1
|
Liu Q, Wu D, Wu T, Han S, Peng Y, Yuan Z, Cheng Y, Li B, Hu T, Yue L, Xu S, Ding R, Lu M, Li R, Zhang S, Lv B, Zong A, Su Y, Gedik N, Yin Z, Dong T, Wang N. Room-temperature non-volatile optical manipulation of polar order in a charge density wave. Nat Commun 2024; 15:8937. [PMID: 39414809 PMCID: PMC11484949 DOI: 10.1038/s41467-024-53323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/07/2024] [Indexed: 10/18/2024] Open
Abstract
Utilizing ultrafast light-matter interaction to manipulate electronic states of quantum materials is an emerging area of research in condensed matter physics. It has significant implications for the development of future ultrafast electronic devices. However, the ability to induce long-lasting metastable electronic states in a fully reversible manner is a long-standing challenge. Here, by using ultrafast laser excitations, we demonstrate the capability to manipulate the electronic polar states in the charge-density-wave material EuTe4 in a non-volatile manner. The process is completely reversible and is achieved at room temperature with an all-optical approach. Each induced non-volatile state brings about modifications to the electrical resistance and second harmonic generation intensity. The results point to layer-specific phase inversion dynamics by which photoexcitation mediates the stacking polar order of the system. Our findings extend the scope of non-volatile all-optical control of electronic states to ambient conditions, and highlight a distinct role of layer-dependent phase manipulation in quasi-two-dimensional systems with inherent sublayer stacking orders.
Collapse
Affiliation(s)
- Qiaomei Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Dong Wu
- Beijing Academy of Quantum Information Sciences, Beijing, 100913, China.
| | - Tianyi Wu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Shanshan Han
- Beijing Academy of Quantum Information Sciences, Beijing, 100913, China
| | - Yiran Peng
- Department of Physics and Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Zhihong Yuan
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan, 030031, China
| | - Yihan Cheng
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Bohan Li
- Beijing Academy of Quantum Information Sciences, Beijing, 100913, China
| | - Tianchen Hu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Li Yue
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Shuxiang Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Ruoxuan Ding
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Ming Lu
- Beijing Academy of Quantum Information Sciences, Beijing, 100913, China
| | - Rongsheng Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Sijie Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Baiqing Lv
- Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Alfred Zong
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA
| | - Yifan Su
- Department of physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nuh Gedik
- Department of physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Zhiping Yin
- Department of Physics and Center for Advanced Quantum Studies, Beijing Normal University, Beijing, 100875, China
| | - Tao Dong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Nanlin Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China.
- Beijing Academy of Quantum Information Sciences, Beijing, 100913, China.
| |
Collapse
|
2
|
Li Y, Arsenault EA, Yang B, Wang X, Park H, Guo Y, Taniguchi T, Watanabe K, Gamelin D, Hone JC, Dean CR, Maehrlein SF, Xu X, Zhu X. Coherent Modulation of Two-Dimensional Moiré States with On-Chip THz Waves. NANO LETTERS 2024; 24:12156-12162. [PMID: 39303288 DOI: 10.1021/acs.nanolett.4c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
van der Waals (vdW) structures host a broad range of physical phenomena. New opportunities arise if different functional layers are remotely modulated or coupled in a device structure. Here we demonstrate the in situ coherent modulation of moiré excitons and correlated Mott insulators in transition metal dichalcogenide (TMD) moirés with on-chip terahertz (THz) waves. Using common dual-gated device structures of a TMD moiré bilayer sandwiched between two few-layer graphene (fl-Gr) gates with hexagonal boron nitride (h-BN) spacers, we launch coherent phonon wavepackets at ∼0.4-1 THz from the fl-Gr gates by femtosecond laser excitation. The waves travel through the h-BN spacer, arrive at the TMD bilayer with precise timing, and coherently modulate the moiré excitons or Mott states. These results demonstrate that the fl-Gr gates, often used for electrical control, can serve as on-chip opto-elastic transducers to generate THz waves for coherent control and vibrational entanglement of functional layers in moiré devices.
