1
|
Gu Y, Smith KA, Saha A, De C, Won CJ, Zhang Y, Lin LF, Cheong SW, Haule K, Ozerov M, Birol T, Homes C, Dagotto E, Musfeldt JL. Unconventional insulator-to-metal phase transition in Mn 3Si 2Te 6. Nat Commun 2024; 15:8104. [PMID: 39285185 PMCID: PMC11405877 DOI: 10.1038/s41467-024-52350-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 09/03/2024] [Indexed: 09/22/2024] Open
Abstract
The nodal-line semiconductor Mn3Si2Te6 is generating enormous excitment due to the recent discovery of a field-driven insulator-to-metal transition and associated colossal magnetoresistance as well as evidence for a new type of quantum state involving chiral orbital currents. Strikingly, these qualities persist even in the absence of traditional Jahn-Teller distortions and double-exchange mechanisms, raising questions about exactly how and why magnetoresistance occurs along with conjecture as to the likely signatures of loop currents. Here, we measured the infrared response of Mn3Si2Te6 across the magnetic ordering and field-induced insulator-to-metal transitions in order to explore colossal magnetoresistance in the absence of Jahn-Teller and double-exchange interactions. Rather than a traditional metal with screened phonons, the field-driven insulator-to-metal transition leads to a weakly metallic state with localized carriers. Our spectral data are fit by a percolation model, providing evidence for electronic inhomogeneity and phase separation. Modeling also reveals a frequency-dependent threshold field for carriers contributing to colossal magnetoresistance which we discuss in terms of polaron formation, chiral orbital currents, and short-range spin fluctuations. These findings enhance the understanding of insulator-to-metal transitions in new settings and open the door to the design of unconventional colossal magnetoresistant materials.
Collapse
Affiliation(s)
- Yanhong Gu
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Kevin A Smith
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA
| | - Amartyajyoti Saha
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Chandan De
- Laboratory for Pohang Emergent Materials and Max Plank POSTECH Center for Complex Phase Materials, Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
- Quantum Materials Science Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Choong-Jae Won
- Laboratory for Pohang Emergent Materials and Max Plank POSTECH Center for Complex Phase Materials, Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Yang Zhang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ling-Fang Lin
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sang-Wook Cheong
- Laboratory for Pohang Emergent Materials and Max Plank POSTECH Center for Complex Phase Materials, Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
- Rutgers Center for Emergent Materials, Rutgers University, Piscataway, NJ, 08854, USA
| | - Kristjan Haule
- Center for Materials Theory and Department of Physics and Astronomy, Rutgers University, Piscataway, NJ, 08854, USA
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA
| | - Turan Birol
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Christopher Homes
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Elbio Dagotto
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Janice L Musfeldt
- Department of Chemistry, University of Tennessee, Knoxville, TN, 37996, USA.
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
2
|
Zhou H, Cao Y, Khmelevskyi S, Zhang Q, Hu S, Avdeev M, Wang CW, Zhou R, Yu C, Chen X, Li Q, Miao J, Li Q, Lin K, Xing X. Colossal Zero-Field-Cooled Exchange Bias via Tuning Compensated Ferrimagnetic in Kagome Metals. J Am Chem Soc 2024. [PMID: 39039443 DOI: 10.1021/jacs.4c04173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Exchange bias (EB) is a crucial property with widespread applications but particularly occurs by complex interfacial magnetic interactions after field cooling. To date, intrinsic zero-field-cooled EB (ZEB) has only emerged in a few bulk frustrated systems and their magnitudes remain small yet. Here, enabled by high temperature synthesis, we uncover a colossal ZEB field of 4.95 kOe via tuning compensated ferrimagnetism in a family of kagome metals, which is almost twice the magnitude of known materials. Atomic-scale structure, spin dynamics, and magnetic theory revealed that these compensated ferrimagnets originate from significant antiferromagnetic exchange interactions embedded in the holmium-iron ferrimagnetic matrix due to supersaturated preferential manganese doping. A random antiferromagnetic order of manganese sublattice sandwiched between ferromagnetic iron kagome bilayers accounts for such unconventional pinning. The outcome of the present study outlines disorder-induced giant bulk ZEB and coercivity in layered frustrated systems.
