method on an accurate global potential energy surface. Agreement with previous ring polymer molecular dynamics (RPMD) results on the same potential energy surface is excellent except for very low temperatures. The SQM results are also in reasonably good agreement with available experimental rate coefficients. The strong H/D kinetic isotope effect underscores the dominant role of quantum tunneling under an entrance channel barrier at low temperatures.
Collapse
Affiliation(s)
- Dongzheng Yang
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
4
|
Zhao H, Sun Z. An improved method for reactive scatterings in ultra-cold conditions using the time-dependent approach. Phys Chem Chem Phys 2024; 26:22790-22797. [PMID: 39163005 DOI: 10.1039/d4cp02340d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A new efficient method for considering the long-range effect of reactive scattering processes in ultra-cold conditions has been developed using the time-dependent quantum wave packet theory, where the initial wave packet could be placed at a position near the interaction region. This is in contrast to previous methods, where the initial wave packet has to be placed far from the interaction region. The new method reduces the numerical effort significantly. Typical reactions, such as S(1D) + H2, D+ + H2, and 7Li + 7Li2 (v0 = 1, j0 = 0), under cold or ultra-cold conditions, are used to demonstrate the numerical efficiency of the new method.
Collapse
Affiliation(s)
- Hailin Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| | - Zhigang Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.
| |
Collapse
|
5
|
Luke J, Zhu L, Liu YX, Ni KK. Reaction interferometry with ultracold molecules. Faraday Discuss 2024; 251:63-75. [PMID: 38775173 DOI: 10.1039/d3fd00175j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We propose to coherently control the ultracold 2KRb → K2 + Rb2 reaction product state distribution via quantum interference. By leveraging that the nuclear spin degrees of freedom in the reaction maintain coherence, which was demonstrated in Liu, Zhu et al., arXiv, 2023, arXiv:2310.07620, https://doi.org/10.48550/arXiv.2310.07620, we explore the concept of a "reaction interferometer". Such an interferometer involves splitting one KRb molecular cloud into two, imprinting a well-defined relative phase between them, recombining the clouds for reactions, and measuring the product state distribution. We show that the interference patterns provide a mechanism to coherently control the product states, and specific product channels also serve as an entanglement witness of the atoms in the reactant KRb molecule.
Collapse
Affiliation(s)
- Jeshurun Luke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Lingbang Zhu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Yi-Xiang Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
6
|
Buren B, Zhang J, Li Y. Quantum Dynamics Studies of the Li + Na 2 ( V = 0, j = 0) → Na + NaLi Reaction on a New Neural Network Potential Energy Surface. J Phys Chem A 2024; 128:5115-5127. [PMID: 38889710 DOI: 10.1021/acs.jpca.4c01891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The ultracold reaction offers a unique opportunity to elucidate the intricate microscopic mechanism of chemical reactions, and the Na2Li system serves as a pivotal reaction system in the investigation of ultracold reactions. In this work, a high-precision potential energy surface (PES) of the Na2Li system is constructed based on high-level ab initio energy points and the neural network (NN) method, and a proper asymptotic functional form is adopted for the long-range interaction, which is suitable for the study of cold or ultracold collisions. Based on the new NN PES, the dynamics of the Li + Na2 (v = 0, j = 0) → Na + NaLi reaction are studied in the collision energy range of 10-7 to 80 cm-1. In the high collision energy range of 8 to 80 cm-1, the dynamics of the reaction is studied using the time-dependent wave packet method and the statistical quantum mechanical (SQM) method. Comparing the results of the two methods, it is found that the SQM method provides a rough description of the product ro-vibrational state distribution but overestimates the integral cross-section values. With the decrease of collision energy, the reaction differential cross section gradually changes from forward-backward symmetric scattering to predominant forward scattering. In the low collision energy range from 10-7 to 8 cm-1, the SQM method is used to study the reaction dynamics, and the rate constant in the Wigner threshold region is estimated to be 2.87 × 10-10 cm3/s.
Collapse
Affiliation(s)
- Bayaer Buren
- School of Science, Shenyang University of Technology, Shenyang 110870, China
| | - Jiapeng Zhang
- Department of Physics, Liaoning University, Shenyang 110036, China
| | - Yongqing Li
- Department of Physics, Liaoning University, Shenyang 110036, China
| |
Collapse
|
7
|
Mandal B, Croft JFE, Jambrina PG, Guo H, Aoiz FJ, Balakrishnan N. Stereodynamical control of cold HD + D 2 collisions. Phys Chem Chem Phys 2024; 26:18368-18381. [PMID: 38912616 DOI: 10.1039/d4cp01737d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
We report full-dimensional quantum calculations of stereodynamic control of HD(v = 1, j = 2) + D2 collisions that has been probed experimentally by Perreault et al. using the Stark-induced adiabatic Raman passage (SARP) technique. Computations were performed on two highly accurate full-dimensional H4 potential energy surfaces. It is found that for both potential surfaces, rotational quenching of HD from with concurrent rotational excitation of D2 from is the dominant transition with cross sections four times larger than that of elastically scattered D2 for the same quenching transition in HD. This process was not considered in the original analysis of the SARP experiments that probed ΔjHD = -2 transitions in HD(vHD = 1, jHD = 2) + D2 collisions. Cross sections are characterized by an l = 3 resonance for ortho-D2(jD2 = 0) collisions, while both l = 1 and l = 3 resonances are observed for the para-D2(jD2 = 1) partner. While our results are in excellent agreement with prior measurements of elastic and inelastic differential cross sections, the agreement is less satisfactory with the SARP experiments, in particular for the transition for which the theoretical calculations indicate that D2 rotational excitation channel is the dominant inelastic process.
