1
|
Li C, Smirnova E, Schnitzler C, Crucifix C, Concordet JP, Brion A, Poterszman A, Schultz P, Papai G, Ben-Shem A. Structure of the human TIP60-C histone exchange and acetyltransferase complex. Nature 2024:10.1038/s41586-024-08011-w. [PMID: 39260417 DOI: 10.1038/s41586-024-08011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Chromatin structure is a key regulator of DNA transcription, replication and repair1. In humans, the TIP60-EP400 complex (TIP60-C) is a 20-subunit assembly that affects chromatin structure through two enzymatic activities: ATP-dependent exchange of histone H2A-H2B for H2A.Z-H2B, and histone acetylation. In yeast, however, these activities are performed by two independent complexes-SWR1 and NuA4, respectively2,3. How the activities of the two complexes are merged into one supercomplex in humans, and what this association entails for the structure and mechanism of the proteins and their recruitment to chromatin, are unknown. Here we describe the structure of the endogenous human TIP60-C. We find a three-lobed architecture composed of SWR1-like (SWR1L) and NuA4-like (NuA4L) parts, which associate with a TRRAP activator-binding module. The huge EP400 subunit contains the ATPase motor, traverses the junction between SWR1L and NuA4L twice and constitutes the scaffold of the three-lobed architecture. NuA4L is completely rearranged compared with its yeast counterpart. TRRAP is flexibly tethered to NuA4L-in stark contrast to its robust connection to the completely opposite side of NuA4 in yeast4-7. A modelled nucleosome bound to SWR1L, supported by tests of TIP60-C activity, suggests that some aspects of the histone exchange mechanism diverge from what is seen in yeast8,9. Furthermore, a fixed actin module (as opposed to the mobile actin subcomplex in SWR1; ref. 8), the flexibility of TRRAP and the weak effect of extranucleosomal DNA on exchange activity lead to a different, activator-based mode of enlisting TIP60-C to chromatin.
Collapse
Affiliation(s)
- Changqing Li
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Ekaterina Smirnova
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Charlotte Schnitzler
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Corinne Crucifix
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Jean Paul Concordet
- Museum National d'Histoire Naturelle, U 1154 Inserm UMR 7196 CNRS, Paris, France
| | - Alice Brion
- Museum National d'Histoire Naturelle, U 1154 Inserm UMR 7196 CNRS, Paris, France
| | - Arnaud Poterszman
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Patrick Schultz
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Gabor Papai
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR S 1258, Illkirch, France
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Adam Ben-Shem
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) UMR 7104 UMR S 1258, Illkirch, France.
- CNRS, UMR 7104, Illkirch, France.
- Inserm, UMR S 1258, Illkirch, France.
- Equipe Labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.
| |
Collapse
|
2
|
Yang Z, Mameri A, Cattoglio C, Lachance C, Florez Ariza AJ, Luo J, Humbert J, Sudarshan D, Banerjea A, Galloy M, Fradet-Turcotte A, Lambert JP, Ranish JA, Côté J, Nogales E. Structural insights into the human NuA4/TIP60 acetyltransferase and chromatin remodeling complex. Science 2024; 385:eadl5816. [PMID: 39088653 DOI: 10.1126/science.adl5816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/25/2024] [Accepted: 06/25/2024] [Indexed: 08/03/2024]
Abstract
The human nucleosome acetyltransferase of histone H4 (NuA4)/Tat-interactive protein, 60 kilodalton (TIP60) coactivator complex, a fusion of the yeast switch/sucrose nonfermentable related 1 (SWR1) and NuA4 complexes, both incorporates the histone variant H2A.Z into nucleosomes and acetylates histones H4, H2A, and H2A.Z to regulate gene expression and maintain genome stability. Our cryo-electron microscopy studies show that, within the NuA4/TIP60 complex, the E1A binding protein P400 (EP400) subunit serves as a scaffold holding the different functional modules in specific positions, creating a distinct arrangement of the actin-related protein (ARP) module. EP400 interacts with the transformation/transcription domain-associated protein (TRRAP) subunit by using a footprint that overlaps with that of the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, preventing the formation of a hybrid complex. Loss of the TRRAP subunit leads to mislocalization of NuA4/TIP60, resulting in the redistribution of H2A.Z and its acetylation across the genome, emphasizing the dual functionality of NuA4/TIP60 as a single macromolecular assembly.
