1
|
Paul MA, Sigoillot SM, Marti L, Urra Quiroz FJ, Delagrange M, Cheung HW, Martinelli DC, Oriol E, Hakim V, Mailly P, Selimi F. Stepwise molecular specification of excitatory synapse diversity onto cerebellar Purkinje cells. Nat Neurosci 2024:10.1038/s41593-024-01826-w. [PMID: 39658623 DOI: 10.1038/s41593-024-01826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/22/2024] [Indexed: 12/12/2024]
Abstract
Brain function relies on the generation of a large variety of morphologically and functionally diverse, but specific, neuronal synapses. Here we show that, in mice, the initial formation of synapses on cerebellar Purkinje cells involves a presynaptic protein-CBLN1, a member of the C1q protein family-that is secreted by all types of excitatory inputs. The molecular program then evolves only in one of the Purkinje cell inputs, the inferior olivary neurons, with the additional expression of the presynaptic secreted proteins C1QL1, CRTAC1 and LGI2. These molecules work in concert to specify the mature connectivity pattern on the Purkinje cell target. These results show that some inputs actively and gradually specify their synaptic molecular identity, while others rely on the 'original molecular code'. Thus, the molecular specification of excitatory synapses, crucial for proper circuit function, is acquired in a stepwise manner during mouse postnatal development and obeys input-specific rules.
Collapse
Affiliation(s)
- Maëla A Paul
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Séverine M Sigoillot
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Léa Marti
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Francisco J Urra Quiroz
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France
- Inovarion, Paris, France
| | - Marine Delagrange
- Plateforme qPCR-HD-GPC, Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Hiu W Cheung
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
| | - David C Martinelli
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, USA
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, USA
| | - Elie Oriol
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de Paris, Paris, France
| | - Vincent Hakim
- Laboratoire de Physique de l'Ecole Normale Supérieure, CNRS, Ecole Normale Supérieure, PSL University, Sorbonne Université, Université de Paris, Paris, France
| | - Philippe Mailly
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France
| | - Fekrije Selimi
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Université PSL, CNRS, INSERM, Paris, France.
| |
Collapse
|
2
|
Kwon SY, Chan K, Stofanko M, Chan KH, Badenhorst P. Abrupt-mediated control of ninjurins regulates Drosophila sessile haemocyte compartments. Development 2024; 151:dev202977. [PMID: 39545919 DOI: 10.1242/dev.202977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Macrophage-like cells called haemocytes are key effectors of Drosophila cellular innate immune function. Larval haemocytes exist either in circulation or localize to segmentally repeated sessile haemocyte compartments (SHCs). While numerous functions have been proposed for SHCs, the mechanisms directing haemocytes to them are unclear. Here, we have exploited the developmentally regulated dispersal of SHCs that occurs at pupariation to identify the Abrupt (Ab) transcription factor (TF) and ninjurin cell-adhesion molecules as regulators of haemocyte recruitment to SHCs. We show that larval haemocytes express ninjurins, which are required for targeting haemocytes to SHCs. However, at pupariation, ecdysteroid signalling stimulates Ab expression, which collaborates with TFs, including Blimp-1 and Hr3, to repress ninjurins and disperse haemocytes. We observe that experimental manipulations that antagonize ninjurin function in larval haemocytes cause premature SHC dispersal, while stabilization of ninjurins in haemocytes blocks developmentally regulated SHC remodelling and increases sensitivity to immune challenges. Cumulatively, our data indicate that control of ninjurin activity provides a common target through which diverse developmental, environmental and immune stimuli can be integrated to control haemocyte dispersal and immune function.
