1
|
Jiang WC, Zhong MC, Fang YK, Donsa S, Březinová I, Peng LY, Burgdörfer J. Time Delays as Attosecond Probe of Interelectronic Coherence and Entanglement. PHYSICAL REVIEW LETTERS 2024; 133:163201. [PMID: 39485984 DOI: 10.1103/physrevlett.133.163201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 09/06/2024] [Indexed: 11/03/2024]
Abstract
Attosecond chronoscopy enables the exploration of correlated electron dynamics in real time. One key observable of attosecond physics is the determination of "time zero" of photoionization, the time delay with which the wave packet of the ionized electron departs from the ionic core. This observable has become accessible by experimental advances in attosecond streaking and reconstruction of attosecond beating by interference of two-photon transitions (RABBIT) techniques. In this Letter, we explore photoionization time delays by strong extreme ultraviolet fields beyond the linear-response limit. We identify novel signatures in time delays signifying strong coupling between atoms and light fields and the light-field dressing of the ion. As a prototypical case, we study the interelectronic coherence and entanglement in helium driven by a strong extreme ultraviolet field. By the numerical solution of the time-dependent Schrödinger equation in its full dimensionality, we show that the time delay of the photoionized electron allows one to monitor the ultrafast variations of coherence dynamics and entanglement in real time.
Collapse
Affiliation(s)
| | | | - Yong-Kang Fang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | | | | | - Liang-You Peng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | | |
Collapse
|
2
|
Stenquist A, Zapata F, Olofsson E, Liao Y, Svegborn E, Bruhnke JN, Verdozzi C, Dahlström JM. Mollow-like Triplets in Ultrafast Resonant Absorption. PHYSICAL REVIEW LETTERS 2024; 133:063202. [PMID: 39178456 DOI: 10.1103/physrevlett.133.063202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 08/25/2024]
Abstract
We show that resonant absorption of smooth laser fields can yield Mollow-like triplet patterns. General conditions for such triplets are derived and illustrated with a super-Gaussian pulse sequence. Gaussian pulses cannot exhibit triplets, super-Gaussian pulses can form triplets depending on the pulse area, and flattop pulses can produce absorption triplets after one Rabi cycle. Our results are compared side by side with resonance fluorescence to emphasize similarities and differences between these unlike observables. In the high-intensity limit, we show that the central absorption peak is asymmetric, which we attribute to nonlinear photoionization, beyond two-level atomic physics.
Collapse
|
3
|
Nandi S, Stenquist A, Papoulia A, Olofsson E, Badano L, Bertolino M, Busto D, Callegari C, Carlström S, Danailov MB, Demekhin PV, Di Fraia M, Eng-Johnsson P, Feifel R, Gallician G, Giannessi L, Gisselbrecht M, Manfredda M, Meyer M, Miron C, Peschel J, Plekan O, Prince KC, Squibb RJ, Zangrando M, Zapata F, Zhong S, Dahlström JM. Generation of entanglement using a short-wavelength seeded free-electron laser. SCIENCE ADVANCES 2024; 10:eado0668. [PMID: 38630815 PMCID: PMC11023495 DOI: 10.1126/sciadv.ado0668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Quantum entanglement between the degrees of freedom encountered in the classical world is challenging to observe due to the surrounding environment. To elucidate this issue, we investigate the entanglement generated over ultrafast timescales in a bipartite quantum system comprising two massive particles: a free-moving photoelectron, which expands to a mesoscopic length scale, and a light-dressed atomic ion, which represents a hybrid state of light and matter. Although the photoelectron spectra are measured classically, the entanglement allows us to reveal information about the dressed-state dynamics of the ion and the femtosecond extreme ultraviolet pulses delivered by a seeded free-electron laser. The observed generation of entanglement is interpreted using the time-dependent von Neumann entropy. Our results unveil the potential for using short-wavelength coherent light pulses from free-electron lasers to generate entangled photoelectron and ion systems for studying spooky action at a distance.