Collapse
Affiliation(s)
- Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Amel Mameri
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Claudia Cattoglio
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Alfredo Jose Florez Ariza
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, USA
| | - Jie Luo
- Institute for Systems Biology, Seattle, WA, USA
| | - Jonathan Humbert
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Deepthi Sudarshan
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Arul Banerjea
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Amélie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Jean-Philippe Lambert
- Endocrinology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | | | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division of the CHU de Québec-Université Laval Research Center, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
3
|
Chen K, Wang L, Yu Z, Yu J, Ren Y, Wang Q, Xu Y. Structure of the human TIP60 complex. Nat Commun 2024; 15:7092. [PMID: 39154037 PMCID: PMC11330486 DOI: 10.1038/s41467-024-51259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Mammalian TIP60 is a multi-functional enzyme with histone acetylation and histone dimer exchange activities. It plays roles in diverse cellular processes including transcription, DNA repair, cell cycle control, and embryonic development. Here we report the cryo-electron microscopy structures of the human TIP60 complex with the core subcomplex and TRRAP module refined to 3.2-Å resolution. The structures show that EP400 acts as a backbone integrating the motor module, the ARP module, and the TRRAP module. The RUVBL1-RUVBL2 hexamer serves as a rigid core for the assembly of EP400 ATPase and YL1 in the motor module. In the ARP module, an ACTL6A-ACTB heterodimer and an extra ACTL6A make hydrophobic contacts with EP400 HSA helix, buttressed by network interactions among DMAP1, EPC1, and EP400. The ARP module stably associates with the motor module but is flexibly tethered to the TRRAP module, exhibiting a unique feature of human TIP60. The architecture of the nucleosome-bound human TIP60 reveals an unengaged nucleosome that is located between the core subcomplex and the TRRAP module. Our work illustrates the molecular architecture of human TIP60 and provides architectural insights into how this complex is bound by the nucleosome.
Collapse
Affiliation(s)
- Ke Chen
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Yulei Ren
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Jiang H, Yuan L, Ma L, Qi K, Zhang Y, Zhang B, Ma G, Qi J. Histone H3 N-Terminal Lysine Acetylation Governs Fungal Growth, Conidiation, and Pathogenicity through Regulating Gene Expression in Fusarium pseudograminearum. J Fungi (Basel) 2024; 10:379. [PMID: 38921366 PMCID: PMC11204548 DOI: 10.3390/jof10060379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
The acetylation of histone lysine residues regulates multiple life processes, including growth, conidiation, and pathogenicity in filamentous pathogenic fungi. However, the specific function of each lysine residue at the N-terminus of histone H3 in phytopathogenic fungi remains unclear. In this study, we mutated the N-terminal lysine residues of histone H3 in Fusarium pseudograminearum, the main causal agent of Fusarium crown rot of wheat in China, which also produces deoxynivalenol (DON) toxins harmful to humans and animals. Our findings reveal that all the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants are vital for vegetative growth and conidiation. Additionally, FpH3K14 regulates the pathogen's sensitivity to various stresses and fungicides. Despite the slowed growth of the FpH3K9R and FpH3K23R mutants, their pathogenicity towards wheat stems and heads remains unchanged. However, the FpH3K9R mutant produces more DON. Furthermore, the FpH3K14R and FpH3K18R mutants exhibit significantly reduced virulence, with the FpH3K18R mutant producing minimal DON. In the FpH3K9R, FpH3K14R, FpH3K18R, and FpH3K23R mutants, there are 1863, 1400, 1688, and 1806 downregulated genes, respectively, compared to the wild type. These downregulated genes include many that are crucial for growth, conidiation, pathogenicity, and DON production, as well as some essential genes. Gene ontology (GO) enrichment analysis indicates that genes downregulated in the FpH3K14R and FpH3K18R mutants are enriched for ribosome biogenesis, rRNA processing, and rRNA metabolic process. This suggests that the translation machinery is abnormal in the FpH3K14R and FpH3K18R mutants. Overall, our findings suggest that H3 N-terminal lysine residues are involved in regulating the expression of genes with important functions and are critical for fungal development and pathogenicity.