Collapse
Affiliation(s)
- So Yeon Kwon
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Kimberly Chan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Martin Stofanko
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ka Hei Chan
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Paul Badenhorst
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| |
Collapse
|
3
|
Wani AR, Chowdhury B, Luong J, Chaya GM, Patel K, Isaacman-Beck J, Kayser MS, Syed MH. Stem cell-specific ecdysone signaling regulates the development of dorsal fan-shaped body neurons and sleep homeostasis. Curr Biol 2024; 34:4951-4967.e5. [PMID: 39383867 PMCID: PMC11537841 DOI: 10.1016/j.cub.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Complex behaviors arise from neural circuits that assemble from diverse cell types. Sleep is a conserved behavior essential for survival, yet little is known about how the nervous system generates neuron types of a sleep-wake circuit. Here, we focus on the specification of Drosophila 23E10-labeled dorsal fan-shaped body (dFB) long-field tangential input neurons that project to the dorsal layers of the fan-shaped body neuropil in the central complex. We use lineage analysis and genetic birth dating to identify two bilateral type II neural stem cells (NSCs) that generate 23E10 dFB neurons. We show that adult 23E10 dFB neurons express ecdysone-induced protein 93 (E93) and that loss of ecdysone signaling or E93 in type II NSCs results in their misspecification. Finally, we show that E93 knockdown in type II NSCs impairs adult sleep behavior. Our results provide insight into how extrinsic hormonal signaling acts on NSCs to generate the neuronal diversity required for adult sleep behavior. These findings suggest that some adult sleep disorders might derive from defects in stem cell-specific temporal neurodevelopmental programs.
Collapse
Affiliation(s)
- Adil R Wani
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | - Budhaditya Chowdhury
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gonzalo Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | - Krishna Patel
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA
| | | | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, Albuquerque, NM 87131, USA.
| |
Collapse
|
4
|
Butrus S, Monday HR, Yoo CJ, Feldman DE, Shekhar K. Molecular states underlying neuronal cell type development and plasticity in the whisker cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617106. [PMID: 39416021 PMCID: PMC11482765 DOI: 10.1101/2024.10.07.617106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Mouse whisker somatosensory cortex (wS1) is a major model system to study the experience-dependent plasticity of cortical neuron physiology, morphology, and sensory coding. However, the role of sensory experience in regulating neuronal cell type development and gene expression in wS1 remains poorly understood. We assembled and annotated a transcriptomic atlas of wS1 during postnatal development comprising 45 molecularly distinct neuronal types that can be grouped into eight excitatory and four inhibitory neuron subclasses. Using this atlas, we examined the influence of whisker experience from postnatal day (P) 12, the onset of active whisking, to P22, on the maturation of molecularly distinct cell types. During this developmental period, when whisker experience was normal, ~250 genes were regulated in a neuronal subclass-specific fashion. At the resolution of neuronal types, we found that only the composition of layer (L) 2/3 glutamatergic neuronal types, but not other neuronal types, changed substantially between P12 and P22. These compositional changes resemble those observed previously in the primary visual cortex (V1), and the temporal gene expression changes were also highly conserved between the two regions. In contrast to V1, however, cell type maturation in wS1 is not substantially dependent on sensory experience, as 10-day full-face whisker deprivation did not influence the transcriptomic identity and composition of L2/3 neuronal types. A one-day competitive whisker deprivation protocol also did not affect cell type identity but induced moderate changes in plasticity-related gene expression. Thus, developmental maturation of cell types is similar in V1 and wS1, but sensory deprivation minimally affects cell type development in wS1.
Collapse
Affiliation(s)
- Salwan Butrus
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hannah R. Monday
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christopher J. Yoo
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel E. Feldman
- Department of Neuroscience, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Computational Biology; Vision Sciences and Optometry; University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
5
|
Smolin N, Dombrovski M, Hina BW, Moreno-Sanchez A, Gossart R, Carmona CR, Rehan A, Hussein RH, Mirshahidi P, Ausborn J, Kurmangaliyev YZ, von Reyn CR. Neuronal identity control at the resolution of a single transcription factor isoform. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.598883. [PMID: 38915533 PMCID: PMC11195191 DOI: 10.1101/2024.06.14.598883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The brain exhibits remarkable neuronal diversity which is critical for its functional integrity. From the sheer number of cell types emerging from extensive transcriptional, morphological, and connectome datasets, the question arises of how the brain is capable of generating so many unique identities. 'Terminal selectors' are transcription factors hypothesized to determine the final identity characteristics in post-mitotic cells. Which transcription factors function as terminal selectors and the level of control they exert over different terminal characteristics are not well defined. Here, we establish a novel role for the transcription factor broad as a terminal selector in Drosophila melanogaster. We capitalize on existing large sequencing and connectomics datasets and employ a comprehensive characterization of terminal characteristics including Perturb-seq and whole-cell electrophysiology. We find a single isoform broad-z4 serves as the switch between the identity of two visual projection neurons LPLC1 and LPLC2. Broad-z4 is natively expressed in LPLC1, and is capable of transforming the transcriptome, morphology, and functional connectivity of LPLC2 cells into LPLC1 cells when perturbed. Our comprehensive work establishes a single isoform as the smallest unit underlying an identity switch, which may serve as a conserved strategy replicated across developmental programs.