Collapse
Affiliation(s)
- Bikramaditya Mandal
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA.
| | - James F E Croft
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK
| | - Pablo G Jambrina
- Departamento de Química Física, University of Salamanca, Salamanca 37008, Spain
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - F Javier Aoiz
- Departamento de Química Física, Universidad Complutense, Madrid 28040, Spain
| | - Naduvalath Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA.
| |
Collapse
|
8
|
Zhao H, Sun Z. Higher-Order Split Operator Schemes for Solving Tetratomic Reactions Using the Time-Dependent Wave Packet Method. J Phys Chem A 2024; 128:4911-4922. [PMID: 38847623 DOI: 10.1021/acs.jpca.4c01802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
In this work, using the time-dependent quantum wave packet method, quite a few typical higher-order split operators (HOSOs) were for the first time applied to calculate the tetratomic reactive scattering processes in the hyperspherical coordinate. It was found that the HOSOs were hardly efficient for a tetratomic reaction calculation, unlike those for a triatomic reactive scattering calculation. We proposed an efficient HOSO with a force gradient (denoted as 2G1 in the main text) for efficiently and accurately calculating a tetratomic reaction using the quantum wave packet method. Several typical tetratomic reactions, such as H2 + OH, HF + OH, and H2 + OH+, are calculated for demonstrating the effectiveness of the proposed 2G1 in terms of (product state-resolved) reaction probability and inelastic probability, by comparing with the performance of the previously reported various HOSOs. We suggest that the 2G1 propagator could be applied to efficiently calculate a general tetratomic reaction.
Collapse
Affiliation(s)
- Hailin Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| | - Zhigang Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
| |
Collapse
|
9
|
Liu YX, Zhu L, Luke J, Houwman JJA, Babin MC, Hu MG, Ni KK. Quantum interference in atom-exchange reactions. Science 2024:eadl6570. [PMID: 38753767 DOI: 10.1126/science.adl6570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024]
Abstract
Chemical reactions, where bonds break and form, are highly dynamic quantum processes. A fundamental question is whether coherence can be preserved in chemical reactions and then harnessed to generate entangled products. Here we investigated this question by studying the 2KRb → K2 + Rb2 reaction at 500 nK, focusing on the nuclear spin degrees of freedom. We prepared the initial nuclear spins in KRb in an entangled state by lowering the magnetic field to where the spin-spin interaction dominates and characterized the preserved coherence in nuclear spin wavefunction after the reaction. We observed an interference pattern that is consistent with full coherence at the end of the reaction, suggesting that entanglement prepared within the reactants could be redistributed through the atom-exchange process.
Collapse
Affiliation(s)
- Yi-Xiang Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Lingbang Zhu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Jeshurun Luke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - J J Arfor Houwman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Institut für Experimentalphysik, Universität Innsbruck, 6020 Innsbruck, Austria
| | - Mark C Babin
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Ming-Guang Hu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
| | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Harvard-MIT Center for Ultracold Atoms, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
10
|
Balakrishnan N, Jambrina PG, Croft JFE, Guo H, Aoiz FJ. Quantum stereodynamics of cold molecular collisions. Chem Commun (Camb) 2024; 60:1239-1256. [PMID: 38197484 DOI: 10.1039/d3cc04762h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Advances in quantum state preparations combined with molecular cooling and trapping technologies have enabled unprecedented control of molecular collision dynamics. This progress, achieved over the last two decades, has dramatically improved our understanding of molecular phenomena in the extreme quantum regime characterized by translational temperatures well below a kelvin. In this regime, collision outcomes are dominated by isolated partial waves, quantum threshold and quantum statistics effects, tiny energy splitting at the spin and hyperfine levels, and long-range forces. Collision outcomes are influenced not only by the quantum state preparation of the initial molecular states but also by the polarization of their rotational angular momentum, i.e., stereodynamics of molecular collisions. The Stark-induced adiabatic Raman passage technique developed in the last several years has become a versatile tool to study the stereodynamics of light molecular collisions in which alignment of the molecular bond axis relative to initial collision velocity can be fully controlled. Landmark experiments reported by Zare and coworkers have motivated new theoretical developments, including formalisms to describe four-vector correlations in molecular collisions that are revealed by the experiments. In this Feature article, we provide an overview of recent theoretical developments for the description of stereodynamics of cold molecular collisions and their implications to cold controlled chemistry.
Collapse
Affiliation(s)
- Naduvalath Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, USA.
| | - Pablo G Jambrina
- Departamento de Química Física, Universidad de Salamanca, Salamanca 37008, Spain
| | - James F E Croft
- The Dodd Walls Centre for Photonic and Quantum Technologies, New Zealand and Department of Physics, University of Otago, Dunedin, New Zealand
| | - Hua Guo
- Department of Chemistry and Chemical Biology, Center for Computational Chemistry, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - F Javier Aoiz
- Departamento de Química Física, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
11
|
Song H, Guo H. Theoretical Insights into the Dynamics of Gas-Phase Bimolecular Reactions with Submerged Barriers. ACS PHYSICAL CHEMISTRY AU 2023; 3:406-418. [PMID: 37780541 PMCID: PMC10540288 DOI: 10.1021/acsphyschemau.3c00009] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 10/03/2023]
Abstract
Much attention has been paid to the dynamics of both activated gas-phase bimolecular reactions, which feature monotonically increasing integral cross sections and Arrhenius kinetics, and their barrierless capture counterparts, which manifest monotonically decreasing integral cross sections and negative temperature dependence of the rate coefficients. In this Perspective, we focus on the dynamics of gas-phase bimolecular reactions with submerged barriers, which often involve radicals or ions and are prevalent in combustion, atmospheric chemistry, astrochemistry, and plasma chemistry. The temperature dependence of the rate coefficients for such reactions is often non-Arrhenius and complex, and the corresponding dynamics may also be quite different from those with significant barriers or those completely dominated by capture. Recent experimental and theoretical studies of such reactions, particularly at relatively low temperatures or collision energies, have revealed interesting dynamical behaviors, which are discussed here. The new knowledge enriches our understanding of the dynamics of these unusual reactions.
