1
|
Liu W, Yan W, Cheng W, Zhang B, Wu B, Zhu H, Chu L, Jia Y, Chen F. Observation of multiple topological bound states in the continuum in the photonic bilayer trimer lattice. OPTICS LETTERS 2024; 49:5587-5590. [PMID: 39353012 DOI: 10.1364/ol.538623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024]
Abstract
A topological bound state in the continuum (TBIC) is a novel topological phase that has attracted significant attention. Different from conventional topological insulators (TIs), where boundary states reside within gaps, TBICs can support unconventional boundary states that remain isolated from the surrounding bulk states. In this work, we experimentally demonstrate multiple TBICs in photonic bilayer trimer lattices using femtosecond laser writing technology. By modulating the interlayer coupling between two trimer chains, we observe the emergence of two distinct types of TBICs. Moreover, we experimentally achieve the coexistence of in-gap topological states and TBICs and demonstrate the transformation between them. Our work unveils new insights into the flexible construction of TBICs, and this method can be easily applied to other one-dimensional topological structures, offering promising avenues for further research.
Collapse
|
2
|
Wu Y, Lin ZK, Yang Y, Song Z, Li F, Jiang JH. Probing fragile topology with dislocations. Sci Bull (Beijing) 2024:S2095-9273(24)00718-7. [PMID: 39389868 DOI: 10.1016/j.scib.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/02/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Affiliation(s)
- Ying Wu
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhi-Kang Lin
- School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
| | - Yating Yang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhida Song
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; Hefei National Laboratory, Hefei 230088, China; Collaborative Innovation Center of Quantum Matter, Beijing 100871, China.
| | - Feng Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China.
| | - Jian-Hua Jiang
- School of Physical Science and Technology, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China; Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China.
| |
Collapse
|
3
|
Lei S, Xia S, Song D, Xu J, Buljan H, Chen Z. Optical vortex ladder via Sisyphus pumping of Pseudospin. Nat Commun 2024; 15:7693. [PMID: 39227596 PMCID: PMC11372075 DOI: 10.1038/s41467-024-52070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/23/2024] [Indexed: 09/05/2024] Open
Abstract
Robust high-order optical vortices are much in demand for applications in optical manipulation, optical communications, quantum entanglement and quantum computing. However, in numerous experimental settings, a controlled generation of optical vortices with arbitrary orbital angular momentum remains a challenge. Here, we present a concept of "optical vortex ladder" for the stepwise generation of optical vortices through Sisyphus pumping of pseudospin modes in photonic graphene. The ladder is applicable in various lattices with Dirac-like structures. Instead of conical diffraction and incomplete pseudospin conversion under conventional Gaussian beam excitations, the vortices produced in the ladder arise from non-trivial topology and feature diffraction-free Bessel profiles, thanks to the refined excitation of the ring spectrum around the Dirac cones. By employing a periodic "kick" to the photonic graphene, effectively inducing the Sisyphus pumping, the ladder enables tunable generation of optical vortices of any order even when the initial excitation does not involve any orbital angular momentum. The optical vortex ladder stands out as an intriguing non-Hermitian dynamical system, and, among other possibilities, opens a pathway for applications of topological singularities in beam shaping and wavefront engineering.
Collapse
Affiliation(s)
- Sihong Lei
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Shiqi Xia
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Daohong Song
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.
| | - Jingjun Xu
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China
| | - Hrvoje Buljan
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China.
- Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, Zagreb, Croatia.
| | - Zhigang Chen
- The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Institute of Applied Physics and School of Physics, Nankai University, Tianjin, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
4
|
Dai T, Ma A, Mao J, Ao Y, Jia X, Zheng Y, Zhai C, Yang Y, Li Z, Tang B, Luo J, Zhang B, Hu X, Gong Q, Wang J. A programmable topological photonic chip. NATURE MATERIALS 2024; 23:928-936. [PMID: 38777873 PMCID: PMC11230904 DOI: 10.1038/s41563-024-01904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/19/2024] [Indexed: 05/25/2024]
Abstract
Controlling topological phases of light allows the observation of abundant topological phenomena and the development of robust photonic devices. The prospect of more sophisticated control with topological photonic devices for practical implementations requires high-level programmability. Here we demonstrate a fully programmable topological photonic chip with large-scale integration of silicon photonic nanocircuits and microresonators. Photonic artificial atoms and their interactions in our compound system can be individually addressed and controlled, allowing the arbitrary adjustment of structural parameters and geometrical configurations for the observation of dynamic topological phase transitions and diverse photonic topological insulators. Individual programming of artificial atoms on the generic chip enables the comprehensive statistical characterization of topological robustness against relatively weak disorders, and counterintuitive topological Anderson phase transitions induced by strong disorders. This generic topological photonic chip can be rapidly reprogrammed to implement multifunctionalities, providing a flexible and versatile platform for applications across fundamental science and topological technologies.
Collapse
Affiliation(s)
- Tianxiang Dai
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
| | - Anqi Ma
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Jun Mao
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Yutian Ao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Xinyu Jia
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Yun Zheng
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Chonghao Zhai
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Yan Yang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China.
| | - Zhihua Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
| | - Bo Tang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
| | - Jun Luo
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
| | - Baile Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
- Centre for Disruptive Photonic Technologies, The Photonics Institute, Nanyang Technological University, Singapore, Singapore
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
- Hefei National Laboratory, Hefei, China.
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
- Hefei National Laboratory, Hefei, China
| | - Jianwei Wang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing, China.
- Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
- Hefei National Laboratory, Hefei, China.
| |
Collapse
|
5
|
Ma J, Jia D, Zhang L, Guan YJ, Ge Y, Sun HX, Yuan SQ, Chen H, Yang Y, Zhang X. Observation of vortex-string chiral modes in metamaterials. Nat Commun 2024; 15:2332. [PMID: 38485983 PMCID: PMC10940314 DOI: 10.1038/s41467-024-46641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 03/05/2024] [Indexed: 03/18/2024] Open
Abstract
As hypothetical topological defects in the geometry of spacetime, vortex strings could have played many roles in cosmology, and their distinct features can provide observable clues about the early universe's evolution. A key feature of vortex strings is that they can interact with Weyl fermionic modes and support massless chiral-anomaly states along strings. To date, despite many attempts to detect vortex strings in astrophysics or to emulate them in artificially created systems, observation of these vortex-string chiral modes remains experimentally elusive. Here we report experimental observations of vortex-string chiral modes using a metamaterial system. This is implemented by inhomogeneous perturbation of Yang-monopole phononic metamaterials. The measured linear dispersion and modal profiles confirm the existence of topological modes bound to and propagating along the string with the chiral anomaly. Our work provides a platform for studying diverse cosmic topological defects in astrophysics and offers applications as topological fibres in communication techniques.
Collapse
Affiliation(s)
- Jingwen Ma
- Faculties of Science and Engineering, The University of Hong Kong, Hong Kong, China
| | - Ding Jia
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Li Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Yi-Jun Guan
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yong Ge
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hong-Xiang Sun
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China.
- State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Shou-Qi Yuan
- Research Center of Fluid Machinery Engineering and Technology, School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China
| | - Yihao Yang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China.
- International Joint Innovation Center, The Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, 314400, China.
- Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, 321099, China.
- Shaoxing Institute of Zhejiang University, Zhejiang University, Shaoxing, 312000, China.
