1
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
2
|
Lee CYC, McCaffrey J, McGovern D, Clatworthy MR. Profiling immune cell tissue niches in the spatial -omics era. J Allergy Clin Immunol 2025; 155:663-677. [PMID: 39522655 DOI: 10.1016/j.jaci.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Immune responses require complex, spatially coordinated interactions between immune cells and their tissue environment. For decades, we have imaged tissue sections to visualize a limited number of immune-related macromolecules in situ, functioning as surrogates for cell types or processes of interest. However, this inevitably provides a limited snapshot of the tissue's immune landscape. Recent developments in high-throughput spatial -omics technologies, particularly spatial transcriptomics, and its application to human samples has facilitated a more comprehensive understanding of tissue immunity by mapping fine-grained immune cell states to their precise tissue location while providing contextual information about their immediate cellular and tissue environment. These data provide opportunities to investigate mechanisms underlying the spatial distribution of immune cells and its functional implications, including the identification of immune niches, although the criteria used to define this term have been inconsistent. Here, we review recent technological and analytic advances in multiparameter spatial profiling, focusing on how these methods have generated new insights in translational immunology. We propose a 3-step framework for the definition and characterization of immune niches, which is powerfully facilitated by new spatial profiling methodologies. Finally, we summarize current approaches to analyze adaptive immune repertoires and lymphocyte clonal expansion in a spatially resolved manner.
Collapse
Affiliation(s)
- Colin Y C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James McCaffrey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Dominic McGovern
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Yip RKH, Hawkins ED, Bowden R, Rogers KL. Towards deciphering the bone marrow microenvironment with spatial multi-omics. Semin Cell Dev Biol 2025; 167:10-21. [PMID: 39889539 DOI: 10.1016/j.semcdb.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Accepted: 01/18/2025] [Indexed: 02/03/2025]
Abstract
The tissue microenvironment refers to a localised tissue area where a complex combination of cells, structural components, and signalling molecules work together to support specific biological activities. A prime example is the bone marrow microenvironment, particularly the hematopoietic stem cell (HSC) niche, which is of immense interest due to its critical role in supporting lifelong blood cell production and the growth of malignant cells. In this review, we summarise the current understanding of HSC niche biology, highlighting insights gained from advanced imaging and genomic techniques. We also discuss the potential of emerging technologies such as spatial multi-omics to unravel bone marrow architecture in unprecedented detail.
Collapse
Affiliation(s)
- Raymond K H Yip
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia.
| | - Edwin D Hawkins
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia; Colonial Foundation Diagnostics Centre, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Rory Bowden
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kelly L Rogers
- Advanced Technology and Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
4
|
Krawczyk-Ożóg A, Stachowicz A, Szoniec G, Batko J, Stachyra K, Bolechała F, Strona M, Wołkow PP, Yin Z, Dobrzynski H, Hołda MK. Proteomic profile of human sinoatrial and atrioventricular nodes in comparison to working myocardium. Sci Rep 2025; 15:7238. [PMID: 40021668 PMCID: PMC11871314 DOI: 10.1038/s41598-025-89255-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 02/04/2025] [Indexed: 03/03/2025] Open
Abstract
The proteomic profile of the human cardiac conduction system: the sinoatrial node (SAN) and atrioventricular node (AVN), remains poorly understood. The aim of the current study is to identify proteomic characteristic of the human SAN and AVN in the comparison to working myocardium of the right atrium (RAM) and right ventricle (RVM). The proteomic analysis was performed on 10 autopsied human heart specimens collected from healthy adults. During the data-independent acquisition proteomics analysis 2752 different proteins were identified in all sample sets. In both nodal tissues (compared to working myocardium), the following pathways were upregulated: regulation of Insulin-like Growth Factor transport and uptake by Insulin-like Growth Factor Binding Proteins, post-translational protein phosphorylation, glutathione metabolism, metabolism of carbohydrates, glycolysis and gluconeogenesis. Other common for nodal tissue pathways were these related to immune system and related to extracellular matrix. The pathways related to cardiac muscle contraction were more abundant in RAM and RVM samples. The current study presents extensive comparative analysis of protein abundance in the human SAN and AVN. Few key differences may be found in the nodal proteome in comparison to working cardiomyocytes, including involvement of immune system and upregulated pathways related to extracellular matrix. The SAN exhibits enrichment in the PPAR signaling and pentose phosphate pathways, as well as prostaglandin synthesis and regulatory proteins, compared to the AVN.
Collapse
Affiliation(s)
- Agata Krawczyk-Ożóg
- HEART - Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika Street, Kraków, 31-034, Poland.
- Department of Cardiology and Cardiovascular Interventions, University Hospital, Krakow, Poland.
| | - Aneta Stachowicz
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Grzegorz Szoniec
- Center for Medical Genomics OMICRON, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Jakub Batko
- HEART - Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika Street, Kraków, 31-034, Poland
| | - Kamila Stachyra
- Department of Pharmacology, Faculty of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Filip Bolechała
- Department of Forensic Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Strona
- Department of Forensic Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Paweł P Wołkow
- Division of Laboratory Diagnostics and Clinical Epigenetics, Faculty of Medicine, Institute of Medical Sciences, University of Rzeszów Medical College, Rzeszów, Poland
| | - Zeyuan Yin
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Halina Dobrzynski
- HEART - Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika Street, Kraków, 31-034, Poland
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| | - Mateusz K Hołda
- HEART - Heart Embryology and Anatomy Research Team, Department of Anatomy, Jagiellonian University Medical College, 12 Kopernika Street, Kraków, 31-034, Poland
- Division of Cardiovascular Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Millard N, Chen JH, Palshikar MG, Pelka K, Spurrell M, Price C, He J, Hacohen N, Raychaudhuri S, Korsunsky I. Batch correcting single-cell spatial transcriptomics count data with Crescendo improves visualization and detection of spatial gene patterns. Genome Biol 2025; 26:36. [PMID: 40001084 PMCID: PMC11863647 DOI: 10.1186/s13059-025-03479-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Spatial transcriptomics facilitates gene expression analysis of cells in their spatial anatomical context. Batch effects hinder visualization of gene spatial patterns across samples. We present the Crescendo algorithm to correct for batch effects at the gene expression level and enable accurate visualization of gene expression patterns across multiple samples. We show Crescendo's utility and scalability across three datasets ranging from 170,000 to 7 million single cells across spatial and single-cell RNA sequencing technologies. By correcting for batch effects, Crescendo enhances spatial transcriptomics analyses to detect gene colocalization and ligand-receptor interactions and enables cross-technology information transfer.