Collapse
Affiliation(s)
- Hongwei Song
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science
and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University
of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
12
|
Venkataramanababu S, Li A, Antonov IO, Dragan JB, Stollenwerk PR, Guo H, Odom BC. Enhancing reactivity of SiO + ions by controlled excitation to extreme rotational states. Nat Commun 2023; 14:4446. [PMID: 37488115 PMCID: PMC10366143 DOI: 10.1038/s41467-023-40135-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Optical pumping of molecules provides unique opportunities for control of chemical reactions at a wide range of rotational energies. This work reports a chemical reaction with extreme rotational excitation of a reactant and its kinetic characterization. We investigate the chemical reactivity for the hydrogen abstraction reaction SiO+ + H2 → SiOH+ + H in an ion trap. The SiO+ cations are prepared in a narrow rotational state distribution, including super-rotor states with rotational quantum number (j) as high as 170, using a broad-band optical pumping method. We show that the super-rotor states of SiO+ substantially enhance the reaction rate, a trend reproduced by complementary theoretical studies. We reveal the mechanism for the rotational enhancement of the reactivity to be a strong coupling of the SiO+ rotational mode with the reaction coordinate at the transition state on the dominant dynamical pathway.
Collapse
Affiliation(s)
- Sruthi Venkataramanababu
- Applied Physics Program, Northwestern University, Evanston, 60208, IL, USA
- Department of Physics, Northwestern University, Evanston, 60208, IL, USA
| | - Anyang Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China.
| | - Ivan O Antonov
- Lebedev Physical Institute, Samara, 443011, Russian Federation
| | - James B Dragan
- Department of Physics, Northwestern University, Evanston, 60208, IL, USA
| | | | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, 87131, NM, USA
| | - Brian C Odom
- Department of Physics, Northwestern University, Evanston, 60208, IL, USA.
| |
Collapse
|
13
|
Lara M, Jambrina PG, Aoiz FJ. Universal behavior in complex-mediated reactions: Dynamics of S(1D) + o-D2 → D + SD at low collision energies. J Chem Phys 2023; 158:2889001. [PMID: 37154275 DOI: 10.1063/5.0147182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Reactive and elastic cross sections and rate coefficients have been calculated for the S(1D) + D2(v = 0, j = 0) reaction using a modified hyperspherical quantum reactive scattering method. The considered collision energy ranges from the ultracold regime, where only one partial wave is open, up to the Langevin regime, where many of them contribute. This work presents the extension of the quantum calculations, which in a previous study were compared with the experimental results, down to energies in the cold and ultracold domains. Results are analyzed and compared with the universal case of the quantum defect theory by Jachymski et al. [Phys. Rev. Lett. 110, 213202 (2013)]. State-to-state integral and differential cross sections are also shown covering the ranges of low-thermal, cold, and ultracold collision energy regimes. It is found that at E/kB < 1 K, there are substantial departures from the expected statistical behavior and that dynamical features become increasingly important with decreasing collision energy, leading to vibrational excitation.
Collapse
Affiliation(s)
- Manuel Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P G Jambrina
- Departamento de Química Física, Facultad de Farmacia, Universidad de Salamanca, 37008 Salamanca, Spain
| | - F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
14
|
Morita M, Kendrick BK, Kłos J, Kotochigova S, Brumer P, Tscherbul TV. Signatures of Non-universal Quantum Dynamics of Ultracold Chemical Reactions of Polar Alkali Dimer Molecules with Alkali Metal Atoms: Li( 2S) + NaLi( a3Σ +) → Na( 2S) + Li 2( a3Σ u+). J Phys Chem Lett 2023; 14:3413-3421. [PMID: 37001115 DOI: 10.1021/acs.jpclett.3c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ultracold chemical reactions of weakly bound triplet-state alkali metal dimer molecules have recently attracted much experimental interest. We perform rigorous quantum scattering calculations with a new ab initio potential energy surface to explore the chemical reaction of spin-polarized NaLi(a3Σ+) and Li(2S) to form Li2(a3Σu+) and Na(2S). The reaction is exothermic and proceeds readily at ultralow temperatures. Significantly, we observe strong sensitivity of the total reaction rate to small variations of the three-body part of the Li2Na interaction at short range, which we attribute to a relatively small number of open Li2(a3Σu+) product channels populated in the reaction. This provides the first signature of highly non-universal dynamics seen in rigorous quantum reactive scattering calculations of an ultracold exothermic insertion reaction involving a polar alkali dimer molecule, opening up the possibility of probing microscopic interactions in atom+molecule collision complexes via ultracold reactive scattering experiments.
Collapse
Affiliation(s)
- Masato Morita
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Brian K Kendrick
- Theoretical Division (T-1, MS B221), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jacek Kłos
- Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, United States
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Svetlana Kotochigova
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Timur V Tscherbul
- Department of Physics, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
15
|
Margulis B, Horn KP, Reich DM, Upadhyay M, Kahn N, Christianen A, van der Avoird A, Groenenboom GC, Koch CP, Meuwly M, Narevicius E. Tomography of Feshbach resonance states. Science 2023; 380:77-81. [PMID: 37023184 DOI: 10.1126/science.adf9888] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Feshbach resonances are fundamental to interparticle interactions and become particularly important in cold collisions with atoms, ions, and molecules. In this work, we present the detection of Feshbach resonances in a benchmark system for strongly interacting and highly anisotropic collisions: molecular hydrogen ions colliding with noble gas atoms. The collisions are launched by cold Penning ionization, which exclusively populates Feshbach resonances that span both short- and long-range parts of the interaction potential. We resolved all final molecular channels in a tomographic manner using ion-electron coincidence detection. We demonstrate the nonstatistical nature of the final-state distribution. By performing quantum scattering calculations on ab initio potential energy surfaces, we show that the isolation of the Feshbach resonance pathways reveals their distinctive fingerprints in the collision outcome.