Collapse
Affiliation(s)
- Hang Jiang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Lifang Yuan
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| | - Liguo Ma
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Kai Qi
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Yueli Zhang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Bo Zhang
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Guoping Ma
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| | - Junshan Qi
- Shandong Key Laboratory of Plant Virology, Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (H.J.); (L.M.); (K.Q.); (Y.Z.); (B.Z.); (G.M.)
| |
Collapse
|
5
|
Kalamuddin M, Shakri AR, Wang C, Min H, Li X, Cui L, Miao J. MYST regulates DNA repair and forms a NuA4-like complex in the malaria parasite Plasmodium falciparum. mSphere 2024; 9:e0014024. [PMID: 38564734 PMCID: PMC11036802 DOI: 10.1128/msphere.00140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Histone lysine acetyltransferase MYST-associated NuA4 complex is conserved from yeast to humans and plays key roles in cell cycle regulation, gene transcription, and DNA replication/repair. Here, we identified a Plasmodium falciparum MYST-associated complex, PfNuA4, which contains 11 of the 13 conserved NuA4 subunits. Reciprocal pulldowns using PfEAF2, a shared component between the NuA4 and SWR1 complexes, not only confirmed the PfNuA4 complex but also identified the PfSWR1 complex, a histone remodeling complex, although their identities are low compared to the homologs in yeast or humans. Notably, both H2A.Z/H2B.Z were associated with the PfSWR1 complex, indicating that this complex is involved in the deposition of H2A.Z/H2B.Z, the variant histone pair that is enriched in the activated promoters. Overexpression of PfMYST resulted in earlier expression of genes involved in cell cycle regulation, DNA replication, and merozoite invasion, and upregulation of the genes related to antigenic variation and DNA repair. Consistently, PfMYST overexpression led to high basal phosphorylated PfH2A (γ-PfH2A), the mark of DNA double-strand breaks, and conferred protection against genotoxic agent methyl methanesulfonate (MMS), X-rays, and artemisinin, the first-line antimalarial drug. In contrast, the knockdown of PfMYST caused a delayed parasite recovery upon MMS treatment. MMS induced the gradual disappearance of PfMYST in the cytoplasm and concomitant accumulation of PfMYST in the nucleus, suggesting cytoplasm-nucleus shuttling of PfMYST. Meanwhile, PfMYST colocalized with the γ-PfH2A, indicating PfMYST was recruited to the DNA damage sites. Collectively, PfMYST plays critical roles in cell cycle regulation, gene transcription, and DNA replication/DNA repair in this low-branching parasitic protist.IMPORTANCEUnderstanding gene regulation and DNA repair in malaria parasites is critical for identifying targets for antimalarials. This study found PfNuA4, a PfMYST-associated, histone modifier complex, and PfSWR1, a chromatin remodeling complex in malaria parasite Plasmodium falciparum. These complexes are divergent due to the low identities compared to their homologs from yeast and humans. Furthermore, overexpression of PfMYST resulted in substantial transcriptomic changes, indicating that PfMYST is involved in regulating the cell cycle, antigenic variation, and DNA replication/repair. Consistently, PfMYST was found to protect against DNA damage caused by the genotoxic agent methyl methanesulfonate, X-rays, and artemisinin, the first-line antimalarial drug. Additionally, DNA damage led to the relocation of cytoplasmic PfMYST to the nucleus and colocalization of PfMYST with γ-PfH2A, the mark of DNA damage. In summary, this study demonstrated that the PfMYST complex has critical functions in regulating cell cycle, antigenic variation, and DNA replication/DNA repair in P. falciparum.
Collapse
Affiliation(s)
- Mohammad Kalamuddin
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Ahmad Rushdi Shakri
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Chengqi Wang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Hui Min
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Xiaolian Li
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Jun Miao
- Department of Internal Medicine, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Xuan F, Xuan H, Huang M, He W, Xu H, Shi X, Wen H. The Tudor-knot Domain of KAT5 Regulates Nucleosomal Substrate Acetylation. J Mol Biol 2024; 436:168414. [PMID: 38141874 PMCID: PMC10957329 DOI: 10.1016/j.jmb.2023.168414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
The lysine acetyltransferase KAT5 is a pivotal enzyme responsible for catalyzing histone H4 acetylation in cells. In addition to its indispensable HAT domain, KAT5 also encompasses a conserved Tudor-knot domain at its N-terminus. However, the function of this domain remains elusive, with conflicting findings regarding its role as a histone reader. In our study, we have employed a CRISPR tiling array approach and unveiled the Tudor-knot motif as an essential domain for cell survival. The Tudor-knot domain does not bind to histone tails and is not required for KAT5's chromatin occupancy. However, its absence leads to a global reduction in histone acetylation, accompanied with genome-wide alterations in gene expression that consequently result in diminished cell viability. Mechanistically, we find that the Tudor-knot domain regulates KAT5's HAT activity on nucleosomes by fine-tuning substrate accessibility. In summary, our study uncovers the Tudor-knot motif as an essential domain for cell survival and reveals its critical role in modulating KAT5's catalytic efficiency on nucleosome and KAT5-dependent transcriptional programs critical for cell viability.