Collapse
Affiliation(s)
- Nghia Millard
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jonathan H Chen
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, MGH, Boston, MA, USA
| | - Mukta G Palshikar
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Karin Pelka
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School, Boston, MA, USA
- UCSF Institute of Genomic Immunology, Gladstone Institutes, San Francisco, CA, USA
| | - Maxwell Spurrell
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School, Boston, MA, USA
- Department of Pathology, MGH, Boston, MA, USA
| | | | | | - Nir Hacohen
- Department of Immunology, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Massachusetts General Hospital (MGH) Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Soumya Raychaudhuri
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Ilya Korsunsky
- Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Krivoshein G, Rivera-Mancilla E, MaassenVanDenBrink A, Giniatullin R, van den Maagdenberg AMJM. Sex difference in TRPM3 channel functioning in nociceptive and vascular systems: an emerging target for migraine therapy in females? J Headache Pain 2025; 26:40. [PMID: 39994546 PMCID: PMC11853570 DOI: 10.1186/s10194-025-01966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Transient Receptor Potential Melastatin 3 (TRPM3) channels are Ca2+ permeable ion channels that act as polymodal sensors of mechanical, thermal, and various chemical stimuli. TRPM3 channels are highly expressed in the trigeminovascular system, including trigeminal neurons and the vasculature. Their presence in dural afferents suggests that they are potential triggers of migraine pain, which is originating from the meningeal area. This area is densely innervated by autonomous and trigeminal nerves that contain the major migraine mediator calcitonin gene-related peptide (CGRP) in peptidergic nerve fibers. Co-expression of TRPM3 channels and CGRP receptors in meningeal nerves suggests a potential interplay between both signalling systems. Compared to other members of the TRP family, TRPM3 channels have a high sensitivity to sex hormones and to the endogenous neurosteroid pregnenolone sulfate (PregS). The predominantly female sex hormones estrogen and progesterone, of which the levels drop during menses, act as natural inhibitors of TRPM3 channels, while PregS is a known endogenous agonist of these channels. A decrease in sex hormone levels has also been suggested as trigger for attacks of menstrually-related migraine. Notably, there is a remarkable sex difference in TRPM3-mediated effects in trigeminal nociceptive signalling and the vasculature. In line with this, the relaxation of human isolated meningeal arteries induced by the activation of TRPM3 channels is greater in females. Additionally, the sex-dependent vasodilatory responses to CGRP in meningeal arteries seem to be influenced by age-related hormonal changes, which could contribute to sex differences in migraine pathology. Consistent with these observations, activation of TRPM3 channels triggers nociceptive sensory firing much more prominently in female than male mouse meninges, suggesting that pain processing in female patients with migraine may differ. Overall, the combined TRPM3-related neuronal and vascular mechanisms could provide a possible explanation for the higher prevalence and even the more severe quality of migraine attacks in females. This narrative review summarizes recent data on the sex-dependent roles of TRPM3 channels in migraine pathophysiology, the potential interplay between TRPM3 and CGRP signalling, and highlights the prospects for translational therapies targeting TRPM3 channels, which may be of particular relevance for women with migraine.
Collapse
Affiliation(s)
- Georgii Krivoshein
- Departments of Human Genetics and Neurology, Leiden University Medical Center, PO Box 9600 2300 RC, Leiden, The Netherlands
| | - Eduardo Rivera-Mancilla
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Rashid Giniatullin
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Arn M J M van den Maagdenberg
- Departments of Human Genetics and Neurology, Leiden University Medical Center, PO Box 9600 2300 RC, Leiden, The Netherlands.
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
7
|
Subramanian SP, Wojtkiewicz M, Yu F, Castro C, Schuette EN, Rodriguez-Paar J, Churko J, Renavikar P, Anderson D, Mahr C, Gundry RL. Integrated multiomics reveals alterations in paucimannose and complex type N-glycans in cardiac tissue of COVID-19 patients. Mol Cell Proteomics 2025:100929. [PMID: 39988192 DOI: 10.1016/j.mcpro.2025.100929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025] Open
Abstract
Coronavirus infectious disease 19 (COVID-19) can lead to cardiac complications, yet the molecular mechanisms driving these effects remain unclear. Protein glycosylation is crucial for viral replication, immune response, and organ function and has been found to change in the lungs and liver of COVID-19 patients. However, how COVID-19 impacts cardiac protein glycosylation has not been defined. Our study combined single nuclei transcriptomics, mass spectrometry (MS)-based glycomics, and lectin-based tissue imaging to investigate alterations in N-glycosylation in the human heart post-COVID-19. We identified significant expression differences in glycogenes involved in N-glycan biosynthesis and MS analysis revealed a reduction in high mannose and isomers of paucimannose structures post-infection, with changes in paucimannose directly correlating with COVID-19 independent of comorbidities. Our observations suggest that COVID-19 primes cardiac tissues to alter the glycome at all levels, namely metabolism, nucleotide sugar transport, and glycosyltransferase activity. Given the role of N-glycosylation in cardiac function, this study provides a basis for understanding the molecular events leading to cardiac damage post-COVID-19 and informing future therapeutic strategies to treat cardiac complications resulting from coronavirus infections.