Collapse
Affiliation(s)
- Baruch Margulis
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Karl P Horn
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Daniel M Reich
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Meenu Upadhyay
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Arthur Christianen
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching, Germany
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Ad van der Avoird
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Gerrit C Groenenboom
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Christiane P Koch
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Basel, Switzerland
| | - Edvardas Narevicius
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Physics, Technische Universität, Dortmund, Germany
| |
Collapse
|
16
|
Devolder A, Tscherbul TV, Brumer P. Coherent Control of Ultracold Molecular Collisions: The Role of Resonances. J Phys Chem Lett 2023; 14:2171-2177. [PMID: 36808981 DOI: 10.1021/acs.jpclett.3c00146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We consider the coherent control of ultracold molecule-molecule scattering, impacted by a dense set of rovibrational resonances. To characterize the resonance spectrum, a rudimentary model based on multichannel quantum defect theory has been used to study the control of the scattering cross section and the reaction rate. Complete control around resonance energies is shown to be possible, but thermal averaging over a large number of resonances significantly reduces the extent of control of reaction rates related to the random distribution of optimal control parameters between resonances. We show that measuring the extent of coherent control could be used to extract meaningful information about the relative contribution of direct scattering versus collision complex formation, as well as about the statistical regime.
Collapse
Affiliation(s)
- Adrien Devolder
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Timur V Tscherbul
- Department of Physics, University of Nevada, Reno, Nevada 89557, United States of America
| | - Paul Brumer
- Chemical Physics Theory Group, Department of Chemistry, and Center for Quantum Information and Quantum Control, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
17
|
Croft JFE, Jambrina PG, Aoiz FJ, Guo H, Balakrishnan N. Cold Collisions of Ro-Vibrationally Excited D 2 Molecules. J Phys Chem A 2023; 127:1619-1627. [PMID: 36787203 DOI: 10.1021/acs.jpca.2c08855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The H2 + H2 system has long been considered a benchmark system for ro-vibrational energy transfer in bimolecular collisions. However, most studies thus far have focused on collisions involving H2 molecules in the ground vibrational level or in the first excited vibrational state. While H2 + H2/HD collisions have received wide attention due to the important role they play in astrophysics, D2 + D2 collisions have received much less attention. Recently, Zhou et al. [ Nat. Chem. 2022, 14, 658-663, DOI: 10.1038/s41557-022-00926-z] examined stereodynamic aspects of rotational energy transfer in collisions of two aligned D2 molecules prepared in the v = 2 vibrational level and j = 2 rotational level. Here, we report quantum calculations of rotational and vibrational energy transfer in collisions of two D2 molecules prepared in vibrational levels up to v = 2 and identify key resonance features that contribute to the angular distribution in the experimental results of Zhou et al. The quantum scattering calculations were performed in full dimensionality and using the rigid-rotor approximation using a recently developed highly accurate six-dimensional potential energy surface for the H4 system that allows descriptions of collisions involving highly vibrationally excited H2 and its isotopologues.
Collapse
Affiliation(s)
- James F E Croft
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9016, New Zealand.,Department of Physics, University of Otago, Dunedin 9016, New Zealand
| | - Pablo G Jambrina
- Departamento de Química Física, Universidad de Salamanca, Salamanca 37008, Spain
| | - F Javier Aoiz
- Departamento de Química Física, Universidad Complutense, Madrid 28040, Spain
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - N Balakrishnan
- Department of Chemistry and Biochemistry, University of Nevada, Las Vegas, Nevada 89154, United States
| |
Collapse
|
18
|
Yang D, Chai S, Xie D, Guo H. ABC+D: A time-independent coupled-channel quantum dynamics program for elastic and ro-vibrational inelastic scattering between atoms and triatomic molecules in full dimensionality. J Chem Phys 2023; 158:054801. [PMID: 36754781 DOI: 10.1063/5.0137628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We discuss the details of a time-independent quantum mechanical method and its implementation for full-dimensional non-reactive scattering between a closed-shell triatomic molecule and a closed-shell atom. By solving the time-independent Schrödinger equation within the coupled-channel framework using a log-derivative method, the state-to-state scattering matrix (S-matrix) can be determined for inelastic scattering involving both the rotational and vibrational modes of the molecule. Various approximations are also implemented. The ABC+D code provides an important platform for understanding an array of physical phenomena involving collisions between atoms and molecules.
Collapse
Affiliation(s)
- Dongzheng Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Shijie Chai
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
19
|
Yang D, Guo H, Xie D. Recent advances in quantum theory on ro-vibrationally inelastic scattering. Phys Chem Chem Phys 2023; 25:3577-3594. [PMID: 36602236 DOI: 10.1039/d2cp05069b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Molecular collisions are of fundamental importance in understanding intermolecular interaction and dynamics. Its importance is accentuated in cold and ultra-cold collisions because of the dominant quantum mechanical nature of the scattering. We review recent advances in the time-independent approach to quantum mechanical characterization of non-reactive scattering in tetratomic systems, which is ideally suited for large collisional de Broglie wavelengths characteristic in cold and ultracold conditions. We discuss quantum scattering algorithms between two diatoms and between a triatom and an atom and their implementation, as well as various approximate schemes. They not only enable the characterization of collision dynamics in realistic systems but also serve as benchmarks for developing more approximate methods.