Collapse
Affiliation(s)
- Natalie Smolin
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Mark Dombrovski
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Bryce W. Hina
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
| | - Anthony Moreno-Sanchez
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | - Ryan Gossart
- Brandeis University, Department of Biology, Waltham, MA
| | | | - Aadil Rehan
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Roni H. Hussein
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Parmis Mirshahidi
- Howard Hughes Medical Institute, Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| | | | - Catherine R. von Reyn
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
6
|
Prince GS, Reynolds M, Martina V, Sun H. Gene-environmental regulation of the postnatal post-mitotic neuronal maturation. Trends Genet 2024; 40:480-494. [PMID: 38658255 PMCID: PMC11153025 DOI: 10.1016/j.tig.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024]
Abstract
Embryonic neurodevelopment, particularly neural progenitor differentiation into post-mitotic neurons, has been extensively studied. While the number and composition of post-mitotic neurons remain relatively constant from birth to adulthood, the brain undergoes significant postnatal maturation marked by major property changes frequently disrupted in neural diseases. This review first summarizes recent characterizations of the functional and molecular maturation of the postnatal nervous system. We then review regulatory mechanisms controlling the precise gene expression changes crucial for the intricate sequence of maturation events, highlighting experience-dependent versus cell-intrinsic genetic timer mechanisms. Despite significant advances in understanding of the gene-environmental regulation of postnatal neuronal maturation, many aspects remain unknown. The review concludes with our perspective on exciting future research directions in the next decade.
Collapse
Affiliation(s)
- Gabrielle S Prince
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Molly Reynolds
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Verdion Martina
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - HaoSheng Sun
- Department of Cell, Developmental, and Integrative Biology, The University of Alabama at Birmingham, Birmingham, AL, USA; Freeman Hrabowski Scholar, Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Osaka J, Ishii A, Wang X, Iwanaga R, Kawamura H, Akino S, Sugie A, Hakeda-Suzuki S, Suzuki T. Complex formation of immunoglobulin superfamily molecules Side-IV and Beat-IIb regulates synaptic specificity. Cell Rep 2024; 43:113798. [PMID: 38381608 DOI: 10.1016/j.celrep.2024.113798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/03/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Neurons establish specific synapses based on the adhesive properties of cell-surface proteins while also retaining the ability to form synapses in a relatively non-selective manner. However, comprehensive understanding of the underlying mechanism reconciling these opposing characteristics remains incomplete. Here, we have identified Side-IV/Beat-IIb, members of the Drosophila immunoglobulin superfamily, as a combination of cell-surface recognition molecules inducing synapse formation. The Side-IV/Beat-IIb combination transduces bifurcated signaling with Side-IV's co-receptor, Kirre, and a synaptic scaffold protein, Dsyd-1. Genetic experiments and subcellular protein localization analyses showed the Side-IV/Beat-IIb/Kirre/Dsyd-1 complex to have two essential functions. First, it narrows neuronal binding specificity through Side-IV/Beat-IIb extracellular interactions. Second, it recruits synapse formation factors, Kirre and Dsyd-1, to restrict synaptic loci and inhibit miswiring. This dual function explains how the combinations of cell-surface molecules enable the ranking of preferred interactions among neuronal pairs to achieve synaptic specificity in complex circuits in vivo.
Collapse
Affiliation(s)
- Jiro Osaka
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Arisa Ishii
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Xu Wang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Riku Iwanaga
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Hinata Kawamura
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shogo Akino
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan; Research Initiatives and Promotion Organization, Yokohama National University, Yokohama 240-8501, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama 226-8501, Japan.