Collapse
Affiliation(s)
- Sabarinath Peruvemba Subramanian
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Melinda Wojtkiewicz
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Fang Yu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chase Castro
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Erin N Schuette
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jocelyn Rodriguez-Paar
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Jared Churko
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ, USA
| | - Pranav Renavikar
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Daniel Anderson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Claudius Mahr
- Institute for Advanced Cardiac Care, Medical City Healthcare, Dallas, TX, 75243, USA
| | - Rebekah L Gundry
- CardiOmics Program, Center for Heart and Vascular Research, and Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| |
Collapse
|
8
|
Zhang F, Zhu M, Chen Y, Wang G, Yang H, Lu X, Li Y, Chang HM, Wu Y, Ma Y, Yuan S, Zhu W, Dong X, Zhao Y, Yu Y, Wang J, Mu L. Harnessing omics data for drug discovery and development in ovarian aging. Hum Reprod Update 2025:dmaf002. [PMID: 39977580 DOI: 10.1093/humupd/dmaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/02/2024] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND Ovarian aging occurs earlier than the aging of many other organs and has a lasting impact on women's overall health and well-being. However, effective interventions to slow ovarian aging remain limited, primarily due to an incomplete understanding of the underlying molecular mechanisms and drug targets. Recent advances in omics data resources, combined with innovative computational tools, are offering deeper insight into the molecular complexities of ovarian aging, paving the way for new opportunities in drug discovery and development. OBJECTIVE AND RATIONALE This review aims to synthesize the expanding multi-omics data, spanning genome, transcriptome, proteome, metabolome, and microbiome, related to ovarian aging, from both tissue-level and single-cell perspectives. We will specially explore how the analysis of these emerging omics datasets can be leveraged to identify novel drug targets and guide therapeutic strategies for slowing and reversing ovarian aging. SEARCH METHODS We conducted a comprehensive literature search in the PubMed database using a range of relevant keywords: ovarian aging, age at natural menopause, premature ovarian insufficiency (POI), diminished ovarian reserve (DOR), genomics, transcriptomics, epigenomics, DNA methylation, RNA modification, histone modification, proteomics, metabolomics, lipidomics, microbiome, single-cell, genome-wide association studies (GWAS), whole-exome sequencing, phenome-wide association studies (PheWAS), Mendelian randomization (MR), epigenetic target, drug target, machine learning, artificial intelligence (AI), deep learning, and multi-omics. The search was restricted to English-language articles published up to September 2024. OUTCOMES Multi-omics studies have uncovered key mechanisms driving ovarian aging, including DNA damage and repair deficiencies, inflammatory and immune responses, mitochondrial dysfunction, and cell death. By integrating multi-omics data, researchers can identify critical regulatory factors and mechanisms across various biological levels, leading to the discovery of potential drug targets. Notable examples include genetic targets such as BRCA2 and TERT, epigenetic targets like Tet and FTO, metabolic targets such as sirtuins and CD38+, protein targets like BIN2 and PDGF-BB, and transcription factors such as FOXP1. WIDER IMPLICATIONS The advent of cutting-edge omics technologies, especially single-cell technologies and spatial transcriptomics, has provided valuable insights for guiding treatment decisions and has become a powerful tool in drug discovery aimed at mitigating or reversing ovarian aging. As technology advances, the integration of single-cell multi-omics data with AI models holds the potential to more accurately predict candidate drug targets. This convergence offers promising new avenues for personalized medicine and precision therapies, paving the way for tailored interventions in ovarian aging. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Fengyu Zhang
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Ming Zhu
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yi Chen
- The First School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Guiquan Wang
- Xiamen Key Laboratory of Reproduction and Genetics, Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Haiyan Yang
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinmei Lu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hsun-Ming Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| | - Yang Wu
- Institute of Rare Diseases, West China Hospital of Sichuan University, Chengdu, China
| | - Yunlong Ma
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shuai Yuan
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Wencheng Zhu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xi Dong
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yue Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, China
- Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, China
| | - Jia Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangshan Mu
- Reproductive Medicine Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Qian J, Shao X, Bao H, Fang Y, Guo W, Li C, Li A, Hua H, Fan X. Identification and characterization of cell niches in tissue from spatial omics data at single-cell resolution. Nat Commun 2025; 16:1693. [PMID: 39956823 PMCID: PMC11830827 DOI: 10.1038/s41467-025-57029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 02/03/2025] [Indexed: 02/18/2025] Open
Abstract
Deciphering the features, structure, and functions of the cell niche in tissues remains a major challenge. Here, we present scNiche, a computational framework to identify and characterize cell niches from spatial omics data at single-cell resolution. We benchmark scNiche with both simulated and biological datasets, and demonstrate that scNiche can effectively and robustly identify cell niches while outperforming other existing methods. In spatial proteomics data from human triple-negative breast cancer, scNiche reveals the influence of the microenvironment on cellular phenotypes, and further dissects patient-specific niches with distinct cellular compositions or phenotypic characteristics. By analyzing mouse liver spatial transcriptomics data across normal and early-onset liver failure donors, scNiche uncovers disease-specific liver injury niches, and further delineates the niche remodeling from normal liver to liver failure. Overall, scNiche enables decoding the cellular microenvironment in tissues from single-cell spatial omics data.
Collapse
Affiliation(s)
- Jingyang Qian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Xin Shao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Zhejiang Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| | - Hudong Bao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yin Fang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310013, China
| | - Wenbo Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
- Zhejiang Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Chengyu Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Anyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan Province, SiChuan Institute for Translational Chinese Medicine, Chengdu, 610041, China.
| | - Xiaohui Fan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- State Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China.
- Zhejiang Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China.
| |
Collapse
|
10
|
Daniels S, Karlsson C, Schrauwen P, Parker VER. Glucagon-like peptide-1 receptor agonism and end-organ protection. Trends Endocrinol Metab 2025:S1043-2760(25)00002-5. [PMID: 39934020 DOI: 10.1016/j.tem.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 02/13/2025]
Abstract
Identification of exendin-4 (a glucagon-like peptide 1 receptor agonist, GLP-1RA) in Gila monster venom may be regarded as one of the most serendipitous discoveries of recent times. GLP-1RAs are now an established therapeutic approach in type 2 diabetes (T2D), body weight management, and cardiovascular (CV) risk protection. Furthermore, there is a growing platform of evidence that GLP-1RA has extended benefit in renal, hepatic, respiratory, and neurological diseases. One can speculate on the biological advantage of exendin-4 to the Gila monster, but for humankind GLP-1RAs are peptides with significant potential to improve disease-related outcomes. We report on the latest evidence and mechanisms for GLP-1RA-mediated end-organ protection that uniquely highlight its future development potential across multiple disease areas.