Collapse
Affiliation(s)
- Yiliu Li
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eric A Arsenault
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Birui Yang
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Xi Wang
- Department of Physics, Washington University, St. Louis, Missouri 63130, United States
- Institute of Materials Science & Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Heonjoon Park
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Yinjie Guo
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Daniel Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - James C Hone
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Cory R Dean
- Department of Physics, Columbia University, New York, New York 10027, United States
| | - Sebastian F Maehrlein
- Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin 14195, Germany
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
3
|
Kahana T, Bustamante Lopez DA, Juraschek DM. Light-induced magnetization from magnonic rectification. SCIENCE ADVANCES 2024; 10:eado0722. [PMID: 39321285 PMCID: PMC11423882 DOI: 10.1126/sciadv.ado0722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/16/2024] [Indexed: 09/27/2024]
Abstract
Rectification describes the conversion of an oscillating field or current into a quasi-static one and the most basic example of a rectifier is an AC/DC converter in electronics. This principle can be translated to nonlinear light-matter interactions, where optical rectification converts the oscillating electric field component of light into a quasi-static polarization and phononic rectification converts a lattice vibration into a quasi-static structural distortion. Here, we present a rectification mechanism for magnetism that we call magnonic rectification, where a spin precession is converted into a quasi-static magnetization through the force exerted by a coupled chiral phonon mode. The transiently induced magnetic state resembles that of a canted antiferromagnet, opening an avenue toward creating dynamical spin configurations that are not accessible in equilibrium.
Collapse
Affiliation(s)
- Tom Kahana
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | |
Collapse
|
4
|
Ojeda Collado HP, Michael MH, Skulte J, Rubio A, Mathey L. Equilibrium Parametric Amplification in Raman-Cavity Hybrids. PHYSICAL REVIEW LETTERS 2024; 133:116901. [PMID: 39331971 DOI: 10.1103/physrevlett.133.116901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/31/2024] [Accepted: 08/06/2024] [Indexed: 09/29/2024]
Abstract
Parametric resonances and amplification have led to extraordinary photoinduced phenomena in pump-probe experiments. While these phenomena manifest themselves in out-of-equilibrium settings, here, we present the striking result of parametric amplification in equilibrium. We demonstrate that quantum and thermal fluctuations of a Raman-active mode amplifies light inside a cavity, at equilibrium, when the Raman mode frequency is twice the cavity mode frequency. This noise-driven amplification leads to the creation of an unusual parametric Raman polariton, intertwining the Raman mode with cavity squeezing fluctuations, with smoking gun signatures in Raman spectroscopy. In the resonant regime, we show the emergence of not only quantum light amplification but also localization and static shift of the Raman mode. Apart from the fundamental interest of equilibrium parametric amplification, our Letter suggests a resonant mechanism for controlling Raman modes and thus matter properties by cavity fluctuations. We conclude by outlining how to compute the Raman-cavity coupling, and suggest possible experimental realizations.
Collapse
|
5
|
Qu J, Cuddy EF, Han X, Liu J, Li H, Zeng YJ, Moritz B, Devereaux TP, Kirchmann PS, Shen ZX, Sobota JA. Screening of Polar Electron-Phonon Interactions near the Surface of the Rashba Semiconductor BiTeCl. PHYSICAL REVIEW LETTERS 2024; 133:106401. [PMID: 39303246 DOI: 10.1103/physrevlett.133.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/22/2024]
Abstract
Understanding electron-phonon coupling in noncentrosymmetric materials is critical for controlling the internal fields which give rise to Rashba interactions. We apply time- and angle-resolved photoemission spectroscopy (trARPES) to study coherent phonons in the surface and bulk regions of the polar semiconductor BiTeCl. Aided by ab initio calculations, our measurements reveal the coupling of out-of-plane A_{1} modes and an in-plane E_{2} mode. By considering how these modes modulate the electric dipole moment in each unit cell, we show that the polar A_{1} modes are more effectively screened in the metallic surface region, while the nonpolar E_{2} mode couples in both regions. In addition to informing strategies to optically manipulate Rashba interactions, this Letter has broader implications for the behavior of electron-phonon coupling in systems characterized by inhomogeneous dielectric environments.