| |
Collapse
|
8
|
Xu C, Ramos TB, Marshall OJ, Doe CQ. Notch signaling and Bsh homeodomain activity are integrated to diversify Drosophila lamina neuron types. eLife 2024; 12:RP90136. [PMID: 38193901 PMCID: PMC10945509 DOI: 10.7554/elife.90136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Notch signaling is an evolutionarily conserved pathway for specifying binary neuronal fates, yet how it specifies different fates in different contexts remains elusive. In our accompanying paper, using the Drosophila lamina neuron types (L1-L5) as a model, we show that the primary homeodomain transcription factor (HDTF) Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates. Here we test the hypothesis that Notch signaling enables Bsh to differentially specify L4 and L5 fates. We show asymmetric Notch signaling between newborn L4 and L5 neurons, but they are not siblings; rather, Notch signaling in L4 is due to Delta expression in adjacent L1 neurons. While Notch signaling and Bsh expression are mutually independent, Notch is necessary and sufficient for Bsh to specify L4 fate over L5. The NotchON L4, compared to NotchOFF L5, has a distinct open chromatin landscape which allows Bsh to bind distinct genomic loci, leading to L4-specific identity gene transcription. We propose a novel model in which Notch signaling is integrated with the primary HDTF activity to diversify neuron types by directly or indirectly generating a distinct open chromatin landscape that constrains the pool of genes that a primary HDTF can activate.
Collapse
Affiliation(s)
- Chundi Xu
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Tyler B Ramos
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Owen J Marshall
- Menzies Institute for Medical Research, University of TasmaniaHobartAustralia
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
9
|
Xu C, Ramos TB, Rogers EM, Reiser MB, Doe CQ. Homeodomain proteins hierarchically specify neuronal diversity and synaptic connectivity. eLife 2024; 12:RP90133. [PMID: 38180023 PMCID: PMC10942767 DOI: 10.7554/elife.90133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
How our brain generates diverse neuron types that assemble into precise neural circuits remains unclear. Using Drosophila lamina neuron types (L1-L5), we show that the primary homeodomain transcription factor (HDTF) brain-specific homeobox (Bsh) is initiated in progenitors and maintained in L4/L5 neurons to adulthood. Bsh activates secondary HDTFs Ap (L4) and Pdm3 (L5) and specifies L4/L5 neuronal fates while repressing the HDTF Zfh1 to prevent ectopic L1/L3 fates (control: L1-L5; Bsh-knockdown: L1-L3), thereby generating lamina neuronal diversity for normal visual sensitivity. Subsequently, in L4 neurons, Bsh and Ap function in a feed-forward loop to activate the synapse recognition molecule DIP-β, thereby bridging neuronal fate decision to synaptic connectivity. Expression of a Bsh:Dam, specifically in L4, reveals Bsh binding to the DIP-β locus and additional candidate L4 functional identity genes. We propose that HDTFs function hierarchically to coordinate neuronal molecular identity, circuit formation, and function. Hierarchical HDTFs may represent a conserved mechanism for linking neuronal diversity to circuit assembly and function.
Collapse
Affiliation(s)
- Chundi Xu
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Tyler B Ramos
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Edward M Rogers
- Janelia Research Campus, Howard Hughes Medical Institute, Helix DriveAshburnUnited States
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, Helix DriveAshburnUnited States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
10
|
Sun C, Shao Y, Iqbal J. Insect Insights at the Single-Cell Level: Technologies and Applications. Cells 2023; 13:91. [PMID: 38201295 PMCID: PMC10777908 DOI: 10.3390/cells13010091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/23/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Single-cell techniques are a promising way to unravel the complexity and heterogeneity of transcripts at the cellular level and to reveal the composition of different cell types and functions in a tissue or organ. In recent years, advances in single-cell RNA sequencing (scRNA-seq) have further changed our view of biological systems. The application of scRNA-seq in insects enables the comprehensive characterization of both common and rare cell types and cell states, the discovery of new cell types, and revealing how cell types relate to each other. The recent application of scRNA-seq techniques to insect tissues has led to a number of exciting discoveries. Here we provide an overview of scRNA-seq and its application in insect research, focusing on biological applications, current challenges, and future opportunities to make new discoveries with scRNA-seq in insects.