Collapse
Affiliation(s)
- Fan Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hongwen Xuan
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Mengying Huang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Wei He
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Han Xu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaobing Shi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Hong Wen
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
| |
Collapse
|
7
|
Lo TL, Wang Q, Nickson J, van Denderen BJW, Deveson Lucas D, Chai HX, Knott GJ, Weerasinghe H, Traven A. The C-terminal protein interaction domain of the chromatin reader Yaf9 is critical for pathogenesis of Candida albicans. mSphere 2024; 9:e0069623. [PMID: 38376217 PMCID: PMC10964406 DOI: 10.1128/msphere.00696-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Fungal infections cause a large health burden but are treated by only a handful of antifungal drug classes. Chromatin factors have emerged as possible targets for new antifungals. These targets include the reader proteins, which interact with posttranslationally modified histones to influence DNA transcription and repair. The YEATS domain is one such reader recognizing both crotonylated and acetylated histones. Here, we performed a detailed structure/function analysis of the Candida albicans YEATS domain reader Yaf9, a subunit of the NuA4 histone acetyltransferase and the SWR1 chromatin remodeling complex. We have previously demonstrated that the homozygous deletion mutant yaf9Δ/Δ displays growth defects and is avirulent in mice. Here we show that a YEATS domain mutant expected to inactivate Yaf9's chromatin binding does not display strong phenotypes in vitro, nor during infection of immune cells or in a mouse systemic infection model, with only a minor virulence reduction in vivo. In contrast to the YEATS domain mutation, deletion of the C-terminal domain of Yaf9, a protein-protein interaction module necessary for its interactions with SWR1 and NuA4, phenocopies the null mutant. This shows that the C-terminal domain is essential for Yaf9 roles in vitro and in vivo, including C. albicans virulence. Our study informs on the strategies for therapeutic targeting of Yaf9, showing that approaches taken for the mammalian YEATS domains by disrupting their chromatin binding might not be effective in C. albicans, and provides a foundation for studying YEATS proteins in human fungal pathogens.IMPORTANCEThe scarcity of available antifungal drugs and rising resistance demand the development of therapies with new modes of action. In this context, chromatin regulation may be a target for novel antifungal therapeutics. To realize this potential, we must better understand the roles of chromatin regulators in fungal pathogens. Toward this goal, here, we studied the YEATS domain chromatin reader Yaf9 in Candida albicans. Yaf9 uses the YEATS domain for chromatin binding and a C-terminal domain to interact with chromatin remodeling complexes. By constructing mutants in these domains and characterizing their phenotypes, our data indicate that the Yaf9 YEATS domain might not be a suitable therapeutic drug target. Instead, the Yaf9 C-terminal domain is critical for C. albicans virulence. Collectively, our study informs how a class of chromatin regulators performs their cellular and pathogenesis roles in C. albicans and reveals strategies to inhibit them.
Collapse
Affiliation(s)
- Tricia L. Lo
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Qi Wang
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Joshua Nickson
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Bryce J. W. van Denderen
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | | | - Her Xiang Chai
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Gavin J. Knott
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Harshini Weerasinghe
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology and the Infection Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Clayton, Australia
| |
Collapse
|
8
|
Patel AB, He Y, Radhakrishnan I. Histone acetylation and deacetylation - Mechanistic insights from structural biology. Gene 2024; 890:147798. [PMID: 37726026 PMCID: PMC11253779 DOI: 10.1016/j.gene.2023.147798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Histones are subject to a diverse array of post-translational modifications. Among them, lysine acetylation is not only the most pervasive and dynamic modification but also highly consequential for regulating gene transcription. Although enzymes responsible for the addition and removal of acetyl groups were discovered almost 30 years ago, high-resolution structures of the enzymes in the context of their native complexes are only now beginning to become available, thanks to revolutionary technologies in protein structure determination and prediction. Here, we will review our current understanding of the molecular mechanisms of acetylation and deacetylation engendered by chromatin-modifying complexes, compare and contrast shared features, and discuss some of the pressing questions for future studies.