Collapse
Affiliation(s)
- J Qu
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Geballe Laboratory for Advanced Materials, Department of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA
| | | | - X Han
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Geballe Laboratory for Advanced Materials, Department of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | - T P Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Geballe Laboratory for Advanced Materials, Department of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | | | - Z-X Shen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
- Geballe Laboratory for Advanced Materials, Department of Physics and Applied Physics, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
6
|
Fava S, De Vecchi G, Jotzu G, Buzzi M, Gebert T, Liu Y, Keimer B, Cavalleri A. Magnetic field expulsion in optically driven YBa 2Cu 3O 6.48. Nature 2024; 632:75-80. [PMID: 38987601 PMCID: PMC11291272 DOI: 10.1038/s41586-024-07635-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/31/2024] [Indexed: 07/12/2024]
Abstract
Coherent optical driving in quantum solids is emerging as a research frontier, with many reports of interesting non-equilibrium quantum phases1-4 and transient photo-induced functional phenomena such as ferroelectricity5,6, magnetism7-10 and superconductivity11-14. In high-temperature cuprate superconductors, coherent driving of certain phonon modes has resulted in a transient state with superconducting-like optical properties, observed far above their transition temperature Tc and throughout the pseudogap phase15-18. However, questions remain on the microscopic nature of this transient state and how to distinguish it from a non-superconducting state with enhanced carrier mobility. For example, it is not known whether cuprates driven in this fashion exhibit Meissner diamagnetism. Here we examine the time-dependent magnetic field surrounding an optically driven YBa2Cu3O6.48 crystal by measuring Faraday rotation in a magneto-optic material placed in the vicinity of the sample. For a constant applied magnetic field and under the same driving conditions that result in superconducting-like optical properties15-18, a transient diamagnetic response was observed. This response is comparable in size with that expected in an equilibrium type II superconductor of similar shape and size with a volume susceptibility χv of order -0.3. This value is incompatible with a photo-induced increase in mobility without superconductivity. Rather, it underscores the notion of a pseudogap phase in which incipient superconducting correlations are enhanced or synchronized by the drive.
Collapse
Affiliation(s)
- S Fava
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - G De Vecchi
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - G Jotzu
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - M Buzzi
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - T Gebert
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Y Liu
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - B Keimer
- Max Planck Institute for Solid State Research, Stuttgart, Germany
| | - A Cavalleri
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Guo X, Liu W, Schwartz J, Sung SH, Zhang D, Shimizu M, Kondusamy ALN, Li L, Sun K, Deng H, Jeschke HO, Mazin II, Hovden R, Lv B, Zhao L. Extraordinary phase transition revealed in a van der Waals antiferromagnet. Nat Commun 2024; 15:6472. [PMID: 39085242 PMCID: PMC11291737 DOI: 10.1038/s41467-024-50900-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 07/22/2024] [Indexed: 08/02/2024] Open
Abstract
While the surface-bulk correspondence has been ubiquitously shown in topological phases, the relationship between surface and bulk in Landau-like phases is much less explored. Theoretical investigations since 1970s for semi-infinite systems have predicted the possibility of the surface order emerging at a higher temperature than the bulk, clearly illustrating a counterintuitive situation and greatly enriching phase transitions. But experimental realizations of this prediction remain missing. Here, we demonstrate the higher-temperature surface and lower-temperature bulk phase transitions in CrSBr, a van der Waals (vdW) layered antiferromagnet. We leverage the surface sensitivity of electric dipole second harmonic generation (SHG) to resolve surface magnetism, the bulk nature of electric quadrupole SHG to probe bulk spin correlations, and their interference to capture the two magnetic domain states. Our density functional theory calculations show the suppression of ferromagnetic-antiferromagnetic competition at the surface is responsible for this enhanced surface magnetism. Our results not only show counterintuitive, richer phase transitions in vdW magnets, but also provide viable ways to enhance magnetism in their 2D form.