Collapse
Affiliation(s)
- Chao Sun
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Hangzhou 310058, China;
| | - Yongqi Shao
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Junaid Iqbal
- Institute of Sericulture and Apiculture, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
11
|
Wani AR, Chowdhury B, Luong J, Chaya GM, Patel K, Isaacman-Beck J, Shafer O, Kayser MS, Syed MH. Stem cell-specific ecdysone signaling regulates the development and function of a Drosophila sleep homeostat. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560022. [PMID: 37873323 PMCID: PMC10592846 DOI: 10.1101/2023.09.29.560022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Complex behaviors arise from neural circuits that are assembled from diverse cell types. Sleep is a conserved and essential behavior, yet little is known regarding how the nervous system generates neuron types of the sleep-wake circuit. Here, we focus on the specification of Drosophila sleep-promoting neurons-long-field tangential input neurons that project to the dorsal layers of the fan-shaped body neuropil in the central complex (CX). We use lineage analysis and genetic birth dating to identify two bilateral Type II neural stem cells that generate these dorsal fan-shaped body (dFB) neurons. We show that adult dFB neurons express Ecdysone-induced protein E93, and loss of Ecdysone signaling or E93 in Type II NSCs results in the misspecification of the adult dFB neurons. Finally, we show that E93 knockdown in Type II NSCs affects adult sleep behavior. Our results provide insight into how extrinsic hormonal signaling acts on NSCs to generate neuronal diversity required for adult sleep behavior. These findings suggest that some adult sleep disorders might derive from defects in stem cell-specific temporal neurodevelopmental programs.
Collapse
Affiliation(s)
- Adil R Wani
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | - Budhaditya Chowdhury
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Jenny Luong
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gonzalo Morales Chaya
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | - Krishna Patel
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| | | | - Orie Shafer
- The Advanced Science Research Center, City University of New York, New York, NY 10031, USA
| | - Matthew S. Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Chronobiology Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mubarak Hussain Syed
- Neural Diversity Lab, Department of Biology, University of New Mexico, 219 Yale Blvd Ne, 87131 Albuquerque, NM, USA
| |
Collapse
|
12
|
Bonanno SL, Krantz DE. Transcriptional changes in specific subsets of Drosophila neurons following inhibition of the serotonin transporter. Transl Psychiatry 2023; 13:226. [PMID: 37355701 DOI: 10.1038/s41398-023-02521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
The transcriptional effects of SSRIs and other serotonergic drugs remain unclear, in part due to the heterogeneity of postsynaptic cells, which may respond differently to changes in serotonergic signaling. Relatively simple model systems such as Drosophila afford more tractable microcircuits in which to investigate these changes in specific cell types. Here, we focus on the mushroom body, an insect brain structure heavily innervated by serotonin and comprised of multiple different but related subtypes of Kenyon cells. We use fluorescence-activated cell sorting of Kenyon cells, followed by either bulk or single-cell RNA sequencing to explore the transcriptomic response of these cells to SERT inhibition. We compared the effects of two different Drosophila Serotonin Transporter (dSERT) mutant alleles as well as feeding the SSRI citalopram to adult flies. We find that the genetic architecture associated with one of the mutants contributed to significant artefactual changes in expression. Comparison of differential expression caused by loss of SERT during development versus aged, adult flies, suggests that changes in serotonergic signaling may have relatively stronger effects during development, consistent with behavioral studies in mice. Overall, our experiments revealed limited transcriptomic changes in Kenyon cells, but suggest that different subtypes may respond differently to SERT loss-of-function. Further work exploring the effects of SERT loss-of-function in other circuits may be used help to elucidate how SSRIs differentially affect a variety of different neuronal subtypes both during development and in adults.
Collapse
Affiliation(s)
- Shivan L Bonanno
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - David E Krantz
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Mohylyak I, Bengochea M, Pascual-Caro C, Asfogo N, Fonseca-Topp S, Danda N, Atak ZK, De Waegeneer M, Plaçais PY, Preat T, Aerts S, Corti O, de Juan-Sanz J, Hassan BA. Developmental transcriptional control of mitochondrial homeostasis is required for activity-dependent synaptic connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544500. [PMID: 37333418 PMCID: PMC10274921 DOI: 10.1101/2023.06.11.544500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
During neuronal circuit formation, local control of axonal organelles ensures proper synaptic connectivity. Whether this process is genetically encoded is unclear and if so, its developmental regulatory mechanisms remain to be identified. We hypothesized that developmental transcription factors regulate critical parameters of organelle homeostasis that contribute to circuit wiring. We combined cell type-specific transcriptomics with a genetic screen to discover such factors. We identified Telomeric Zinc finger-Associated Protein (TZAP) as a temporal developmental regulator of neuronal mitochondrial homeostasis genes, including Pink1 . In Drosophila , loss of dTzap function during visual circuit development leads to loss of activity-dependent synaptic connectivity, that can be rescued by Pink1 expression. At the cellular level, loss of dTzap/TZAP leads to defects in mitochondrial morphology, attenuated calcium uptake and reduced synaptic vesicle release in fly and mammalian neurons. Our findings highlight developmental transcriptional regulation of mitochondrial homeostasis as a key factor in activity-dependent synaptic connectivity.