Collapse
Affiliation(s)
- Avinash B Patel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Yuan He
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
9
|
Juvkam IS, Zlygosteva O, Sitarz M, Thiede B, Sørensen BS, Malinen E, Edin NJ, Søland TM, Galtung HK. Proton Compared to X-Irradiation Induces Different Protein Profiles in Oral Cancer Cells and Their Derived Extracellular Vesicles. Int J Mol Sci 2023; 24:16983. [PMID: 38069306 PMCID: PMC10707519 DOI: 10.3390/ijms242316983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound particles released from cells, and their cargo can alter the function of recipient cells. EVs from X-irradiated cells have been shown to play a likely role in non-targeted effects. However, EVs derived from proton irradiated cells have not yet been studied. We aimed to investigate the proteome of EVs and their cell of origin after proton or X-irradiation. The EVs were derived from a human oral squamous cell carcinoma (OSCC) cell line exposed to 0, 4, or 8 Gy from either protons or X-rays. The EVs and irradiated OSCC cells underwent liquid chromatography-mass spectrometry for protein identification. Interestingly, we found different protein profiles both in the EVs and in the OSCC cells after proton irradiation compared to X-irradiation. In the EVs, we found that protons cause a downregulation of proteins involved in cell growth and DNA damage response compared to X-rays. In the OSCC cells, proton and X-irradiation induced dissimilar cell death pathways and distinct DNA damage repair systems. These results are of potential importance for understanding how non-targeted effects in normal tissue can be limited and for future implementation of proton therapy in the clinic.
Collapse
Affiliation(s)
- Inga Solgård Juvkam
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
| | - Olga Zlygosteva
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Mateusz Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.S.); (B.S.S.)
| | - Bernd Thiede
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway;
| | - Brita Singers Sørensen
- Danish Centre for Particle Therapy, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.S.); (B.S.S.)
- Department of Experimental Clinical Oncology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Eirik Malinen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, 0379 Oslo, Norway;
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Nina Jeppesen Edin
- Department of Physics, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway; (O.Z.); (N.J.E.)
| | - Tine Merete Søland
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
- Department of Pathology, Oslo University Hospital, 0372 Oslo, Norway
| | - Hilde Kanli Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway; (I.S.J.); (T.M.S.)
| |
Collapse
|
10
|
Zheng SY, Guan BB, Yuan DY, Zhao QQ, Ge W, Tan LM, Chen SS, Li L, Chen S, Xu RM, He XJ. Dual roles of the Arabidopsis PEAT complex in histone H2A deubiquitination and H4K5 acetylation. MOLECULAR PLANT 2023; 16:1847-1865. [PMID: 37822080 DOI: 10.1016/j.molp.2023.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/06/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Histone H2A monoubiquitination is associated with transcriptional repression and needs to be removed by deubiquitinases to facilitate gene transcription in eukaryotes. However, the deubiquitinase responsible for genome-wide H2A deubiquitination in plants has yet to be identified. In this study, we found that the previously identified PWWP-EPCR-ARID-TRB (PEAT) complex components interact with both the ubiquitin-specific protease UBP5 and the redundant histone acetyltransferases HAM1 and HAM2 (HAM1/2) to form a larger version of PEAT complex in Arabidopsis thaliana. UBP5 functions as an H2A deubiquitinase in a nucleosome substrate-dependent manner in vitro and mediates H2A deubiquitination at the whole-genome level in vivo. HAM1/2 are shared subunits of the PEAT complex and the conserved NuA4 histone acetyltransferase complex, and are responsible for histone H4K5 acetylation. Within the PEAT complex, the PWWP components (PWWP1, PWWP2, and PWWP3) directly interact with UBP5 and are necessary for UBP5-mediated H2A deubiquitination, while the EPCR components (EPCR1 and EPCR2) directly interact with HAM1/2 and are required for HAM1/2-mediated H4K5 acetylation. Collectively, our study not only identifies dual roles of the PEAT complex in H2A deubiquitination and H4K5 acetylation but also illustrates how these processes collaborate at the whole-genome level to regulate the transcription and development in plants.