Collapse
Affiliation(s)
- Xiaoyu Guo
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Wenhao Liu
- Department of Physics, the University of Texas at Dallas, Richardson, TX, USA
| | - Jonathan Schwartz
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Suk Hyun Sung
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Dechen Zhang
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Makoto Shimizu
- Department of Physics, Okayama University, Okayama, Japan
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Aswin L N Kondusamy
- Department of Physics, the University of Texas at Dallas, Richardson, TX, USA
| | - Lu Li
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Hui Deng
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - Harald O Jeschke
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan
| | - Igor I Mazin
- Department of Physics and Astronomy, and Quantum Science and Engineering Center, George Mason University, Fairfax, VA, USA
| | - Robert Hovden
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Bing Lv
- Department of Physics, the University of Texas at Dallas, Richardson, TX, USA.
| | - Liuyan Zhao
- Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Yao S, Ji Y, Wang S, Liu Y, Hou Z, Wang J, Gao X, Fu W, Nie K, Xie J, Yang Z, Yan YM. Unlocking Spin Gates of Transition Metal Oxides via Strain Stimuli to Augment Potassium Ion Storage. Angew Chem Int Ed Engl 2024; 63:e202404834. [PMID: 38588076 DOI: 10.1002/anie.202404834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 04/10/2024]
Abstract
Transition metal oxides (TMOs) are key in electrochemical energy storage, offering cost-effectiveness and a broad potential window. However, their full potential is limited by poor understanding of their slow reaction kinetics and stability issues. This study diverges from conventional complex nano-structuring, concentrating instead on spin-related charge transfer and orbital interactions to enhance the reaction dynamics and stability of TMOs during energy storage processes. We successfully reconfigured the orbital degeneracy and spin-dependent electronic occupancy by disrupting the symmetry of magnetic cobalt (Co) sites through straightforward strain stimuli. The key to this approach lies in the unfilled Co 3d shell, which serves as a spin-dependent regulator for carrier transfer and orbital interactions within the reaction. We observed that the opening of these 'spin gates' occurs during a transition from a symmetric low-spin state to an asymmetric high-spin state, resulting in enhanced reaction kinetics and maintained structural stability. Specifically, the spin-rearranged Al-Co3O4 exhibited a specific capacitance of 1371 F g-1, which is 38 % higher than that of unaltered Co3O4. These results not only shed light on the spin effects in magnetic TMOs but also establish a new paradigm for designing electrochemical energy storage materials with improved efficiency.
Collapse
Affiliation(s)
- Shuyun Yao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yingjie Ji
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shiyu Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yuanming Liu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Zishan Hou
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jinrui Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xueying Gao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Weijie Fu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of, New South Wales, Sydney, New South Wales, 2052, Australia
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
9
|
Davies CS, Fennema FGN, Tsukamoto A, Razdolski I, Kimel AV, Kirilyuk A. Phononic switching of magnetization by the ultrafast Barnett effect. Nature 2024; 628:540-544. [PMID: 38600386 DOI: 10.1038/s41586-024-07200-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 02/16/2024] [Indexed: 04/12/2024]
Abstract
The historic Barnett effect describes how an inertial body with otherwise zero net magnetic moment acquires spontaneous magnetization when mechanically spinning1,2. Breakthrough experiments have recently shown that an ultrashort laser pulse destroys the magnetization of an ordered ferromagnet within hundreds of femtoseconds3, with the spins losing angular momentum to circularly polarized optical phonons as part of the ultrafast Einstein-de Haas effect4,5. However, the prospect of using such high-frequency vibrations of the lattice to reciprocally switch magnetization in a nearby magnetic medium has not yet been experimentally explored. Here we show that the spontaneous magnetization gained temporarily by means of the ultrafast Barnett effect, through the resonant excitation of circularly polarized optical phonons in a paramagnetic substrate, can be used to permanently reverse the magnetic state of a heterostructure mounted atop the said substrate. With the handedness of the phonons steering the direction of magnetic switching, the ultrafast Barnett effect offers a selective and potentially universal method for exercising ultrafast non-local control over magnetic order.