Collapse
|
14
|
Hamid A, Gutierrez A, Munroe J, Syed MH. The Drivers of Diversity: Integrated genetic and hormonal cues regulate neural diversity. Semin Cell Dev Biol 2023; 142:23-35. [PMID: 35915026 DOI: 10.1016/j.semcdb.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/17/2022]
Abstract
Proper functioning of the nervous system relies not only on the generation of a vast repertoire of distinct neural cell types but also on the precise neural circuitry within them. How the generation of highly diverse neural populations is regulated during development remains a topic of interest. Landmark studies in Drosophila have identified the genetic and temporal cues regulating neural diversity and thus have provided valuable insights into our understanding of temporal patterning of the central nervous system. The development of the Drosophila central complex, which is mostly derived from type II neural stem cell (NSC) lineages, showcases how a small pool of NSCs can give rise to vast and distinct progeny. Similar to the human outer subventricular zone (OSVZ) neural progenitors, type II NSCs generate intermediate neural progenitors (INPs) to expand and diversify lineages that populate higher brain centers. Each type II NSC has a distinct spatial identity and timely regulated expression of many transcription factors and mRNA binding proteins. Additionally, INPs derived from them show differential expression of genes depending on their birth order. Together type II NSCs and INPs display a combinatorial temporal patterning that expands neural diversity of the central brain lineages. We cover advances in current understanding of type II NSC temporal patterning and discuss similarities and differences in temporal patterning mechanisms of various NSCs with a focus on how cell-intrinsic and extrinsic hormonal cues regulate temporal transitions in NSCs during larval development. Cell extrinsic ligands activate conserved signaling pathways and extrinsic hormonal cues act as a temporal switch that regulate temporal progression of the NSCs. We conclude by elaborating on how a progenitor's temporal code regulates the fate specification and identity of distinct neural types. At the end, we also discuss open questions in linking developmental cues to neural identity, circuits, and underlying behaviors in the adult fly.
Collapse
Affiliation(s)
- Aisha Hamid
- Department of Biology, University of New Mexico, Albuquerque, NM 87113, USA
| | - Andrew Gutierrez
- Department of Biology, University of New Mexico, Albuquerque, NM 87113, USA
| | - Jordan Munroe
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
15
|
Li X, Syed MH. Time, space, and diversity. Semin Cell Dev Biol 2023; 142:1-3. [PMID: 36100475 DOI: 10.1016/j.semcdb.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Xin Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| | | |
Collapse
|
16
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Özel MN, Gibbs CS, Holguera I, Soliman M, Bonneau R, Desplan C. Coordinated control of neuronal differentiation and wiring by sustained transcription factors. Science 2022; 378:eadd1884. [PMID: 36480601 DOI: 10.1126/science.add1884] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The large diversity of cell types in nervous systems presents a challenge in identifying the genetic mechanisms that encode it. Here, we report that nearly 200 distinct neurons in the Drosophila visual system can each be defined by unique combinations of on average 10 continuously expressed transcription factors. We show that targeted modifications of this terminal selector code induce predictable conversions of neuronal fates that appear morphologically and transcriptionally complete. Cis-regulatory analysis of open chromatin links one of these genes to an upstream patterning factor that specifies neuronal fates in stem cells. Experimentally validated network models describe the synergistic regulation of downstream effectors by terminal selectors and ecdysone signaling during brain wiring. Our results provide a generalizable framework of how specific fates are implemented in postmitotic neurons.
Collapse
Affiliation(s)
| | - Claudia Skok Gibbs
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA.,Center for Data Science, New York University, New York, NY 10003, USA
| | - Isabel Holguera
- Department of Biology, New York University, New York, NY 10003, USA
| | - Mennah Soliman
- Department of Biology, New York University, New York, NY 10003, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003, USA.,Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA.,Center for Data Science, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.,New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|