Collapse
Affiliation(s)
- Si-Yao Zheng
- College of Life Sciences, Beijing Normal University, Beijing, China; National Institute of Biological Sciences, Beijing, China
| | - Bin-Bin Guan
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | | | - Weiran Ge
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lian-Mei Tan
- National Institute of Biological Sciences, Beijing, China
| | - Shan-Shan Chen
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Rui-Ming Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
11
|
Sharma S, Chung CY, Uryu S, Petrovic J, Cao J, Rickard A, Nady N, Greasley S, Johnson E, Brodsky O, Khan S, Wang H, Wang Z, Zhang Y, Tsaparikos K, Chen L, Mazurek A, Lapek J, Kung PP, Sutton S, Richardson PF, Greenwald EC, Yamazaki S, Jones R, Maegley KA, Bingham P, Lam H, Stupple AE, Kamal A, Chueh A, Cuzzupe A, Morrow BJ, Ren B, Carrasco-Pozo C, Tan CW, Bhuva DD, Allan E, Surgenor E, Vaillant F, Pehlivanoglu H, Falk H, Whittle JR, Newman J, Cursons J, Doherty JP, White KL, MacPherson L, Devlin M, Dennis ML, Hattarki MK, De Silva M, Camerino MA, Butler MS, Dolezal O, Pilling P, Foitzik R, Stupple PA, Lagiakos HR, Walker SR, Hediyeh-Zadeh S, Nuttall S, Spall SK, Charman SA, Connor T, Peat TS, Avery VM, Bozikis YE, Yang Y, Zhang M, Monahan BJ, Voss AK, Thomas T, Street IP, Dawson SJ, Dawson MA, Lindeman GJ, Davis MJ, Visvader JE, Paul TA. Discovery of a highly potent, selective, orally bioavailable inhibitor of KAT6A/B histone acetyltransferases with efficacy against KAT6A-high ER+ breast cancer. Cell Chem Biol 2023; 30:1191-1210.e20. [PMID: 37557181 DOI: 10.1016/j.chembiol.2023.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023]
Abstract
KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.
Collapse
Affiliation(s)
- Shikhar Sharma
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA.
| | - Chi-Yeh Chung
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Sean Uryu
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Jelena Petrovic
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Joan Cao
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Amanda Rickard
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Nataliya Nady
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | | | - Eric Johnson
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Oleg Brodsky
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Showkhin Khan
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Hui Wang
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Zhenxiong Wang
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Yong Zhang
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | | | - Lei Chen
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Anthony Mazurek
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - John Lapek
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Pei-Pei Kung
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Scott Sutton
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | | | - Eric C Greenwald
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Shinji Yamazaki
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Rhys Jones
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Karen A Maegley
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Patrick Bingham
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Hieu Lam
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Alexandra E Stupple
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; CANThera Discovery, Melbourne, VIC 3000, Australia
| | - Aileen Kamal
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Anderly Chueh
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Anthony Cuzzupe
- SYNthesis Med Chem (Australia) Pty Ltd, Bio21 Institute, 30 Flemington Road, Parkville, VIC 3052, Australia
| | - Benjamin J Morrow
- Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia
| | - Bin Ren
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Catalina Carrasco-Pozo
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Brisbane QLD 4111, Australia
| | - Chin Wee Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Dharmesh D Bhuva
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Elizabeth Allan
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Elliot Surgenor
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - François Vaillant
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Havva Pehlivanoglu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Hendrik Falk
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - James R Whittle
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Janet Newman
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Joseph Cursons
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Judy P Doherty
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Karen L White
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Laura MacPherson
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark Devlin
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Matthew L Dennis
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Meghan K Hattarki
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Melanie De Silva
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Michelle A Camerino
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Miriam S Butler
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Olan Dolezal
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Patricia Pilling
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Richard Foitzik
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; OncologyOne Pty Ltd, Melbourne, VIC 3000, Australia
| | - Paul A Stupple
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; CANThera Discovery, Melbourne, VIC 3000, Australia
| | - H Rachel Lagiakos
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Scott R Walker
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Soroor Hediyeh-Zadeh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Stewart Nuttall
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Sukhdeep K Spall
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Susan A Charman
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Theresa Connor
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Thomas S Peat
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Vicky M Avery
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Brisbane QLD 4111, Australia
| | - Ylva E Bozikis
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Yuqing Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ming Zhang
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Brendon J Monahan
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; CANThera Discovery, Melbourne, VIC 3000, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ian P Street
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; OncologyOne Pty Ltd, Melbourne, VIC 3000, Australia; Children's Cancer Institute, Randwick, NSW 2031, Australia; University of New South Wales, Randwick, NSW 2021, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Geoffrey J Lindeman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC 3050, Australia
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jane E Visvader
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Thomas A Paul
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA.