Collapse
Affiliation(s)
- C S Davies
- FELIX Laboratory, Radboud University, Nijmegen, The Netherlands.
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands.
| | - F G N Fennema
- FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - A Tsukamoto
- College of Science and Technology, Nihon University, Chiba, Japan
| | - I Razdolski
- FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
- Faculty of Physics, University of Bialystok, Bialystok, Poland
| | - A V Kimel
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| | - A Kirilyuk
- FELIX Laboratory, Radboud University, Nijmegen, The Netherlands
- Radboud University, Institute for Molecules and Materials, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Jubgang Fandio DJ, Vishnuradhan A, Yalavarthi EK, Cui W, Couture N, Gamouras A, Ménard JM. Zeptojoule detection of terahertz pulses by parametric frequency upconversion. OPTICS LETTERS 2024; 49:1556-1559. [PMID: 38489449 DOI: 10.1364/ol.517916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
We combine parametric frequency upconversion with the single-photon counting technology to achieve terahertz (THz) detection sensitivity down to the zeptojoule (zJ) pulse energy level. Our detection scheme employs a near-infrared ultrafast source, a GaP nonlinear crystal, optical filters, and a single-photon avalanche diode. This configuration is able to resolve 1.4 zJ (1.4 × 10-21 J) THz pulse energy, corresponding to 1.5 photons per pulse, when the signal is averaged within only 1 s (or 50,000 pulses). A single THz pulse can also be detected when its energy is above 1185 zJ. These numbers correspond to the noise-equivalent power and THz-to-NIR photon detection efficiency of 1.3 × 10-16 W/Hz1/2 and 5.8 × 10-2%, respectively. To test our scheme, we perform spectroscopy of the water vapor between 1 and 3.7 THz and obtain results that are in agreement with those acquired with a standard electro-optic sampling (EOS) method. Our technique provides a 0.2 THz spectral resolution offering a fast alternative to EOS THz detection for monitoring specific spectral components in spectroscopy, imaging, and communication applications.
Collapse
|
11
|
Eckhardt CJ, Chattopadhyay S, Kennes DM, Demler EA, Sentef MA, Michael MH. Theory of resonantly enhanced photo-induced superconductivity. Nat Commun 2024; 15:2300. [PMID: 38485935 PMCID: PMC10940728 DOI: 10.1038/s41467-024-46632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Optical driving of materials has emerged as a versatile tool to control their properties, with photo-induced superconductivity being among the most fascinating examples. In this work, we show that light or lattice vibrations coupled to an electronic interband transition naturally give rise to electron-electron attraction that may be enhanced when the underlying boson is driven into a non-thermal state. We find this phenomenon to be resonantly amplified when tuning the boson's frequency close to the energy difference between the two electronic bands. This result offers a simple microscopic mechanism for photo-induced superconductivity and provides a recipe for designing new platforms in which light-induced superconductivity can be realized. We discuss two-dimensional heterostructures as a potential test ground for light-induced superconductivity concretely proposing a setup consisting of a graphene-hBN-SrTiO3 heterostructure, for which we estimate a superconducting Tc that may be achieved upon driving the system.