Collapse
Affiliation(s)
- Saikat Nandi
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622, Villeurbanne, France
| | - Axel Stenquist
- Department of Physics, Lund University, 22100 Lund, Sweden
| | | | - Edvin Olofsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Laura Badano
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | | | - David Busto
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Carlo Callegari
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | | | | | - Philipp V. Demekhin
- Institute of Physics and CINSaT, University of Kassel, 34132 Kassel, Germany
| | | | | | - Raimund Feifel
- Department of Physics, University of Gothenburg, 41258 Gothenburg, Sweden
| | | | - Luca Giannessi
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
| | | | | | | | - Catalin Miron
- Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France
- ELI-NP, “Horia Hulubei” National Institute for Physics and Nuclear Engineering, 077125 Mǎgurele, Romania
| | - Jasper Peschel
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Oksana Plekan
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Kevin C. Prince
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
| | - Richard J. Squibb
- Department of Physics, University of Gothenburg, 41258 Gothenburg, Sweden
| | - Marco Zangrando
- Elettra-Sincrotrone Trieste, 34149 Basovizza, Trieste, Italy
- IOM-CNR, Istituto Officina dei Materiali, 34149 Basovizza, Trieste, Italy
| | - Felipe Zapata
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - Shiyang Zhong
- Department of Physics, Lund University, 22100 Lund, Sweden
| | | |
Collapse
|
4
|
Ishikawa KL, Prince KC, Ueda K. Control of Ion-Photoelectron Entanglement and Coherence Via Rabi Oscillations. J Phys Chem A 2023; 127:10638-10646. [PMID: 38084843 DOI: 10.1021/acs.jpca.3c06781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
We report a theoretical investigation of photoionization by a pair of coherent, ultrashort, fundamental and second-harmonic extreme-ultraviolet pulses, where the photon energies are selected to yield the same photoelectron energy for ionization of two different subshells. This choice implies that the fundamental energy is equal to the difference in energy of the ionic states and that they are therefore coupled by the fundamental photon. By deriving analytical expressions using the essential-states approach, we show that this Rabi coupling creates coherence between the two photoelectron wave packets, which would otherwise be incoherent. We analyze how the coupling is affected by the parameters, such as relative phase, pulse width, delay between the two pulses, Rabi coupling strength, and photoelectron energy. Our discussion mostly considers Ne 2p and 2s photoionization, but it is generally valid for many other quantum systems where photoionization from two different shells is observed.
Collapse
Affiliation(s)
- Kenichi L Ishikawa
- Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Photon Science Center, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Research Institute for Photon Science and Laser Technology, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
- Institute for Attosecond Laser Facility, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
5
|
Wang L, Wu L, Pan Y. Perovskite Topological Lasers: A Brand New Combination. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:28. [PMID: 38202483 PMCID: PMC10781028 DOI: 10.3390/nano14010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Nanolasers are the essential components of modern photonic chips due to their low power consumption, high energy efficiency and fast modulation. As nanotechnology has advanced, researchers have proposed a number of nanolasers operating at both wavelength and sub-wavelength scales for application as light sources in photonic chips. Despite the advances in chip technology, the quality of the optical cavity, the operating threshold and the mode of operation of the light source still limit its advanced development. Ensuring high-performance laser operation has become a challenge as device size has been significantly reduced. A potential solution to this problem is the emergence of a novel optical confinement mechanism using photonic topological insulator lasers. In addition, gain media materials with perovskite-like properties have shown great potential for lasers, a role that many other gain materials cannot fulfil. When combined with topological laser modes, perovskite materials offer new possibilities for the operation and emission mechanism of nanolasers. This study introduces the operating mechanism of topological lasers and the optical properties of perovskite materials. It then outlines the key features of their combination and discusses the principles, structures, applications and prospects of perovskite topological lasers, including the scientific hurdles they face. Finally, the future development of low-dimensional perovskite topological lasers is explored.
Collapse
Affiliation(s)
| | | | - Yong Pan
- College of Science, Xi’an University of Architecture & Technology, Xi’an 710055, China; (L.W.); (L.W.)
| |
Collapse
|
6
|
Cui JJ, Cheng Y, Wang X, Li Z, Rohringer N, Kimberg V, Zhang SB. Proposal for Observing XUV-Induced Rabi Oscillation Using Superfluorescent Emission. PHYSICAL REVIEW LETTERS 2023; 131:043201. [PMID: 37566830 DOI: 10.1103/physrevlett.131.043201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/02/2023] [Indexed: 08/13/2023]
Abstract
Intense x-ray and extreme ultraviolet (XUV) light sources have been available for decades, however, due to weak nonlinear interaction in the XUV photon energy range, observation of Rabi oscillation induced by XUV pulse remains a very challenging experimental task. Here we suggest a scheme where photoionization of a He medium by an intense XUV pump pulse is followed by a strong population inversion and Rabi oscillation at the He^{+}(1s-3p) transition and is accompanied by superfluorescence (SF) of the 7.56 eV pulse at the He^{+}(3p-2s) transition. Our numerical simulations show that the Rabi oscillation at the He^{+}(1s-3p) transition induced by an XUV pulse with photon energy 48.36 eV results in significant signatures in the SF spectra, allowing us to identify and characterize the XUV induced Rabi-oscillatory regime. The proposed scheme provides a sensitive tool to monitor and control ultrafast nonlinear dynamics in atoms and molecules triggered by intense XUV.
Collapse
Affiliation(s)
- Jun Jie Cui
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Yongjun Cheng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Xin Wang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Nina Rohringer
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Victor Kimberg
- Theoretical Chemistry and Biology, Royal Institute of Technology, Stockholm 10691, Sweden
| | - Song Bin Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|