| | - Xiang Zhang
- Faculties of Science and Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
6
|
Liu T, Bai K, Zhang Y, Wan D, Lai Y, Chan CT, Xiao M. Finite barrier bound state. LIGHT, SCIENCE & APPLICATIONS 2024; 13:69. [PMID: 38453882 PMCID: PMC10920789 DOI: 10.1038/s41377-024-01417-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/18/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
A boundary mode localized on one side of a finite-size lattice can tunnel to the opposite side which results in unwanted couplings. Conventional wisdom tells that the tunneling probability decays exponentially with the size of the system which thus requires many lattice sites before eventually becoming negligibly small. Here we show that the tunneling probability for some boundary modes can apparently vanish at specific wavevectors. Thus, similar to bound states in the continuum, a boundary mode can be completely trapped within very few lattice sites where the bulk bandgap is not even well-defined. More intriguingly, the number of trapped states equals the number of lattice sites along the normal direction of the boundary. We provide two configurations and validate the existence of this peculiar finite barrier-bound state experimentally in a dielectric photonic crystal at microwave frequencies. Our work offers extreme flexibility in tuning the coupling between localized states and channels as well as a new mechanism that facilitates unprecedented manipulation of light.
Collapse
Affiliation(s)
- Tao Liu
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Kai Bai
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Yicheng Zhang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Duanduan Wan
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan, China.
| | - Yun Lai
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - C T Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China
| | - Meng Xiao
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, 430072, Wuhan, China.
- Wuhan Institute of Quantum Technology, 430206, Wuhan, China.
| |
Collapse
|
7
|
Wang X, Gu R, Li Y, Qi H, Hu X, Wang X, Gong Q. A scheme for realizing nonreciprocal interlayer coupling in bilayer topological systems. FRONTIERS OF OPTOELECTRONICS 2023; 16:38. [PMID: 38010425 PMCID: PMC10682335 DOI: 10.1007/s12200-023-00094-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023]
Abstract
Nonreciprocal interlayer coupling is difficult to practically implement in bilayer non-Hermitian topological photonic systems. In this work, we identify a similarity transformation between the Hamiltonians of systems with nonreciprocal interlayer coupling and on-site gain/loss. The similarity transformation is widely applicable, and we show its application in one- and two-dimensional bilayer topological systems as examples. The bilayer non-Hermitian system with nonreciprocal interlayer coupling, whose topological number can be defined using the gauge-smoothed Wilson loop, is topologically equivalent to the bilayer system with on-site gain/loss. We also show that the topological number of bilayer non-Hermitian C6v-typed domain-induced topological interface states can be defined in the same way as in the case of the bilayer non-Hermitian Su-Schrieffer-Heeger model. Our results show the relations between two microscopic provenances of the non-Hermiticity and provide a universal and convenient scheme for constructing and studying nonreciprocal interlayer coupling in bilayer non-Hermitian topological systems. This scheme is useful for observation of non-Hermitian skin effect in three-dimensional systems.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Ruizhe Gu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Yandong Li
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Huixin Qi
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
- Hefei National Laboratory, Hefei, 230088, China.
| | - Xingyuan Wang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Collaborative Innovation Center of Quantum Matter & Frontiers Science Center for Nano-Optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China
- Hefei National Laboratory, Hefei, 230088, China
| |
Collapse
|
8
|
Heckelmann I, Bertrand M, Dikopoltsev A, Beck M, Scalari G, Faist J. Quantum walk comb in a fast gain laser. Science 2023; 382:434-438. [PMID: 37883562 DOI: 10.1126/science.adj3858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023]
Abstract
Synthetic lattices in photonics enable the exploration of light states in new dimensions, transcending phenomena common only to physical space. We propose and demonstrate a quantum walk comb in synthetic frequency space formed by externally modulating a ring-shaped semiconductor laser with ultrafast recovery times. The initially ballistic quantum walk does not dissipate into low supermode states of the synthetic lattice; instead, the state stabilizes in a broad frequency comb, unlocking the full potential of the synthetic frequency lattice. Our device produces a low-noise, nearly flat broadband comb (reaching 100 per centimeter bandwidth) and offers a promising platform to generate broadband, tunable, and stable frequency combs.