Collapse
Affiliation(s)
- Samuel Daniels
- Early-stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Cecilia Karlsson
- Late-stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Patrick Schrauwen
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Institute for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Victoria E R Parker
- Late-stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
11
|
Li X, Loscalzo J, Mahmud AKMF, Aly DM, Rzhetsky A, Zitnik M, Benson M. Digital twins as global learning health and disease models for preventive and personalized medicine. Genome Med 2025; 17:11. [PMID: 39920778 PMCID: PMC11806862 DOI: 10.1186/s13073-025-01435-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Ineffective medication is a major healthcare problem causing significant patient suffering and economic costs. This issue stems from the complex nature of diseases, which involve altered interactions among thousands of genes across multiple cell types and organs. Disease progression can vary between patients and over time, influenced by genetic and environmental factors. To address this challenge, digital twins have emerged as a promising approach, which have led to international initiatives aiming at clinical implementations. Digital twins are virtual representations of health and disease processes that can integrate real-time data and simulations to predict, prevent, and personalize treatments. Early clinical applications of DTs have shown potential in areas like artificial organs, cancer, cardiology, and hospital workflow optimization. However, widespread implementation faces several challenges: (1) characterizing dynamic molecular changes across multiple biological scales; (2) developing computational methods to integrate data into DTs; (3) prioritizing disease mechanisms and therapeutic targets; (4) creating interoperable DT systems that can learn from each other; (5) designing user-friendly interfaces for patients and clinicians; (6) scaling DT technology globally for equitable healthcare access; (7) addressing ethical, regulatory, and financial considerations. Overcoming these hurdles could pave the way for more predictive, preventive, and personalized medicine, potentially transforming healthcare delivery and improving patient outcomes.
Collapse
Affiliation(s)
- Xinxiu Li
- Medical Digital Twin Research Group, Department of Clinical Sciences Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Joseph Loscalzo
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - A K M Firoj Mahmud
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75105, Uppsala, Sweden
| | - Dina Mansour Aly
- Medical Digital Twin Research Group, Department of Clinical Sciences Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| | - Andrey Rzhetsky
- Departments of Medicine and Human Genetics, Institute for Genomics and Systems Biology, University of Chicago, Chicago, USA
| | - Marinka Zitnik
- Department of Biomedical Informatics, Harvard Medical School, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Kempner Institute for the Study of Natural and Artificial Intelligence, Harvard Data Science Initiative, Harvard University, Cambridge, MA, USA
| | - Mikael Benson
- Medical Digital Twin Research Group, Department of Clinical Sciences Intervention and Technology, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
12
|
Zhang L, Ma J, Zhang J, Hu M, Cheng J, Hu B, Zhou J, Zhou D, Bai Y, Ma X, Tang J, Chen H, Jing Y. Radiotherapy-Associated Cellular Senescence and EMT Alterations Contribute to Distinct Disease Relapse Patterns in Locally Advanced Cervical Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2412574. [PMID: 39903771 DOI: 10.1002/advs.202412574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/10/2024] [Indexed: 02/06/2025]
Abstract
A notable number of locally advanced cervical carcinoma (LACC) patients experience local or distant disease relapse following radiotherapy. The contribution of tumor microenvironment (TME) to tumor recurrence at different sites remains unclear. Here, single-nucleus RNA sequencing data from 28 pre- and on-treatment LACC samples from patients with different disease relapse patterns is analyzed. The findings revealed opposing alterations in the expression levels of the cellular senescence pathway after radiotherapy in patients with local and distant relapses. In contrast, an increase in the expression of the epithelial-mesenchymal transition module after radiotherapy in both relapse groups is observed. Cell-cell interactions, drug-target expression analyses in malignant cells after radiation, and multiplex immunofluorescence of tumor tissue identified interleukin-1 receptor type I (IL1R1) as a potential therapeutic target. It is demonstrated that combining the IL1R1 inhibitor anakinra with radiation can mitigate the effects of radiation on tumor cells. This study highlights the distinct roles of cellular senescence and EMT in tumor recurrence.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jun Ma
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, 200031, China
| | - Jun Zhang
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511400, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Minjie Hu
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Jinlin Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Bin Hu
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Junjun Zhou
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Di Zhou
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yongrui Bai
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiumei Ma
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Haiyan Chen
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Jing
- Center for Intelligent Medicine Research, Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Guangzhou, 511400, China
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| |
Collapse
|
13
|
Fayyaz AU, Eltony M, Prokop LJ, Koepp KE, Borlaug BA, Dasari S, Bois MC, Margulies KB, Maleszewski JJ, Wang Y, Redfield MM. Pathophysiological insights into HFpEF from studies of human cardiac tissue. Nat Rev Cardiol 2025; 22:90-104. [PMID: 39198624 PMCID: PMC11750620 DOI: 10.1038/s41569-024-01067-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/01/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major, worldwide health-care problem. Few therapies for HFpEF exist because the pathophysiology of this condition is poorly defined and, increasingly, postulated to be diverse. Although perturbations in other organs contribute to the clinical profile in HFpEF, altered cardiac structure, function or both are the primary causes of this heart failure syndrome. Therefore, studying myocardial tissue is fundamental to improve pathophysiological insights and therapeutic discovery in HFpEF. Most studies of myocardial changes in HFpEF have relied on cardiac tissue from animal models without (or with limited) confirmatory studies in human cardiac tissue. Animal models of HFpEF have evolved based on theoretical HFpEF aetiologies, but these models might not reflect the complex pathophysiology of human HFpEF. The focus of this Review is the pathophysiological insights gained from studies of human HFpEF myocardium. We outline the rationale for these studies, the challenges and opportunities in obtaining myocardial tissue from patients with HFpEF and relevant comparator groups, the analytical approaches, the pathophysiological insights gained to date and the remaining knowledge gaps. Our objective is to provide a roadmap for future studies of cardiac tissue from diverse cohorts of patients with HFpEF, coupling discovery biology with measures to account for pathophysiological diversity.
Collapse
Affiliation(s)
- Ahmed U Fayyaz
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Muhammad Eltony
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Larry J Prokop
- Mayo Clinic College of Medicine and Science, Library Reference Service, Rochester, MN, USA
| | - Katlyn E Koepp
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Barry A Borlaug
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Surendra Dasari
- Mayo Clinic College of Medicine and Science, Computational Biology, Rochester, MN, USA
| | - Melanie C Bois
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joesph J Maleszewski
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Ying Wang
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA
| | - Margaret M Redfield
- Department of Cardiovascular Disease, Division of Circulatory Failure, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Arduini A, Fleming SJ, Xiao L, Hall AW, Akkad AD, Chaffin MD, Bendinelli KJ, Tucker NR, Papangeli I, Mantineo H, Flores-Bringas P, Babadi M, Stegmann CM, García-Cardeña G, Lindsay ME, Klattenhoff C, Ellinor PT. Transcriptional profile of the rat cardiovascular system at single-cell resolution. Cell Rep 2025; 44:115091. [PMID: 39709602 PMCID: PMC11781962 DOI: 10.1016/j.celrep.2024.115091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/24/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024] Open
Abstract
We sought to characterize cellular composition across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We performed single-nucleus RNA sequencing (snRNA-seq) in 78 samples in 10 distinct regions, including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins, which produced 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, with different cellular composition across cardiac regions and tissue-specific transcription for each cell type. Several cell subtypes were region specific, including a subtype of vascular smooth muscle cells enriched in the large vasculature. We observed tissue-enriched cellular communication networks, including heightened Nppa-Npr1/2/3 signaling in the sinoatrial node. The existence of tissue-restricted cell types suggests regional regulation of cardiovascular physiology. Our detailed transcriptional characterization of each cell type offers the potential to identify novel therapeutic targets and improve preclinical models of cardiovascular disease.