Collapse
Affiliation(s)
- Christian J Eckhardt
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761, Hamburg, Germany
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, 52056, Aachen, Germany
| | | | - Dante M Kennes
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761, Hamburg, Germany
- Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology, 52056, Aachen, Germany
| | - Eugene A Demler
- Institute for Theoretical Physics, ETH Zürich, 8093, Zürich, Switzerland
| | - Michael A Sentef
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute for Theoretical Physics and Bremen Center for Computational Materials Science, University of Bremen, 28359, Bremen, Germany
- H H Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | - Marios H Michael
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761, Hamburg, Germany.
| |
Collapse
|
12
|
Roy AP, Ss J, Dwij V, Khandelwal A, Chattopadhyay MK, Sathe V, Mittal R, Sastry PU, Achary SN, Tyagi AK, Babu PD, Le MD, Bansal D. Evidence of Strong Orbital-Selective Spin-Orbital-Phonon Coupling in CrVO_{4}. PHYSICAL REVIEW LETTERS 2024; 132:026701. [PMID: 38277598 DOI: 10.1103/physrevlett.132.026701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/28/2024]
Abstract
Coupling of orbital degree of freedom with a spin exchange, i.e., Kugel-Khomskii-type interaction (KK), governs a host of material properties, including colossal magnetoresistance, enhanced magnetoelectric response, and photoinduced high-temperature magnetism. In general, KK-type interactions lead to deviation in experimental observables of coupled Hamiltonian near or below the magnetic transition. Using diffraction and spectroscopy experiments, here we report anomalous changes in lattice parameters, electronic states, spin dynamics, and phonons at four times the Néel transition temperature (T_{N}) in CrVO_{4}. The temperature is significantly higher than other d-orbital compounds such as manganites and vanadates, where effects are limited to near or below T_{N}. The experimental observations are rationalized using first-principles and Green's function-based phonon and spin simulations that show unprecedentedly strong KK-type interactions via a superexchange process and an orbital-selective spin-phonon coupling coefficient at least double the magnitude previously reported for strongly coupled spin-phonon systems. Our results present an opportunity to explore the effect of KK-type interactions and spin-phonon coupling well above T_{N} and possibly bring various properties closer to application, for example, strong room-temperature magnetoelectric coupling.
Collapse
Affiliation(s)
- Aditya Prasad Roy
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Jayakrishnan Ss
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| | - Vivek Dwij
- Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400076, India
| | - Ashish Khandelwal
- Free Electron Laser Utilization Laboratory, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India
| | - M K Chattopadhyay
- Free Electron Laser Utilization Laboratory, Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Vasant Sathe
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Ranjan Mittal
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - P U Sastry
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Srungarpu N Achary
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Avesh K Tyagi
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Peram D Babu
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, R5-Shed, BARC, Trombay, Mumbai, Maharashtra 400085, India
| | - Manh Duc Le
- ISIS facility, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX Oxfordshire, United Kingdom
| | - Dipanshu Bansal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra 400076, India
| |
Collapse
|
13
|
Yao S, Wang S, Liu Y, Hou Z, Wang J, Gao X, Sun Y, Fu W, Nie K, Xie J, Yang Z, Yan YM. High Flux and Stability of Cationic Intercalation in Transition-Metal Oxides: Unleashing the Potential of Mn t 2g Orbital via Enhanced π-Donation. J Am Chem Soc 2023. [PMID: 38039528 DOI: 10.1021/jacs.3c08264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Transition-metal oxides (TMOs) often struggle with challenges related to low electronic conductivity and unsatisfactory cyclic stability toward cationic intercalation. In this work, we tackle these issues by exploring an innovative strategy: leveraging heightened π-donation to activate the t2g orbital, thereby enhancing both electron/ion conductivity and structural stability of TMOs. We engineered Ni-doped layered manganese dioxide (Ni-MnO2), which is characterized by a distinctive Ni-O-Mn bridging configuration. Remarkably, Ni-MnO2 presents an impressive capacitance of 317 F g-1 and exhibits a robust cyclic stability, maintaining 81.58% of its original capacity even after 20,000 cycles. Mechanism investigations reveal that the incorporation of Ni-O-Mn configurations stimulates a heightened π-donation effect, which is beneficial to the π-type orbital hybridization involving the O 2p and the t2g orbital of Mn, thereby accelerating charge-transfer kinetics and activating the redox capacity of the t2g orbital. Additionally, the charge redistribution from Ni to the t2g orbital of Mn effectively elevates the low-energy orbital level of Mn, thus mitigating the undesirable Jahn-Teller distortion. This results in a subsequent decrease in the electron occupancy of the π*-antibonding orbital, which promotes an overall enhancement in structural stability. Our findings pave the way for an innovative paradigm in the development of fast and stable electrode materials for intercalation energy storage by activating the low orbitals of the TM center from a molecular orbital perspective.