Collapse
Affiliation(s)
- Haowei Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Sergii Khmelevskyi
- Vienna Scientific Cluster Research Center, Technical University of Vienna, Operngasse 10, Vienna A-1040, Austria
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shixin Hu
- Institute of Applied Magnetics, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Maxim Avdeev
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chin-Wei Wang
- Neutron Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Rui Zhou
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengyi Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiheng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Miao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Vitayaya O, Zul Nehan PZ, Munazat DR, Manawan MTE, Kurniawan B. Magnetoresistance (MR) properties of magnetic materials. RSC Adv 2024; 14:18617-18645. [PMID: 38863825 PMCID: PMC11165987 DOI: 10.1039/d4ra01989j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
In this review, the classification of magnetic materials exhibiting magnetoresistive properties is the focus of discussion because each material possesses different magnetic and electrical properties that influence the resulting magnetoresistance (MR) values. These properties depend on the structure and mechanism of the material. In this overview, the classification of magnetic materials with different structures is examined in several material groups, including the following: (1) perovskite structure (ABO3), (2) alloy, (3) spinel structure, and (4) Kagome magnet. This review summarizes the results of each material's properties based on experimental findings, and serves as a reference for studying the characteristics of each material.
Collapse
Affiliation(s)
| | | | | | - Maykel T E Manawan
- Research Center for Advanced Materials, BRIN Serpong 15314 Indonesia
- Faculty of Defense Technology, Indonesia Defense University Bogor 16810 Indonesia
| | - Budhy Kurniawan
- Department of Physics, Universitas Indonesia Depok 16424 Indonesia
| |
Collapse
|
4
|
Susilo RA, Kwon CI, Lee Y, Salke NP, De C, Seo J, Kang B, Hemley RJ, Dalladay-Simpson P, Wang Z, Kim DY, Kim K, Cheong SW, Yeom HW, Kim KH, Kim JS. High-temperature concomitant metal-insulator and spin-reorientation transitions in a compressed nodal-line ferrimagnet Mn 3Si 2Te 6. Nat Commun 2024; 15:3998. [PMID: 38734704 PMCID: PMC11088669 DOI: 10.1038/s41467-024-48432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Symmetry-protected band degeneracy, coupled with a magnetic order, is the key to realizing novel magnetoelectric phenomena in topological magnets. While the spin-polarized nodal states have been identified to introduce extremely-sensitive electronic responses to the magnetic states, their possible role in determining magnetic ground states has remained elusive. Here, taking external pressure as a control knob, we show that a metal-insulator transition, a spin-reorientation transition, and a structural modification occur concomitantly when the nodal-line state crosses the Fermi level in a ferrimagnetic semiconductor Mn3Si2Te6. These unique pressure-driven magnetic and electronic transitions, associated with the dome-shaped Tc variation up to nearly room temperature, originate from the interplay between the spin-orbit coupling of the nodal-line state and magnetic frustration of localized spins. Our findings highlight that the nodal-line states, isolated from other trivial states, can facilitate strongly tunable magnetic properties in topological magnets.
Collapse
Affiliation(s)
- Resta A Susilo
- Department of Physics, Pohang University of Science and Technology, Pohang, Korea
| | - Chang Il Kwon
- Department of Physics, Pohang University of Science and Technology, Pohang, Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Korea
| | - Yoonhan Lee
- Department of Physics and Astronomy, CeNSCMR, Seoul National University, Seoul, Korea
| | - Nilesh P Salke
- Departments of Physics, University of Illinois Chicago, Chicago, IL, USA
| | - Chandan De
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Korea
| | - Junho Seo
- Department of Physics, Pohang University of Science and Technology, Pohang, Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Korea
| | - Beomtak Kang
- Department of Physics, Pohang University of Science and Technology, Pohang, Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Korea
| | - Russell J Hemley
- Departments of Physics, University of Illinois Chicago, Chicago, IL, USA
- Departments of Chemistry, University of Illinois Chicago, Chicago, IL, USA
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL, USA
| | | | - Zifan Wang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Duck Young Kim
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Kyoo Kim
- Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea
| | - Sang-Wook Cheong
- Laboratory of Pohang Emergent Materials, Pohang Accelerator Laboratory, Pohang, Korea
- Rutgers Center for emergent Materials and Department of Physics and Astronomy, Rutgers University, New Brunswick, NJ, USA
| | - Han Woong Yeom
- Department of Physics, Pohang University of Science and Technology, Pohang, Korea
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Korea
| | - Kee Hoon Kim
- Department of Physics and Astronomy, CeNSCMR, Seoul National University, Seoul, Korea.
| | - Jun Sung Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, Korea.
- Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science (IBS), Pohang, Korea.
| |
Collapse
|
5
|
Zhang Y, Ni Y, Schlottmann P, Nandkishore R, DeLong LE, Cao G. Current-sensitive Hall effect in a chiral-orbital-current state. Nat Commun 2024; 15:3579. [PMID: 38678048 PMCID: PMC11055857 DOI: 10.1038/s41467-024-47823-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/12/2024] [Indexed: 04/29/2024] Open
Abstract
Chiral orbital currents (COC) underpin a novel colossal magnetoresistance in ferrimagnetic Mn3Si2Te6. Here we report the Hall effect in the COC state which exhibits the following unprecedented features: (1) A sharp, current-sensitive peak in the magnetic field dependence of the Hall resistivity, and (2) A current-sensitive scaling relation between the Hall conductivity σxy and the longitudinal conductivity σxx, namely, σxy ∝ σxxα with α reaching up to 5, which is exceptionally large compared to α ≤ 2 typical of all solids. The novel Hall responses along with a current-sensitive carrier density and a large Hall angle of 15% point to a giant, current-sensitive Hall effect that is unique to the COC state. Here, we show that a magnetic field induced by the fully developed COC combines with the applied magnetic field to exert the greatly enhanced transverse force on charge carriers, which dictates the COC Hall responses.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Physics, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Yifei Ni
- Department of Physics, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Pedro Schlottmann
- Department of Physics, Florida State University, Tallahassee, FL, 32306, USA
| | - Rahul Nandkishore
- Department of Physics, University of Colorado at Boulder, Boulder, CO, 80309, USA
- Center for Theory of Quantum Matter, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - Lance E DeLong
- Department of Physics and Astronomy, University of Kentucky, Lexington, KY, 40506, USA
| | - Gang Cao
- Department of Physics, University of Colorado at Boulder, Boulder, CO, 80309, USA.
- Center for Experiments on Quantum Materials, University of Colorado at Boulder, Boulder, CO, 80309, USA.
| |
Collapse
|
6
|
Tan C, Deng M, Yang Y, An L, Ge W, Albarakati S, Panahandeh-Fard M, Partridge J, Culcer D, Lei B, Wu T, Zhu X, Tian M, Chen X, Wang RQ, Wang L. Electrically Tunable, Rapid Spin-Orbit Torque Induced Modulation of Colossal Magnetoresistance in Mn 3Si 2Te 6 Nanoflakes. NANO LETTERS 2024; 24:4158-4164. [PMID: 38557108 DOI: 10.1021/acs.nanolett.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
As a quasi-layered ferrimagnetic material, Mn3Si2Te6 nanoflakes exhibit magnetoresistance behavior that is fundamentally different from their bulk crystal counterparts. They offer three key properties crucial for spintronics. First, at least 106 times faster response compared to that exhibited by bulk crystals has been observed in current-controlled resistance and magnetoresistance. Second, ultralow current density is required for resistance modulation (∼5 A/cm2). Third, electrically gate-tunable magnetoresistance has been realized. Theoretical calculations reveal that the unique magnetoresistance behavior in the Mn3Si2Te6 nanoflakes arises from a magnetic field induced band gap shift across the Fermi level. The rapid current induced resistance variation is attributed to spin-orbit torque, an intrinsically ultrafast process (∼nanoseconds). This study suggests promising avenues for spintronic applications. In addition, it highlights Mn3Si2Te6 nanoflakes as a suitable platform for investigating the intriguing physics underlying chiral orbital moments, magnetic field induced band variation, and spin torque.