| |
Collapse
|
12
|
Cheung ACM. The NuA4 histone acetyltransferase: variations on a theme of SAGA. Nat Struct Mol Biol 2023; 30:1240-1241. [PMID: 37550451 DOI: 10.1038/s41594-023-01057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
|
13
|
Wang D, Li H, Chandel NS, Dou Y, Yi R. MOF-mediated histone H4 Lysine 16 acetylation governs mitochondrial and ciliary functions by controlling gene promoters. Nat Commun 2023; 14:4404. [PMID: 37479688 PMCID: PMC10362062 DOI: 10.1038/s41467-023-40108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/11/2023] [Indexed: 07/23/2023] Open
Abstract
Histone H4 lysine 16 acetylation (H4K16ac), governed by the histone acetyltransferase MOF, orchestrates gene expression regulation and chromatin interaction. However, the roles of MOF and H4K16ac in controlling cellular function and regulating mammalian tissue development remain unclear. Here we show that conditional deletion of Mof in the skin, but not Kansl1, causes severe defects in the self-renewal of basal epithelial progenitors, epidermal differentiation, and hair follicle growth, resulting in barrier defects and perinatal lethality. MOF-regulated genes are highly enriched for essential functions in the mitochondria and cilia. Genetic deletion of Uqcrq, an essential subunit for the electron transport chain (ETC) Complex III, in the skin, recapitulates the defects in epidermal differentiation and hair follicle growth observed in MOF knockout mouse. Together, this study reveals the requirement of MOF-mediated epigenetic mechanism for regulating mitochondrial and ciliary gene expression and underscores the important function of the MOF/ETC axis for mammalian skin development.
Collapse
Affiliation(s)
- Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Haimin Li
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Navdeep S Chandel
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Yali Dou
- Department of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Rui Yi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
14
|
Pan Y, Hu C, Hou LJ, Chen YL, Shi J, Liu JC, Zhou JQ. Swc4 protects nucleosome-free rDNA, tDNA and telomere loci to inhibit genome instability. DNA Repair (Amst) 2023; 127:103512. [PMID: 37230009 DOI: 10.1016/j.dnarep.2023.103512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/17/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023]
Abstract
In the baker's yeast Saccharomyces cerevisiae, NuA4 and SWR1-C, two multisubunit complexes, are involved in histone acetylation and chromatin remodeling, respectively. Eaf1 is the assembly platform subunit of NuA4, Swr1 is the assembly platform and catalytic subunit of SWR1-C, while Swc4, Yaf9, Arp4 and Act1 form a functional module, and is present in both NuA4 and SWR1 complexes. ACT1 and ARP4 are essential for cell survival. Deletion of SWC4, but not YAF9, EAF1 or SWR1 results in a severe growth defect, but the underlying mechanism remains largely unknown. Here, we show that swc4Δ, but not yaf9Δ, eaf1Δ, or swr1Δ cells display defects in DNA ploidy and chromosome segregation, suggesting that the defects observed in swc4Δ cells are independent of NuA4 or SWR1-C integrity. Swc4 is enriched in the nucleosome-free regions (NFRs) of the genome, including characteristic regions of RDN5s, tDNAs and telomeres, independently of Yaf9, Eaf1 or Swr1. In particular, rDNA, tDNA and telomere loci are more unstable and prone to recombination in the swc4Δ cells than in wild-type cells. Taken together, we conclude that the chromatin associated Swc4 protects nucleosome-free chromatin of rDNA, tDNA and telomere loci to ensure genome integrity.
Collapse
Affiliation(s)
- Yue Pan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Can Hu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lin-Jun Hou
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Long Chen
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiantao Shi
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jia-Cheng Liu
- The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jin-Qiu Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; The State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| |
Collapse
|
15
|
Ferreras-Gutiérrez M, Chaves-Arquero B, González-Magaña A, Merino N, Amusategui-Mateu I, Huecas S, Medrano FJ, Blanco FJ. Structural analysis of ING3 protein and histone H3 binding. Int J Biol Macromol 2023; 242:124724. [PMID: 37148949 DOI: 10.1016/j.ijbiomac.2023.124724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/08/2023]
Abstract
Proteins belonging to the ING family regulate the transcriptional state of chromatin by recruiting remodeling complexes to sites with histone H3 trimethylated at Lysine 4 (H3K4me3). This modification is recognized by the Plant HomeoDomain (PHD) present at the C-terminal region of the five ING proteins. ING3 facilitates acetylation of histones H2A and H4 by the NuA4-Tip60 MYST histone acetyl transferase complex, and it has been proposed to be an oncoprotein. The crystal structure of the N-terminal domain of ING3 shows that it forms homodimers with an antiparallel coiled-coil fold. The crystal structure of the PHD is similar to those of its four homologs. These structures explain the possible deleterious effects of ING3 mutations detected in tumors. The PHD binds histone H3K4me3 with low-micromolar, and binds the non-methylated histone with a 54-fold reduced affinity. Our structure explains the impact of site directed mutagenesis experiments on histone recognition. These structural features could not be confirmed for the full-length protein as solubility was insufficient for structural studies, but the structure of its folded domains suggest a conserved structural organization for the ING proteins as homodimers and bivalent readers of the histone H3K4me3 mark.