Collapse
Affiliation(s)
- Alessandro Arduini
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | - Stephen J Fleming
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ling Xiao
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amelia W Hall
- Gene Regulation Observatory, The Broad Institute, Cambridge, MA 02142, USA
| | - Amer-Denis Akkad
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Mark D Chaffin
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | - Kayla J Bendinelli
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA
| | | | - Irinna Papangeli
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Helene Mantineo
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Mehrtash Babadi
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Guillermo García-Cardeña
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02215, USA
| | - Mark E Lindsay
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Carla Klattenhoff
- Precision Cardiology Laboratory, Bayer US LLC, Cambridge, MA 02142, USA
| | - Patrick T Ellinor
- Precision Cardiology Laboratory, The Broad Institute, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Cardiology Division, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
15
|
Gomez-Salinero JM, Redmond D, Rafii S. Microenvironmental determinants of endothelial cell heterogeneity. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00825-w. [PMID: 39875728 DOI: 10.1038/s41580-024-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
During development, endothelial cells (ECs) undergo an extraordinary specialization by which generic capillary microcirculatory networks spanning from arteries to veins transform into patterned organotypic zonated blood vessels. These capillary ECs become specialized to support the cellular and metabolic demands of each specific organ, including supplying tissue-specific angiocrine factors that orchestrate organ development, maintenance of organ-specific functions and regeneration of injured adult organs. Here, we illustrate the mechanisms by which microenvironmental signals emanating from non-vascular niche cells induce generic ECs to acquire specific inter-organ and intra-organ functional attributes. We describe how perivascular, parenchymal and immune cells dictate vascular heterogeneity and capillary zonation, and how this system is maintained through tissue-specific signalling activated by vasculogenic and angiogenic factors and deposition of matrix components. We also discuss how perturbation of organotypic vascular niche cues lead to erasure of EC signatures, contributing to the pathogenesis of disease processes. We also describe approaches that use reconstitution of tissue-specific signatures of ECs to promote regeneration of damaged organs.
Collapse
Affiliation(s)
- Jesus M Gomez-Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Nguyen Q, Tung LW, Lin B, Sivakumar R, Sar F, Singhera G, Wang Y, Parker J, Le Bihan S, Singh A, M.V. Rossi F, Collins C, Bashir J, Laksman Z. Spatial Transcriptomics in Human Cardiac Tissue. Int J Mol Sci 2025; 26:995. [PMID: 39940764 PMCID: PMC11817049 DOI: 10.3390/ijms26030995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Spatial transcriptomics has transformed our understanding of gene expression by preserving the spatial context within tissues. This review focuses on the application of spatial transcriptomics in human cardiac tissues, exploring current technologies with a focus on commercially available platforms. We also highlight key studies utilizing spatial transcriptomics to investigate cardiac development, electro-anatomy, immunology, and ischemic heart disease. These studies demonstrate how spatial transcriptomics can be used in conjunction with other omics technologies to provide a more comprehensive picture of human health and disease. Despite its transformative potential, spatial transcriptomics comes with several challenges that limit its widespread adoption and broader application. By addressing these limitations and fostering interdisciplinary collaboration, spatial transcriptomics has the potential to become an essential tool in cardiovascular research. We hope this review serves as a practical guide for researchers interested in adopting spatial transcriptomics, particularly those with limited prior experience, by providing insights into current technologies, applications, and considerations for successful implementation.
Collapse
Affiliation(s)
- Quynh Nguyen
- Division of Cardiac Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada (Y.W.)
| | - Lin Wei Tung
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
- Department of Medical Genetics, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Bruce Lin
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
- Department of Medical Genetics, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Raam Sivakumar
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada (Y.W.)
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Funda Sar
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
| | - Gurpreet Singhera
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada (Y.W.)
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Ying Wang
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada (Y.W.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jeremy Parker
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada (Y.W.)
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | - Amrit Singh
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada (Y.W.)
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Fabio M.V. Rossi
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
- Department of Medical Genetics, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Colin Collins
- Vancouver Prostate Centre, Vancouver, BC V6H 3Z6, Canada
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Jamil Bashir
- Division of Cardiac Surgery, Department of Surgery, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Zachary Laksman
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 2B9, Canada
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada (Y.W.)