Collapse
Affiliation(s)
- Dongzheng Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA.
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China. .,Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
20
|
Bause R, Christianen A, Schindewolf A, Bloch I, Luo XY. Ultracold Sticky Collisions: Theoretical and Experimental Status. J Phys Chem A 2023; 127:729-741. [PMID: 36624934 PMCID: PMC9884084 DOI: 10.1021/acs.jpca.2c08095] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/16/2022] [Indexed: 01/11/2023]
Abstract
Collisional complexes, which are formed as intermediate states in molecular collisions, are typically short-lived and decay within picoseconds. However, in ultracold collisions involving bialkali molecules, complexes can live for milliseconds, completely changing the collision dynamics. This can lead to unexpected two-body loss in samples of nonreactive molecules. During the past decade, such "sticky" collisions have been a major hindrance in the preparation of dense and stable molecular samples, especially in the quantum-degenerate regime. Currently, the behavior of the complexes is not fully understood. For example, in some cases, their lifetime has been measured to be many orders of magnitude longer than recent models predict. This is not only an intriguing problem in itself but also practically relevant, since understanding molecular complexes may help to mitigate their detrimental effects. Here, we review the recent experimental and theoretical progress in this field. We treat the case of molecule-molecule as well as molecule-atom collisions.
Collapse
Affiliation(s)
- Roman Bause
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| | - Arthur Christianen
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| | - Andreas Schindewolf
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| | - Immanuel Bloch
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
- Fakultät
für Physik, Ludwig-Maximilians-Universität, 80799München, Germany
| | - Xin-Yu Luo
- Max-Planck-Institut
für Quantenoptik, 85748Garching, Germany
- Munich
Center for Quantum Science and Technology, 80799München, Germany
| |
Collapse
|
21
|
Dickerson CE, Chang C, Guo H, Alexandrova AN. Fully Saturated Hydrocarbons as Hosts of Optical Cycling Centers. J Phys Chem A 2022; 126:9644-9650. [PMID: 36519723 DOI: 10.1021/acs.jpca.2c06647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Designing closed, laser-induced optical cycling transitions in trapped atoms or molecules is useful for quantum information processing, precision measurement, and quantum sensing. Larger molecules that feature such closed transitions are particularly desirable, as the increased degrees of freedom present new structures for optical control and enhanced measurements. The search for molecules with robust optical cycling centers is a challenge which requires design principles beyond trial-and-error. Two such principles are proposed for the particular M-O-R framework, where M is an alkaline earth metal radical, and R is a ligand: (1) Large, saturated hydrocarbons can serve as ligands, R, due to a substantial HOMO-LUMO gap that encloses the cycling transition, so long as the R group is rigid. (2) Electron-withdrawing groups, via induction, can enhance Franck-Condon factors (FCFs) of the optical cycling transition, as long as they do not disturb the locally linear structure in the M-O-R motif. With these tools in mind, larger molecules can be trapped and used as optical cycling centers, sometimes with higher FCFs than smaller molecules.
Collapse
Affiliation(s)
- Claire E Dickerson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Cecilia Chang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Han Guo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Man MP, Groenenboom GC, Karman T. Symmetry Breaking in Sticky Collisions between Ultracold Molecules. PHYSICAL REVIEW LETTERS 2022; 129:243401. [PMID: 36563246 DOI: 10.1103/physrevlett.129.243401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/28/2022] [Indexed: 06/17/2023]
Abstract
Ultracold molecules undergo "sticky collisions" that result in loss even for chemically nonreactive molecules. Sticking times can be enhanced by orders of magnitude by interactions that lead to nonconservation of nuclear spin or total angular momentum. We present a quantitative theory of the required strength of such symmetry-breaking interactions based on classical simulation of collision complexes. We find static electric fields as small as 10 V/cm can lead to nonconservation of angular momentum, while we find nuclear spin is conserved during collisions. We also compute loss of collision complexes due to spontaneous emission and absorption of black-body radiation, which are found to be slow.
Collapse
Affiliation(s)
- Marijn P Man
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Gerrit C Groenenboom
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Tijs Karman
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
23
|
Liu Y, Huang J, Yang D, Xie D, Guo H. Global Full-Dimensional Potential Energy Surface for the Reaction 23Na 87Rb + 23Na 87Rb → 23Na 2 + 87Rb 2 and the Formation Rate and Lifetime of the 23Na 287Rb 2 Collision Complex. J Phys Chem A 2022; 126:9008-9021. [DOI: 10.1021/acs.jpca.2c06438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Yilang Liu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China
| | - Dongzheng Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Hefei National Laboratory, Hefei 230088, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
24
|
Mitra D, Lasner ZD, Zhu GZ, Dickerson CE, Augenbraun BL, Bailey AD, Alexandrova AN, Campbell WC, Caram JR, Hudson ER, Doyle JM. Pathway toward Optical Cycling and Laser Cooling of Functionalized Arenes. J Phys Chem Lett 2022; 13:7029-7035. [PMID: 35900113 DOI: 10.1021/acs.jpclett.2c01430] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid and repeated photon cycling has enabled precision metrology and the development of quantum information systems using atoms and simple molecules. Extending optical cycling to structurally complex molecules would provide new capabilities in these areas, as well as in ultracold chemistry. Increased molecular complexity, however, makes realizing closed optical transitions more difficult. Building on already established strong optical cycling of diatomic, linear triatomic, and symmetric top molecules, recent work has pointed the way to cycling of larger molecules, including phenoxides. The paradigm for these systems is an optical cycling center bonded to a molecular ligand. Theory has suggested that cycling may be extended to even larger ligands, like naphthalene, pyrene, and coronene. Herein, we study optical excitation and fluorescent vibrational branching of CaO-[Formula: see text], SrO-[Formula: see text], and CaO-[Formula: see text] and find only weak decay to excited vibrational states, indicating a promising path to full quantum control and laser cooling of large arene-based molecules.