Collapse
Affiliation(s)
- Shuyun Yao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shiyu Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yuanming Liu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zishan Hou
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jinrui Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xueying Gao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanfei Sun
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Weijie Fu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
14
|
Bartram FM, Li M, Liu L, Xu Z, Wang Y, Che M, Li H, Wu Y, Xu Y, Zhang J, Yang S, Yang L. Real-time observation of magnetization and magnon dynamics in a two-dimensional topological antiferromagnet MnBi 2Te 4. Sci Bull (Beijing) 2023; 68:2734-2742. [PMID: 37863774 DOI: 10.1016/j.scib.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/22/2023] [Accepted: 09/30/2023] [Indexed: 10/22/2023]
Abstract
Atomically thin van der Waals magnetic materials have not only provided a fertile playground to explore basic physics in the two-dimensional (2D) limit but also created vast opportunities for novel ultrafast functional devices. Here we systematically investigate ultrafast magnetization dynamics and spin wave dynamics in few-layer topological antiferromagnetic MnBi2Te4 crystals as a function of layer number, temperature, and magnetic field. We find laser-induced (de)magnetization processes can be used to accurately track the distinct magnetic states in different magnetic field regimes, including showing clear odd-even layer number effects. In addition, strongly field-dependent AFM magnon modes with tens of gigahertz frequencies are optically generated and directly observed in the time domain. Remarkably, we find that magnetization and magnon dynamics can be observed in not only the time-resolved magneto-optical Kerr effect but also the time resolved reflectivity, indicating strong correlation between the magnetic state and electronic structure. These measurements present the first comprehensive overview of ultrafast spin dynamics in this novel 2D antiferromagnet, paving the way for potential applications in 2D antiferromagnetic spintronics and magnonics as well as further studies of ultrafast control of both magnetization and topological quantum states.
Collapse
Affiliation(s)
- F Michael Bartram
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Department of Physics, University of Toronto, Toronto M5S 1A7, Canada
| | - Meng Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Liangyang Liu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhiming Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yongchao Wang
- Beijing Innovation Center for Future Chips, Tsinghua University, Beijing 100084, China
| | - Mengqian Che
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Hao Li
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Yang Wu
- Tsinghua-Foxconn Nanotechnology Research Center, Department of Physics, Tsinghua University, Beijing 100084, China; College of Math and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong Xu
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China; RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
| | - Jinsong Zhang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China; Hefei National Laboratory, Hefei 230088, China
| | - Shuo Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China; Hefei National Laboratory, Hefei 230088, China
| | - Luyi Yang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Department of Physics, University of Toronto, Toronto M5S 1A7, Canada; Frontier Science Center for Quantum Information, Beijing 100084, China; Collaborative Innovation Center of Quantum Matter, Beijing 100084, China.