- Division of Cardiology, Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- St. Paul’s Hospital, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
17
|
Biswal N, Harish R, Roshan M, Samudrala S, Jiao X, Pestell RG, Ashton AW. Role of GPCR Signaling in Anthracycline-Induced Cardiotoxicity. Cells 2025; 14:169. [PMID: 39936961 DOI: 10.3390/cells14030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025] Open
Abstract
Anthracyclines are a class of chemotherapeutics commonly used to treat a range of cancers. Despite success in improving cancer survival rates, anthracyclines have dose-limiting cardiotoxicity that prevents more widespread clinical utility. Currently, the therapeutic options for these patients are limited to the iron-chelating agent dexrazoxane, the only FDA-approved drug for anthracycline cardiotoxicity. However, the clinical use of dexrazoxane has failed to replicate expectations from preclinical studies. A limited list of GPCRs have been identified as pathogenic in anthracycline-induced cardiotoxicity, including receptors (frizzled, adrenoreceptors, angiotensin II receptors) previously implicated in cardiac remodeling in other pathologies. The RNA sequencing of iPSC-derived cardiac myocytes from patients has increased our understanding of the pathogenic mechanisms driving cardiotoxicity. These data identified changes in the expression of novel GPCRs, heterotrimeric G proteins, and the regulatory pathways that govern downstream signaling. This review will capitalize on insights from these experiments to explain aspects of disease pathogenesis and cardiac remodeling. These data provide a cornucopia of possible unexplored potential pathways by which we can reduce the cardiotoxic side effects, without compromising the anti-cancer effects, of doxorubicin and provide new therapeutic options to improve the recovery and quality of life for patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Nimish Biswal
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba
| | - Ritika Harish
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
| | - Minahil Roshan
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba
| | | | - Xuanmao Jiao
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
| | - Richard G Pestell
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Anthony W Ashton
- School of Medicine, Xavier University at Aruba, Oranjestad, Aruba
- Pennsylvania Cancer and Regenerative Medicine Research Center, Baruch S. Blumberg Institute, Wynnewood, PA 19096, USA
- Division of Perinatal Research, Kolling Institute of Medical Research, University of Sydney, St Leonards, NSW 2065, Australia
- Division of Cardiovascular Medicine, Lankenau Institute for Medical Research, Wynnewood, PA 19096, USA
| |
Collapse
|
18
|
Wang Z, Dai R, Wang M, Lei L, Zhang Z, Han K, Wang Z, Guo Q. KanCell: dissecting cellular heterogeneity in biological tissues through integrated single-cell and spatial transcriptomics. J Genet Genomics 2025:S1673-8527(24)00310-2. [PMID: 39577768 DOI: 10.1016/j.jgg.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/07/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024]
Abstract
KanCell is a deep learning model based on Kolmogorov-Arnold networks (KAN) designed to enhance cellular heterogeneity analysis by integrating single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) data. ST technologies provide insights into gene expression within tissue context, revealing cellular interactions and microenvironments. To fully leverage this potential, effective computational models are crucial. We evaluate KanCell on both simulated and real datasets from technologies such as STARmap, Slide-seq, Visium, and Spatial Transcriptomics. Our results demonstrate that KanCell outperforms existing methods across metrics like PCC, SSIM, COSSIM, RMSE, JSD, ARS, and ROC, with robust performance under varying cell numbers and background noise. Real-world applications on human lymph nodes, hearts, melanoma, breast cancer, dorsolateral prefrontal cortex, and mouse embryo brains confirmed its reliability. Compared with traditional approaches, KanCell effectively captures non-linear relationships and optimizes computational efficiency through KAN, providing an accurate and efficient tool for ST. By improving data accuracy and resolving cell type composition, KanCell reveals cellular heterogeneity, clarifies disease microenvironments, and identifies therapeutic targets, addressing complex biological challenges.
Collapse
Affiliation(s)
- Zhenghui Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Ruoyan Dai
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Mengqiu Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Lixin Lei
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zhiwei Zhang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Kaitai Han
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Zijun Wang
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Qianjin Guo
- Academy of Artificial Intelligence, Beijing Institute of Petrochemical Technology, Beijing 102617, China.
| |
Collapse
|
19
|
Wang X, Cao L, Chang R, Shen J, Ma L, Li Y. Elucidating cardiomyocyte heterogeneity and maturation dynamics through integrated single-cell and spatial transcriptomics. iScience 2025; 28:111596. [PMID: 39811652 PMCID: PMC11732507 DOI: 10.1016/j.isci.2024.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/27/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
The intricate development and functionality of the mammalian heart are influenced by the heterogeneous nature of cardiomyocytes (CMs). In this study, single-cell and spatial transcriptomics were utilized to analyze cells from neonatal mouse hearts, resulting in a comprehensive atlas delineating the transcriptional profiles of distinct CM subsets. A continuum of maturation states was elucidated, emphasizing a progressive developmental trajectory rather than discrete stages. This approach enabled the mapping of these states across various cardiac regions, illuminating the spatial organization of CM development and the influence of the cellular microenvironment. Notably, a subset of transitional CMs was identified, characterized by a transcriptional signature marking a pivotal maturation phase, presenting a promising target for therapeutic strategies aimed at enhancing cardiac regeneration. This atlas not only elucidates fundamental aspects of cardiac development but also serves as a valuable resource for advancing research into cardiac physiology and pathology, with significant implications for regenerative medicine.
Collapse
Affiliation(s)
- Xiaoying Wang
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lizhi Cao
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Rui Chang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Junwei Shen
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linlin Ma
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yanfei Li
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
20
|
Martín P, Sánchez-Madrid F. T cells in cardiac health and disease. J Clin Invest 2025; 135:e185218. [PMID: 39817455 PMCID: PMC11735099 DOI: 10.1172/jci185218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality worldwide, with inflammation playing a pivotal role in its pathogenesis. T lymphocytes are crucial components of the adaptive immune system that have emerged as key mediators in both cardiac health and the development and progression of CVD. This Review explores the diverse roles of T cell subsets, including Th1, Th17, γδ T cells, and Tregs, in myocardial inflammatory processes such as autoimmune myocarditis and myocardial infarction. We discuss the contribution of T cells to myocardial injury and remodeling, with emphasis on specific immune receptors, e.g., CD69, that have a critical role in regulating immune tolerance and maintaining the balance between T cell subsets in the heart. Additionally, we offer a perspective on recent advances in T cell-targeted therapies and their potential to modulate immune responses and improve clinical outcomes in patients with CVD and in heart transplant recipients. Understanding the intricate interplay between T cells and cardiovascular pathology is essential for developing novel immunotherapeutic strategies against CVD.