Collapse
Affiliation(s)
- Debayan Mitra
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, United States
| | - Zack D Lasner
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, United States
| | - Guo-Zhu Zhu
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, United States
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
- Challenge Institute for Quantum Computation, University of California, Los Angeles, California 90095, United States
| | - Claire E Dickerson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Benjamin L Augenbraun
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, United States
| | - Austin D Bailey
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Anastassia N Alexandrova
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Wesley C Campbell
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, United States
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
- Challenge Institute for Quantum Computation, University of California, Los Angeles, California 90095, United States
| | - Justin R Caram
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Eric R Hudson
- Department of Physics and Astronomy, University of California, Los Angeles, California 90095, United States
- Center for Quantum Science and Engineering, University of California, Los Angeles, California 90095, United States
- Challenge Institute for Quantum Computation, University of California, Los Angeles, California 90095, United States
| | - John M Doyle
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard-MIT Center for Ultracold Atoms, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
25
|
Yang H, Li Z, Zhang S, Bohn JL, Cao L, Zhang S, Wang G, Xu H, Li Z. Channel Selection of Ultracold Atom-Molecule Scattering in Dynamic Magnetic Fields. PHYSICAL REVIEW LETTERS 2022; 129:013402. [PMID: 35841560 DOI: 10.1103/physrevlett.129.013402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/02/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
We demonstrate that final states of ultracold molecules by scattering with atoms can be selectively produced using dynamic magnetic fields of multiple frequencies. We develop a multifrequency Floquet coupled channel method to study the channel selection by dynamic magnetic field control, which can be interpreted by a generalized quantum Zeno effect for the selected scattering channels. In particular, we use an atom-molecule spin-flip scattering to show that the transition to certain final states of the molecules in the inelastic scattering can be suppressed by engineered coupling between the Floquet states.
Collapse
Affiliation(s)
- Hanwei Yang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Zunqi Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Songbin Zhang
- Department of Physics, Shaanxi Normal University, Xi'an 710119, China
| | - John L Bohn
- JILA, University of Colorado, Boulder, Colorado 80309, USA
| | - Lushuai Cao
- MOE Key Laboratory of Fundamental Physical Quantities Measurement & Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shutao Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Gaoren Wang
- School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Haitan Xu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, China
| |
Collapse
|
26
|
Wang BB, Zhang M, Han YC. Ultracold state-to-state chemistry for three-body recombination in realistic 3He 2-alkaline-earth-metal systems. J Chem Phys 2022; 157:014305. [PMID: 35803812 DOI: 10.1063/5.0090243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ultracold state-to-state chemistry for three-body recombination (TBR) in realistic systems recently could be experimentally investigated with full quantum state resolution. However, many detected phenomena remain challenging to be explored and explained from the theoretical viewpoints because this generally requires computational powers beyond the state-of-the-art. Here, the product-state distributions after TBR of 3He2-alkaline-earth-metal systems, i.e. after the processes 3He+3He+X→3HeX+3He with X being 9Be, 24Mg, 40Ca, 88Sr, or 138Ba, in the zero-collision-energy limit are theoretically studied. Two propensity rules for the distribution of the products found in current experiments have been checked, and the mechanism underlying these product-state distributions is explored. Particularly, two main intriguing transition pathways are identified, which may be responsible for the nonlinear distribution of the products versus their rotational quantum number. In addition, the total TBR rates of these systems are also accounted for by the joint effects of major adiabatic potential energies and relevant nonadiabatic couplings.
Collapse
Affiliation(s)
- Bin-Bin Wang
- School of Physics and Astronomy, China West Normal University, China
| | | | - Yong-Chang Han
- Department of Physics, Dalian University of Technology, China
| |
Collapse
|
27
|
Perera CA, Zuo J, Guo H, Suits AG. Differential Cross Sections for Cold, State-to-State Spin-Orbit Changing Collisions of NO( v = 10) with Neon. J Phys Chem A 2022; 126:3338-3346. [PMID: 35605132 DOI: 10.1021/acs.jpca.2c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inelastic scattering processes have proven a powerful means of investigating molecular interactions, and much current effort is focused on the cold and ultracold regime where quantum phenomena are clearly manifested. Studies of collisions of the open shell nitric oxide (NO) molecule have been central in this effort since the pioneering work of Houston and co-workers in the early 1990s. State-to-state scattering of vibrationally excited molecules in the cold regime introduces challenges that test the suitability of current theoretical methods for ab initio determination of intermolecular potentials, and concomitant electronically nonadiabatic processes raise the bar further. Here we report measurements of differential cross sections for state-to-state spin-orbit changing collisions of NO (v = 10, Ω″ = 1.5, and j″ = 1.5) with neon from 2.3 to 3.5 cm-1 collision energy using our recently developed near-copropagating beam technique. The experimental results are compared with those obtained from quantum scattering calculations on a high-level set of coupled cluster potential energy surfaces and are shown to be in good agreement. The theoretical results suggest that distinct backscattering in the 2.3 cm-1 case arises from overlapping resonances.