Collapse
Affiliation(s)
| | - Belén Chaves-Arquero
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Amaia González-Magaña
- Instituto Biofisika and Departamento de Bioquímica y Biología Molecular (CSIC, UPV/EHU), University of the Basque Country, 48940 Leioa, Spain
| | - Nekane Merino
- CIC bioGUNE, Parque Tecnológico de Bizkaia, 48160 Derio, Spain
| | | | - Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Francisco J Medrano
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain
| | - Francisco J Blanco
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid 28040, Spain.
| |
Collapse
|
16
|
Wang ZA, Markert JW, Whedon SD, Yapa Abeywardana M, Lee K, Jiang H, Suarez C, Lin H, Farnung L, Cole PA. Structural Basis of Sirtuin 6-Catalyzed Nucleosome Deacetylation. J Am Chem Soc 2023; 145:6811-6822. [PMID: 36930461 PMCID: PMC10071992 DOI: 10.1021/jacs.2c13512] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
The reversible acetylation of histone lysine residues is controlled by the action of acetyltransferases and deacetylases (HDACs), which regulate chromatin structure and gene expression. The sirtuins are a family of NAD-dependent HDAC enzymes, and one member, sirtuin 6 (Sirt6), influences DNA repair, transcription, and aging. Here, we demonstrate that Sirt6 is efficient at deacetylating several histone H3 acetylation sites, including its canonical site Lys9, in the context of nucleosomes but not free acetylated histone H3 protein substrates. By installing a chemical warhead at the Lys9 position of histone H3, we trap a catalytically poised Sirt6 in complex with a nucleosome and employ this in cryo-EM structural analysis. The structure of Sirt6 bound to a nucleosome reveals extensive interactions between distinct segments of Sirt6 and the H2A/H2B acidic patch and nucleosomal DNA, which accounts for the rapid deacetylation of nucleosomal H3 sites and the disfavoring of histone H2B acetylation sites. These findings provide a new framework for understanding how HDACs target and regulate chromatin.
Collapse
Affiliation(s)
- Zhipeng A. Wang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, United States
- Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, MA, 02115, United States
| | - Jonathan W. Markert
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, United States
| | - Samuel D. Whedon
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, United States
- Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, MA, 02115, United States
| | - Maheeshi Yapa Abeywardana
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, United States
- Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, MA, 02115, United States
| | - Kwangwoon Lee
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, United States
- Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, MA, 02115, United States
| | - Hanjie Jiang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, United States
- Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, MA, 02115, United States
| | - Carolay Suarez
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, United States
- Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, MA, 02115, United States
| | - Hening Lin
- Howard Hughes Medical Institute; Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Lucas Farnung
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, United States
| | - Philip A. Cole
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, United States
- Department of Biological Chemistry and Molecular Pharmcology, Harvard Medical School, Boston, MA, 02115, United States
| |
Collapse
|
17
|
Paralog-specific recognition. Nat Chem Biol 2023; 19:542-543. [PMID: 36797402 DOI: 10.1038/s41589-022-01241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
18
|
Whedon SD, Cole PA. KATs off: Biomedical insights from lysine acetyltransferase inhibitors. Curr Opin Chem Biol 2023; 72:102255. [PMID: 36584580 PMCID: PMC9870960 DOI: 10.1016/j.cbpa.2022.102255] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/29/2022]
Abstract
Lysine acetyltransferase (KAT) enzymes including the p300, MYST, and GCN5 families play major roles in modulating the structure of chromatin and regulating transcription. Because of their dysregulation in various disease states including cancer, efforts to develop inhibitors of KATs have steadily gained momentum. Here we provide an overview of recent progress on the development of high quality chemical probes of the p300 and MYST family of KATs and how they are emerging as useful tools for basic and translational investigation.
Collapse
Affiliation(s)
- Samuel D Whedon
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|