Collapse
Affiliation(s)
- Pilar Martín
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER-CV), Madrid, Spain
- Department of Immunology, IIS Princesa, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
21
|
Saldanha OL, Goepp V, Pfeiffer K, Kim H, Zhu JF, Kramann R, Hayat S, Kather JN. SwarmMAP: Swarm Learning for Decentralized Cell Type Annotation in Single Cell Sequencing Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632775. [PMID: 39868099 PMCID: PMC11761033 DOI: 10.1101/2025.01.13.632775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Rapid technological advancements have made it possible to generate single-cell data at a large scale. Several laboratories around the world can now generate single-cell transcriptomic data from different tissues. Unsupervised clustering, followed by annotation of the cell type of the identified clusters, is a crucial step in single-cell analyses. However, there is no consensus on the marker genes to use for annotation, and cell-type annotation is currently mostly done by manual inspection of marker genes, which is irreproducible, and poorly scalable. Additionally, patient-privacy is also a critical issue with human datasets. There is a critical need to standardize and automate cell-type annotation across datasets in a privacy-preserving manner. Here, we developed SwarmMAP that uses Swarm Learning to train machine learning models for cell-type classification based on single-cell sequencing data in a decentralized way. SwarmMAP does not require any exchange of raw data between data centers. SwarmMAP has a F1-score of 0.93, 0.98, and 0.88 for cell type classification in human heart, lung, and breast datasets, respectively. Swarm Learning-based models yield an average performance of 0.907 which is on par with the performance achieved by models trained on centralized data (p-val=0.937, Mann-Whitney U Test). We also find that increasing the number of datasets increases cell-type prediction accuracy and enables handling higher cell-type diversity. Together, these findings demonstrate that Swarm Learning is a viable approach to automate cell-type annotation. SwarmMAP is available at https://github.com/hayatlab/SwarmMAP.
Collapse
Affiliation(s)
- Oliver Lester Saldanha
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Fetscherstraße 74, Dresden, 01307, Saxony, Germany
| | - Vivien Goepp
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Pauwelsstrasse 30, Aachen, 52074, North Rhine-Westphalia, Germany
| | - Kevin Pfeiffer
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Fetscherstraße 74, Dresden, 01307, Saxony, Germany
| | - Hyojin Kim
- Department of Medicine I, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden Fetscherstraße 74, Dresden, 01307, Saxony, Germany
| | - Jie Fu Zhu
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Fetscherstraße 74, Dresden, 01307, Saxony, Germany
| | - Rafael Kramann
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Pauwelsstrasse 30, Aachen, 52074, North Rhine-Westphalia, Germany
| | - Sikander Hayat
- Department of Medicine 2, RWTH Aachen University, Medical Faculty, Pauwelsstrasse 30, Aachen, 52074, North Rhine-Westphalia, Germany
| | - Jakob Nikolas Kather
- Else Kroener Fresenius Center for Digital Health, Technical University Dresden, Fetscherstraße 74, Dresden, 01307, Saxony, Germany
- Department of Medicine I, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden Fetscherstraße 74, Dresden, 01307, Saxony, Germany
- Medical Oncology, National Center for Tumor Diseases (NCT), University Hospital Heidelberg, Im Neuenheimer Feld 460, Heidelberg, 69120, Baden-Wuerttemberg, Germany
| |
Collapse
|
22
|
Mondéjar-Parreño G, Moreno-Manuel AI, Ruiz-Robles JM, Jalife J. Ion channel traffic jams: the significance of trafficking deficiency in long QT syndrome. Cell Discov 2025; 11:3. [PMID: 39788950 PMCID: PMC11717978 DOI: 10.1038/s41421-024-00738-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential. Disruption of ion channel trafficking is one of the main sources of LQTS. We review some molecular pathways and mechanisms involved in cardiac ion channel trafficking. We highlight the importance of channelosomes and other macromolecular complexes in helping to maintain normal cardiac electrical function, and the defects that prolong the QT interval as a consequence of variants or the effect of drugs. We examine the concept of "interactome mapping" and illustrate by example the multiple protein-protein interactions an ion channel may undergo throughout its lifetime. We also comment on how mapping the interactomes of the different cardiac ion channels may help advance research into LQTS and other cardiac diseases. Finally, we discuss how using human induced pluripotent stem cell technology to model ion channel trafficking and its defects may help accelerate drug discovery toward preventing life-threatening arrhythmias. Advancements in understanding ion channel trafficking and channelosome complexities are needed to find novel therapeutic targets, predict drug interactions, and enhance the overall management and treatment of LQTS patients.
Collapse
Affiliation(s)
| | | | | | - José Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Departments of Medicine and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Jin S, Plikus MV, Nie Q. CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics. Nat Protoc 2025; 20:180-219. [PMID: 39289562 DOI: 10.1038/s41596-024-01045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 06/27/2024] [Indexed: 09/19/2024]
Abstract
Recent advances in single-cell sequencing technologies offer an opportunity to explore cell-cell communication in tissues systematically and with reduced bias. A key challenge is integrating known molecular interactions and measurements into a framework to identify and analyze complex cell-cell communication networks. Previously, we developed a computational tool, named CellChat, that infers and analyzes cell-cell communication networks from single-cell transcriptomic data within an easily interpretable framework. CellChat quantifies the signaling communication probability between two cell groups using a simplified mass-action-based model, which incorporates the core interaction between ligands and receptors with multisubunit structure along with modulation by cofactors. Importantly, CellChat performs a systematic and comparative analysis of cell-cell communication using a variety of quantitative metrics and machine-learning approaches. CellChat v2 is an updated version that includes additional comparison functionalities, an expanded database of ligand-receptor pairs along with rich functional annotations, and an Interactive CellChat Explorer. Here we provide a step-by-step protocol for using CellChat v2 on single-cell transcriptomic data, including inference and analysis of cell-cell communication from one dataset and identification of altered intercellular communication, signals and cell populations from different datasets across biological conditions. The R implementation of CellChat v2 toolkit and its tutorials together with the graphic outputs are available at https://github.com/jinworks/CellChat . This protocol typically takes ~5 min depending on dataset size and requires a basic understanding of R and single-cell data analysis but no specialized bioinformatics training for its implementation.
Collapse
Affiliation(s)
- Suoqin Jin
- School of Mathematics and Statistics, Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, China.
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
24
|
Kulasinghe A, Berrell N, Donovan ML, Nilges BS. Spatial-Omics Methods and Applications. Methods Mol Biol 2025; 2880:101-146. [PMID: 39900756 DOI: 10.1007/978-1-0716-4276-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Traditional tissue profiling approaches have evolved from bulk studies to single-cell analysis over the last decade; however, the spatial context in tissues and microenvironments has always been lost. Over the last 5 years, spatial technologies have emerged that enabled researchers to investigate tissues in situ for proteins and transcripts without losing anatomy and histology. The field of spatial-omics enables highly multiplexed analysis of biomolecules like RNAs and proteins in their native spatial context-and has matured from initial proof-of-concept studies to a thriving field with widespread applications from basic research to translational and clinical studies. While there has been wide adoption of spatial technologies, there remain challenges with the standardization of methodologies, sample compatibility, throughput, resolution, and ease of use. In this chapter, we discuss the current state of the field and highlight technological advances and limitations.