Collapse
Affiliation(s)
- Chatura A Perera
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Junxiang Zuo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
28
|
Buren B, Chen M. Wave Packet Approach to Adiabatic and Nonadiabatic Dynamics of Cold Inelastic Scatterings. Molecules 2022; 27:2912. [PMID: 35566262 PMCID: PMC9101670 DOI: 10.3390/molecules27092912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Due to the extremely large de Broglie wavelength of cold molecules, cold inelastic scattering is always characterized by the time-independent close-coupling (TICC) method. However, the TICC method is difficult to apply to collisions of large molecular systems. Here, we present a new strategy for characterizing cold inelastic scattering using wave packet (WP) method. In order to deal with the long de Broglie wavelength of cold molecules, the total wave function is divided into interaction, asymptotic and long-range regions (IALR). The three regions use different numbers of ro-vibrational basis functions, especially the long-range region, which uses only one function corresponding to the initial ro-vibrational state. Thus, a very large grid range can be used to characterize long de Broglie wavelengths in scattering coordinates. Due to its better numerical scaling law, the IALR-WP method has great potential in studying the inelastic scatterings of larger collision systems at cold and ultracold regimes.
Collapse
Affiliation(s)
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;
| |
Collapse
|
29
|
Haze S, D'Incao JP, Dorer D, Deiß M, Tiemann E, Julienne PS, Denschlag JH. Spin-Conservation Propensity Rule for Three-Body Recombination of Ultracold Rb Atoms. PHYSICAL REVIEW LETTERS 2022; 128:133401. [PMID: 35426725 DOI: 10.1103/physrevlett.128.133401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
We explore the physical origin and the general validity of a propensity rule for the conservation of the hyperfine spin state in three-body recombination. This rule was recently discovered for the special case of ^{87}Rb with its nearly equal singlet and triplet scattering lengths. Here, we test the propensity rule for ^{85}Rb for which the scattering properties are very different from ^{87}Rb. The Rb_{2} molecular product distribution is mapped out in a state-to-state fashion using resonance-enhanced multiphoton ionization detection schemes which fully cover all possible molecular spin states. Interestingly, for the experimentally investigated range of binding energies from zero to ∼13 GHz×h we observe that the spin-conservation propensity rule also holds for ^{85}Rb. From these observations and a theoretical analysis we derive an understanding for the conservation of the hyperfine spin state. We identify several criteria to judge whether the propensity rule will also hold for other elements and collision channels.
Collapse
Affiliation(s)
- Shinsuke Haze
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology IQST, Universität Ulm, D-89069 Ulm, Germany
| | - José P D'Incao
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology IQST, Universität Ulm, D-89069 Ulm, Germany
- JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA
| | - Dominik Dorer
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology IQST, Universität Ulm, D-89069 Ulm, Germany
| | - Markus Deiß
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology IQST, Universität Ulm, D-89069 Ulm, Germany
| | - Eberhard Tiemann
- Institut für Quantenoptik, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Paul S Julienne
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology IQST, Universität Ulm, D-89069 Ulm, Germany
- Joint Quantum Institute, University of Maryland and NIST, College Park, Maryland 20742, USA
| | - Johannes Hecker Denschlag
- Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology IQST, Universität Ulm, D-89069 Ulm, Germany
| |
Collapse
|
30
|
Son H, Park JJ, Lu YK, Jamison AO, Karman T, Ketterle W. Control of reactive collisions by quantum interference. Science 2022; 375:1006-1010. [PMID: 35239387 DOI: 10.1126/science.abl7257] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In this study, we achieved magnetic control of reactive scattering in an ultracold mixture of 23Na atoms and 23Na6Li molecules. In most molecular collisions, particles react or are lost near short range with unity probability, leading to the so-called universal rate. By contrast, the Na + NaLi system was shown to have only ~4% loss probability in a fully spin-polarized state. By controlling the phase of the scattering wave function via a Feshbach resonance, we modified the loss rate by more than a factor of 100, from far below to far above the universal limit. The results are explained in analogy with an optical Fabry-Perot resonator by interference of reflections at short and long range. Our work demonstrates quantum control of chemistry by magnetic fields with the full dynamic range predicted by our models.
Collapse
Affiliation(s)
- Hyungmok Son
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Juliana J Park
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yu-Kun Lu
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alan O Jamison
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Tijs Karman
- Institute for Molecules and Materials, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Wolfgang Ketterle
- MIT-Harvard Center for Ultracold Atoms, Research Laboratory of Electronics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Yang D, Xie D, Guo H. Stereodynamical Control of Cold Collisions of Polyatomic Molecules with Atoms. J Phys Chem Lett 2022; 13:1777-1784. [PMID: 35167302 DOI: 10.1021/acs.jpclett.2c00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scattering between atomic and/or molecular species can be controlled by manipulating the orientation or alignment of the collision partners. Such stereodynamics is particularly pronounced at cold (∼1 K) collision temperatures because of the presence of resonances. Comparing to the extensively studied atomic and diatomic species, polyatomic molecules with strong steric anisotropy could provide a more sophisticated platform for studying such stereodynamics. Here, we provide the quantum mechanical framework for understanding state-to-state stereodynamics in rotationally inelastic scattering of polyatomic molecules with atoms and apply it to cold collision of oriented H2O with He on a highly accurate potential energy surface. It is shown that strong stereodynamical control can be achieved near 1 K via shape resonances. Furthermore, quantum interference in scattering of a coherently prepared initial state of the H2O species is explored, which is shown to be significant.