Collapse
Affiliation(s)
- Cheng Tan
- Lab of Low Dimensional Magnetism and Spintronic Devices, School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Mingxun Deng
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Yuanjun Yang
- Lab of Low Dimensional Magnetism and Spintronic Devices, School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Linlin An
- Lab of Low Dimensional Magnetism and Spintronic Devices, School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Weifeng Ge
- Lab of Low Dimensional Magnetism and Spintronic Devices, School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Sultan Albarakati
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Physics Department, Faculty of Science and Arts, University of Jeddah, P.O. Box 80200, Khulais 21589, Saudi Arabia
| | - Majid Panahandeh-Fard
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - James Partridge
- Physics, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Dimitrie Culcer
- School of Physics and ARC Centre of Excellence in Future Low-Energy Electronics Technologies, UNSW Node, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Bin Lei
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Tao Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiangde Zhu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences (CAS), Hefei, Anhui 230031, China
| | - Mingliang Tian
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, Anhui 230601, China
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences (CAS), Hefei, Anhui 230031, China
| | - Xianhui Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Strongly coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Qiang Wang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, SPTE, South China Normal University, Guangzhou, Guangdong 510006, China
| | - Lan Wang
- Lab of Low Dimensional Magnetism and Spintronic Devices, School of Physics, Hefei University of Technology, Hefei, Anhui 230009, China
- Physics, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
7
|
Mazzola F, Brzezicki W, Mercaldo MT, Guarino A, Bigi C, Miwa JA, De Fazio D, Crepaldi A, Fujii J, Rossi G, Orgiani P, Chaluvadi SK, Chalil SP, Panaccione G, Jana A, Polewczyk V, Vobornik I, Kim C, Miletto-Granozio F, Fittipaldi R, Ortix C, Cuoco M, Vecchione A. Signatures of a surface spin-orbital chiral metal. Nature 2024; 626:752-758. [PMID: 38326617 PMCID: PMC10881390 DOI: 10.1038/s41586-024-07033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
The relation between crystal symmetries, electron correlations and electronic structure steers the formation of a large array of unconventional phases of matter, including magneto-electric loop currents and chiral magnetism1-6. The detection of such hidden orders is an important goal in condensed-matter physics. However, until now, non-standard forms of magnetism with chiral electronic ordering have been difficult to detect experimentally7. Here we develop a theory for symmetry-broken chiral ground states and propose a methodology based on circularly polarized, spin-selective, angular-resolved photoelectron spectroscopy to study them. We use the archetypal quantum material Sr2RuO4 and reveal spectroscopic signatures that, despite being subtle, can be reconciled with the formation of spin-orbital chiral currents at the surface of the material8-10. As we shed light on these chiral regimes, our findings pave the way for a deeper understanding of ordering phenomena and unconventional magnetism.
Collapse
Affiliation(s)
- Federico Mazzola
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy.
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy.
| | - Wojciech Brzezicki
- Institute of Theoretical Physics, Jagiellonian University, Kraków, Poland
- International Centre for Interfacing Magnetism and Superconductivity with Topological Matter, Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Anita Guarino
- Istituto SPIN, Consiglio Nazionale delle Ricerche, Fisciano, Italy
| | | | - Jill A Miwa
- Department of Physics and Astronomy, Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Domenico De Fazio
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | | | - Jun Fujii
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Giorgio Rossi
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, Milan, Italy
| | - Pasquale Orgiani
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | | | | | - Giancarlo Panaccione
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Anupam Jana
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Vincent Polewczyk
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Ivana Vobornik
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche, Trieste, Italy
| | - Changyoung Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, Korea
| | | | | | - Carmine Ortix
- Dipartimento di Fisica "E. R. Caianiello", Università di Salerno, Fisciano, Italy
| | - Mario Cuoco
- Istituto SPIN, Consiglio Nazionale delle Ricerche, Fisciano, Italy.
| | | |
Collapse
|
8
|
Yan X, Su X, Chen J, Jin C, Chen L. Two-Dimensional Metal-Organic Frameworks Towards Spintronics. Angew Chem Int Ed Engl 2023; 62:e202305408. [PMID: 37258996 DOI: 10.1002/anie.202305408] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
The intrinsic properties of predesignable topologies and tunable electronic structures, coupled with the increase of electrical conductivity, make two-dimensional metal-organic frameworks (2D MOFs) highly prospective candidates for next-generation electronic/spintronic devices. In this Minireview, we present an outline of the design principles of 2D MOF-based spintronics materials. Then, we highlight the spin-transport properties of 2D MOF-based organic spin valves (OSVs) as a notable achievement in the progress of 2D MOFs for spintronics devices. After that, we discuss the potential for spin manipulation in 2D MOFs with bipolar magnetic semiconductor (BMS) properties as a promising field for future research. Finally, we provide a brief summary and outlook to encourage the development of novel 2D MOFs for spintronics applications.