| |
Collapse
|
15
|
Liu X, Legut D, Zhang Q. Photoinduced Ultrafast Phase Transition in Bilayer CrI 3. J Phys Chem Lett 2023; 14:7744-7750. [PMID: 37607348 DOI: 10.1021/acs.jpclett.3c01898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
In two-dimensional magnets, the ultrafast photoexcited method represents a low-power and high-speed method of switching magnetic states. Bilayer CrI3 (BLC) is an ideal platform for studying ultrafast photoinduced magnetic phase transitions due to its stacking-dependent magnetic properties. Here, by using time-dependent density functional theory, we explore the photoexcitation phase transition in BLC from the R- to M-stacked phase. This process is found to be induced by electron-phonon interactions. The activated Ag and Bg phonon modes in the xy direction drive the horizontal relative displacements between the layers. The activated Ag mode in the z direction leads to a transition potential reduction. Furthermore, this phase transition can invert the sign of the interlayer spin interaction, indicating a photoinduced transition from ferromagnet to antiferromagnet. This investigation has profound implications for magnetic phase engineering strategies.
Collapse
Affiliation(s)
- Xiaopeng Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Dominik Legut
- IT4Innovations, VSB-Technical University of Ostrava, 17. listopadu 2172/15, CZ-70800 Ostrava-Poruba, Czech Republic
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| |
Collapse
|
16
|
Zong A, Zhang Q, Zhou F, Su Y, Hwangbo K, Shen X, Jiang Q, Liu H, Gage TE, Walko DA, Kozina ME, Luo D, Reid AH, Yang J, Park S, Lapidus SH, Chu JH, Arslan I, Wang X, Xiao D, Xu X, Gedik N, Wen H. Spin-mediated shear oscillators in a van der Waals antiferromagnet. Nature 2023; 620:988-993. [PMID: 37532936 DOI: 10.1038/s41586-023-06279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/02/2023] [Indexed: 08/04/2023]
Abstract
Understanding how microscopic spin configuration gives rise to exotic properties at the macroscopic length scale has long been pursued in magnetic materials1-5. One seminal example is the Einstein-de Haas effect in ferromagnets1,6,7, in which angular momentum of spins can be converted into mechanical rotation of an entire object. However, for antiferromagnets without net magnetic moment, how spin ordering couples to macroscopic movement remains elusive. Here we observed a seesaw-like rotation of reciprocal lattice peaks of an antiferromagnetic nanolayer film, whose gigahertz structural resonance exhibits more than an order-of-magnitude amplification after cooling below the Néel temperature. Using a suite of ultrafast diffraction and microscopy techniques, we directly visualize this spin-driven rotation in reciprocal space at the nanoscale. This motion corresponds to interlayer shear in real space, in which individual micro-patches of the film behave as coherent oscillators that are phase-locked and shear along the same in-plane axis. Using time-resolved optical polarimetry, we further show that the enhanced mechanical response strongly correlates with ultrafast demagnetization, which releases elastic energy stored in local strain gradients to drive the oscillators. Our work not only offers the first microscopic view of spin-mediated mechanical motion of an antiferromagnet but it also identifies a new route towards realizing high-frequency resonators8,9 up to the millimetre band, so the capability of controlling magnetic states on the ultrafast timescale10-13 can be readily transferred to engineering the mechanical properties of nanodevices.
Collapse
Affiliation(s)
- Alfred Zong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qi Zhang
- Department of Physics, University of Washington, Seattle, WA, USA
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
- Department of Physics, Nanjing University, Nanjing, China
| | - Faran Zhou
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Yifan Su
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kyle Hwangbo
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Qianni Jiang
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Haihua Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Thomas E Gage
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Donald A Walko
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | | | - Duan Luo
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Suji Park
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, USA
| | - Saul H Lapidus
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Jiun-Haw Chu
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Ilke Arslan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Di Xiao
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
| | - Nuh Gedik
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Haidan Wen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
- Materials Science Division, Argonne National Laboratory, Lemont, IL, USA.
| |
Collapse
|
17
|
Lewis D. Wuhan market samples fail to shed further light on COVID origins. Nature 2023; 617:233-234. [PMID: 37142718 DOI: 10.1038/d41586-023-01483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
|