Collapse
Affiliation(s)
- Dongzheng Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
32
|
Zhao B, Pan JW. Quantum control of reactions and collisions at ultralow temperatures. Chem Soc Rev 2022; 51:1685-1701. [PMID: 35169822 DOI: 10.1039/d1cs01040a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At temperatures close to absolute zero, the molecular reactions and collisions are dominantly governed by quantum mechanics. Remarkable quantum phenomena such as quantum tunneling, quantum threshold behavior, quantum resonances, quantum interference, and quantum statistics are expected to be the main features in ultracold reactions and collisions. Ultracold molecules offer great opportunities and challenges in the study of these intriguing quantum phenomena in molecular processes. In this article, we review the recent progress in the preparation of ultracold molecules and the study of ultracold reactions and collisions using ultracold molecules. We focus on the controlled ultracold chemistry and the scattering resonances at ultralow temperatures. The challenges in understanding the complex ultracold reactions and collisions are also discussed.
Collapse
Affiliation(s)
- Bo Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China. .,Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China.,Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
33
|
Kale SS, Chen YP, Kais S. Constructive Quantum Interference in Photochemical Reactions. J Chem Theory Comput 2021; 17:7822-7826. [PMID: 34788039 DOI: 10.1021/acs.jctc.1c00826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Interferences emerge when multiple pathways coexist together, leading toward the same result. Here, we report a theoretical study for a reaction scheme that leads to constructive quantum interference in a photoassociation (PA) reaction of a 87Rb Bose-Einstein condensate where the reactant spin state is prepared in a coherent superposition of multiple bare spin states. This is achieved by changing the reactive scattering channel in the PA reaction. As the origin of coherent control comes from the spin part of the wavefunction, we show that it is sufficient to use radio frequency (RF) coupling to achieve the superposition state. We simulate the RF coupling on a quantum processor (IBMQ Lima), and our results show that interferences can be used as a resource for the coherent control of photochemical reactions. The approach is general and can be employed to study a wide spectrum of chemical reactions in the ultracold regime.
Collapse
Affiliation(s)
- Sumit Suresh Kale
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yong P Chen
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| | - Sabre Kais
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States.,Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
34
|
Abstract
Advances in atomic, molecular, and optical physics techniques allowed the cooling of simple molecules down to the ultracold regime ([Formula: see text]1 mK) and opened opportunities to study chemical reactions with unprecedented levels of control. This review covers recent developments in studying bimolecular chemistry at ultralow temperatures. We begin with a brief overview of methods for producing, manipulating, and detecting ultracold molecules. We then survey experimental works that exploit the controllability of ultracold molecules to probe and modify their long-range interactions. Further combining the use of physical chemistry techniques such as mass spectrometry and ion imaging significantly improved the detection of ultracold reactions and enabled explorations of their dynamics in the short range. We discuss a series of studies on the reaction KRb + KRb → K2 + Rb2 initiated below 1 [Formula: see text]K, including the direct observation of a long-lived complex, the demonstration of product rotational state control via conserved nuclear spins, and a test of the statistical model using the complete quantum state distribution of the products. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yu Liu
- Time and Frequency Division, National Institute of Standards and Technology, Boulder, Colorado 80305, USA; .,Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Kang-Kuen Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA; .,Harvard-Massachusetts Institute of Technology Center for Ultracold Atoms, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
35
|
Buren B, Chen M, Sun Z, Guo H. Quantum Wave Packet Treatment of Cold Nonadiabatic Reactive Scattering at the State-To-State Level. J Phys Chem A 2021; 125:10111-10120. [PMID: 34767377 DOI: 10.1021/acs.jpca.1c08105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cold and ultracold collisions are dominated by quantum effects, such as resonances, tunneling, and nonadiabatic transitions between different electronic states. Due to the extremely long de Broglie wavelength in such processes, quantum reactive scattering is most conveniently characterized using the time-independent close-coupling (TICC) methods. However, the TICC approach is difficult for systems with a large number of channels because of its steep numerical scaling laws. Here, a recently proposed quantum wave packet (WP) approach for solving adiabatic reactive scattering problems at low collision energies is extended to include nonadiabatic transitions. To impose the outgoing boundary conditions, the total scattering wavefunction is split into three parts, the interaction, the asymptotic, and the long-range regions. Each region is associated with a different set of basis functions, which could be optimized separately. In this way, an extremely long grid can be used to accommodate the characteristic long de Broglie wavelengths in the scattering coordinate. The better numerical scaling laws of the WP approach have the potential for handling larger nonadiabatic reactive systems at low temperatures in the future.
Collapse
Affiliation(s)
- Bayaer Buren
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
36
|
|
37
|
Huang J, Yang D, Zuo J, Hu X, Xie D, Guo H. Full-Dimensional Global Potential Energy Surface for the KRb + KRb → K 2Rb 2* → K 2 + Rb 2 Reaction with Accurate Long-Range Interactions and Quantum Statistical Calculation of the Product State Distribution under Ultracold Conditions. J Phys Chem A 2021; 125:6198-6206. [PMID: 34251201 DOI: 10.1021/acs.jpca.1c04506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A full-dimensional global potential energy surface (PES) for the KRb + KRb → K2Rb2* → K2 + Rb2 reaction is reported based on high-level ab initio calculations. The short-range part of the PES is fit with the permutationally invariant polynomial-neural network method, while the long-range parts of the PES in both the reactant and product asymptotes are represented by an asymptotically correct form. The long- and short-range parts are connected with intermediate-range parts to make them smooth. Within a statistical quantum model, this PES reproduces both the measured loss rates of ultracold KRb molecules and the K2 and Rb2 product state distributions, underscoring the important role of tunneling in ultracold chemistry. The PES also correctly predicts the lifetime of the K2Rb2* intermediate complex within the Rice-Ramsperger-Kassel-Marcus limit. It thus provides a reliable platform for future dynamical studies of the prototypical reaction.
Collapse
Affiliation(s)
- Jing Huang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Dongzheng Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junxiang Zuo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Xixi Hu
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|