Collapse
Affiliation(s)
- Ina Heckelmann
- Institute of Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland, and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Mathieu Bertrand
- Institute of Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland, and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Alexander Dikopoltsev
- Institute of Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland, and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Mattias Beck
- Institute of Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland, and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Giacomo Scalari
- Institute of Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland, and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| | - Jérôme Faist
- Institute of Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland, and Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Arkhipova AA, Zhang Y, Kartashov YV, Zhuravitskii SA, Skryabin NN, Dyakonov IV, Kalinkin AA, Kulik SP, Kompanets VO, Chekalin SV, Zadkov VN. Observation of π solitons in oscillating waveguide arrays. Sci Bull (Beijing) 2023; 68:2017-2024. [PMID: 37573247 DOI: 10.1016/j.scib.2023.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
Floquet systems with periodically varying in time parameters enable realization of unconventional topological phases that do not exist in static systems with constant parameters and that are frequently accompanied by appearance of novel types of the topological states. Among such Floquet systems are the Su-Schrieffer-Heeger lattices with periodically-modulated couplings that can support at their edges anomalous π modes of topological origin despite the fact that the lattice spends only half of the evolution period in topologically nontrivial phase, while during other half-period it is topologically trivial. Here, using Su-Schrieffer-Heeger arrays composed from periodically oscillating waveguides inscribed in transparent nonlinear optical medium, we report experimental observation of photonic anomalous π modes residing at the edge or in the corner of the one- or two-dimensional arrays, respectively, and demonstrate a new class of topological π solitons bifurcating from such modes in the topological gap of the Floquet spectrum at high powers. π solitons reported here are strongly oscillating nonlinear Floquet states exactly reproducing their profiles after each longitudinal period of the structure. They can be dynamically stable in both one- and two-dimensional oscillating waveguide arrays, the latter ones representing the first realization of the Floquet photonic higher-order topological insulator, while localization properties of such π solitons are determined by their power.
Collapse
Affiliation(s)
- Antonina A Arkhipova
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk 108840, Russia; Faculty of Physics, Higher School of Economics, Moscow 105066, Russia
| | - Yiqi Zhang
- Key Laboratory for Physical Electronics and Devices (Ministry of Education), School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | | | - Sergei A Zhuravitskii
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk 108840, Russia; Quantum Technology Centre, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Nikolay N Skryabin
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk 108840, Russia; Quantum Technology Centre, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ivan V Dyakonov
- Quantum Technology Centre, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander A Kalinkin
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk 108840, Russia; Quantum Technology Centre, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergei P Kulik
- Quantum Technology Centre, Faculty of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russia
| | - Victor O Kompanets
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk 108840, Russia
| | - Sergey V Chekalin
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk 108840, Russia
| | - Victor N Zadkov
- Institute of Spectroscopy, Russian Academy of Sciences, Troitsk 108840, Russia; Faculty of Physics, Higher School of Economics, Moscow 105066, Russia
| |
Collapse
|
10
|
Zhang X, Zangeneh-Nejad F, Chen ZG, Lu MH, Christensen J. A second wave of topological phenomena in photonics and acoustics. Nature 2023; 618:687-697. [PMID: 37344649 DOI: 10.1038/s41586-023-06163-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 05/03/2023] [Indexed: 06/23/2023]
Abstract
Light and sound are the most ubiquitous forms of waves, associated with a variety of phenomena and physical effects such as rainbows and echoes. Light and sound, both categorized as classical waves, have lately been brought into unexpected connections with exotic topological phases of matter. We are currently witnessing the onset of a second wave of active research into this topic. The past decade has been marked by fundamental advances comprising two-dimensional quantum Hall insulators and quantum spin and valley Hall insulators, whose topological properties are characterized using linear band topology. Here, going beyond these conventional topological systems, we focus on the latest frontiers, including non-Hermitian, nonlinear and non-Abelian topology as well as topological defects, for which the characterization of the topological features goes beyond the standard band-topology language. In addition to an overview of the current state of the art, we also survey future research directions for valuable applications.
Collapse
Affiliation(s)
- Xiujuan Zhang
- National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | | | - Ze-Guo Chen
- School of Materials Science and Intelligent Engineering, Nanjing University, Suzhou, China
| | - Ming-Hui Lu
- National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
| | | |
Collapse
|