Collapse
Affiliation(s)
- Xiaoli Yan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xi Su
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, China
| | - Chao Jin
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Processing Technology, Department of Applied Physics, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Long Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
9
|
Guo S, Wang B, Wolf D, Lubk A, Xia W, Wang M, Xiao Y, Cui J, Pravarthana D, Dou Z, Leistner K, Li RW, Hühne R, Nielsch K. Hierarchically Engineered Manganite Thin Films with a Wide-Temperature-Range Colossal Magnetoresistance Response. ACS NANO 2023; 17:2517-2528. [PMID: 36651833 DOI: 10.1021/acsnano.2c10200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colossal magnetoresistance is of great fundamental and technological significance in condensed-matter physics, magnetic memory, and sensing technologies. However, its relatively narrow working temperature window is still a severe obstacle for potential applications due to the nature of the material-inherent phase transition. Here, we realized hierarchical La0.7Sr0.3MnO3 thin films with well-defined (001) and (221) crystallographic orientations by combining substrate modification with conventional thin-film deposition. Microscopic investigations into its magnetic transition through electron holography reveal that the hierarchical microstructure significantly broadens the temperature range of the ferromagnetic-paramagnetic transition, which further widens the response temperature range of the macroscopic colossal magnetoresistance under the scheme of the double-exchange mechanism. Therefore, this work puts forward a method to alter the magnetic transition and thus to extend the magnetoresistance working window by nanoengineering, which might be a promising approach also for other phase-transition-related effects in functional oxides.
Collapse
Affiliation(s)
- Shanshan Guo
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- Leibniz IFW Dresden, Dresden 01069, Germany
| | - Baomin Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- School of Physical Science and Technology, Ningbo University, Ningbo 315201, People's Republic of China
| | | | - Axel Lubk
- Leibniz IFW Dresden, Dresden 01069, Germany
- Institute of Solid State and Materials Physics, TU Dresden, Dresden 01069, Germany
| | - Weixing Xia
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Mingkun Wang
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yao Xiao
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Junfeng Cui
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Dhanapal Pravarthana
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Zehua Dou
- Leibniz IFW Dresden, Dresden 01069, Germany
| | - Karin Leistner
- Leibniz IFW Dresden, Dresden 01069, Germany
- Electrochemical Sensors and Energy Storage, Faculty of Natural Sciences, Institute of Chemistry, TU Chemnitz, Chemnitz 09111, Germany
| | - Run-Wei Li
- CAS Key Laboratory of Magnetic Materials and Devices, Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | | | | |
Collapse
|
10
|
Lu Y, Zhou Z, Kan X, Yang Z, Deng H, Liu B, Wang T, Liu F, Liu X, Zhu S, Yu Q, Wu J. Quasi-2D Mn 3Si 2Te 6 Nanosheet for Ultrafast Photonics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:602. [PMID: 36770563 PMCID: PMC9920741 DOI: 10.3390/nano13030602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The magnetic nanomaterial Mn3Si2Te6 is a promising option for spin-dependent electronic and magneto-optoelectronic devices. However, its application in nonlinear optics remains fanciful. Here, we demonstrate a pulsed Er-doped fiber laser (EDFL) based on a novel quasi-2D Mn3Si2Te6 saturable absorber (SA) with low pump power at 1.5 μm. The high-quality Mn3Si2Te6 crystals were synthesized by the self-flux method, and the ultrathin Mn3Si2Te6 nanoflakes were prepared by a simple mechanical exfoliation procedure. To the best of our knowledge, this is the first time laser pulses have been generated using quasi-2D Mn3Si2Te6. A stable pulsed laser at 1562 nm with a low threshold pump power of 60 mW was produced by integrating the Mn3Si2Te6 SA into an EDFL cavity. The maximum power of the output pulse is 783 μW. The repetition rate can vary from 24.16 to 44.44 kHz, with corresponding pulse durations of 5.64 to 3.41 µs. Our results indicate that the quasi-2D Mn3Si2Te6 is a promising material for application in ultrafast photonics.
Collapse
Affiliation(s)
- Yan Lu
- School of Transportation Engineering, Jiangsu Shipping College, Nantong 226010, China
| | - Zheng Zhou
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Xuefen Kan
- School of Transportation Engineering, Jiangsu Shipping College, Nantong 226010, China
| | - Zixin Yang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Bin Liu
- College of Science and Key Laboratory for Ferrous Metallurgy, Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Tongtong Wang
- College of Science and Key Laboratory for Ferrous Metallurgy, Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Fangqi Liu
- College of Science and Key Laboratory for Ferrous Metallurgy, Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xueyu Liu
- School of Transportation Engineering, Jiangsu Shipping College, Nantong 226010, China
| | - Sicong Zhu
- College of Science and Key Laboratory for Ferrous Metallurgy, Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Qiang Yu
- CAS Key Laboratory of Nanophotonic Materials and Devices & Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| |
Collapse
|