Collapse
Affiliation(s)
- Arutha Kulasinghe
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | - Naomi Berrell
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | - Meg L Donovan
- Queensland Spatial Biology Centre, Wesley Research Institute, The Wesley Hospital, Auchenflower, QLD, Australia
| | | |
Collapse
|
25
|
Hrovatin K, Sikkema L, Shitov VA, Heimberg G, Shulman M, Oliver AJ, Mueller MF, Ibarra IL, Wang H, Ramírez-Suástegui C, He P, Schaar AC, Teichmann SA, Theis FJ, Luecken MD. Considerations for building and using integrated single-cell atlases. Nat Methods 2025; 22:41-57. [PMID: 39672979 DOI: 10.1038/s41592-024-02532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 10/22/2024] [Indexed: 12/15/2024]
Abstract
The rapid adoption of single-cell technologies has created an opportunity to build single-cell 'atlases' integrating diverse datasets across many laboratories. Such atlases can serve as a reference for analyzing and interpreting current and future data. However, it has become apparent that atlasing approaches differ, and the impact of these differences are often unclear. Here we review the current atlasing literature and present considerations for building and using atlases. Importantly, we find that no one-size-fits-all protocol for atlas building exists, but rather we discuss context-specific considerations and workflows, including atlas conceptualization, data collection, curation and integration, atlas evaluation and atlas sharing. We further highlight the benefits of integrated atlases for analyses of new datasets and deriving biological insights beyond what is possible from individual datasets. Our overview of current practices and associated recommendations will improve the quality of atlases to come, facilitating the shift to a unified, reference-based understanding of single-cell biology.
Collapse
Affiliation(s)
- Karin Hrovatin
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lisa Sikkema
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Vladimir A Shitov
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive / Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Graham Heimberg
- Department of OMNI Bioinformatics, Genentech, South San Francisco, CA, USA
- Department of Biological Research | AI Development, Genentech, South San Francisco, CA, USA
| | - Maiia Shulman
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Michaela F Mueller
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Ignacio L Ibarra
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
| | - Hanchen Wang
- Department of Biological Research | AI Development, Genentech, South San Francisco, CA, USA
- Department of Computer Science, Stanford University, Palo Alto, CA, USA
| | - Ciro Ramírez-Suástegui
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Peng He
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Anna C Schaar
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany
- TUM School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Theory of Condensed Matter Group, Department of Physics, Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
- CIFAR MacMillan Multiscale Human Programme, Toronto, Ontario, Canada
| | - Fabian J Theis
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.
- TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany.
- Department of Mathematics, Technical University of Munich, Garching, Germany.
| | - Malte D Luecken
- Department of Computational Health, Institute of Computational Biology, Helmholtz Zentrum München, Munich, Germany.
- Comprehensive Pneumology Center (CPC) with the CPC-M bioArchive / Institute of Lung Health and Immunity (LHI), Helmholtz Zentrum München; Member of the German Center for Lung Research (DZL), Munich, Germany.
| |
Collapse
|
26
|
Li Y, Du J, Deng S, Liu B, Jing X, Yan Y, Liu Y, Wang J, Zhou X, She Q. The molecular mechanisms of cardiac development and related diseases. Signal Transduct Target Ther 2024; 9:368. [PMID: 39715759 DOI: 10.1038/s41392-024-02069-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/28/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
Cardiac development is a complex and intricate process involving numerous molecular signals and pathways. Researchers have explored cardiac development through a long journey, starting with early studies observing morphological changes and progressing to the exploration of molecular mechanisms using various molecular biology methods. Currently, advancements in stem cell technology and sequencing technology, such as the generation of human pluripotent stem cells and cardiac organoids, multi-omics sequencing, and artificial intelligence (AI) technology, have enabled researchers to understand the molecular mechanisms of cardiac development better. Many molecular signals regulate cardiac development, including various growth and transcription factors and signaling pathways, such as WNT signaling, retinoic acid signaling, and Notch signaling pathways. In addition, cilia, the extracellular matrix, epigenetic modifications, and hypoxia conditions also play important roles in cardiac development. These factors play crucial roles at one or even multiple stages of cardiac development. Recent studies have also identified roles for autophagy, metabolic transition, and macrophages in cardiac development. Deficiencies or abnormal expression of these factors can lead to various types of cardiac development abnormalities. Nowadays, congenital heart disease (CHD) management requires lifelong care, primarily involving surgical and pharmacological treatments. Advances in surgical techniques and the development of clinical genetic testing have enabled earlier diagnosis and treatment of CHD. However, these technologies still have significant limitations. The development of new technologies, such as sequencing and AI technologies, will help us better understand the molecular mechanisms of cardiac development and promote earlier prevention and treatment of CHD in the future.
Collapse
Affiliation(s)
- Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Songbai Deng
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bin Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Jing
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuling Yan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yajie Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Wang
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaobo Zhou
- Department of Cardiology, Angiology, Haemostaseology, and Medical Intensive Care, Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Germany; DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim, Mannheim, Germany
| | - Qiang She
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
27
|
Karjalainen J, Hain S, Progatzky F. Glial-immune interactions in barrier organs. Mucosal Immunol 2024:S1933-0219(24)00135-1. [PMID: 39716688 DOI: 10.1016/j.mucimm.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/25/2024]
Abstract
Neuro-immune interactions within barrier organs, such as lung, gut, and skin, are crucial in regulating tissue homeostasis, inflammatory responses, and host defence. Our rapidly advancing understanding of peripheral neuroimmunology is transforming the field of barrier tissue immunology, offering a fresh perspective for developing therapies for complex chronic inflammatory disorders affecting barrier organs. However, most studies have primarily examined interactions between the peripheral nervous system and the immune system from a neuron-focused perspective, while glial cells, the nonneuronal cells of the nervous system, have received less attention. Glial cells were long considered as mere bystanders, only supporting their neuronal neighbours, but recent discoveries mainly on enteric glial cells in the intestine have implicated these cells in immune-regulation and inflammatory disease pathogenesis. In this review, we will highlight the bi-directional interactions between peripheral glial cells and the immune system and discuss the emerging immune regulatory functions of glial cells in barrier organs.
Collapse
Affiliation(s)
| | - Sofia Hain
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Fränze Progatzky
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| |
Collapse
|
28
|
Zhou J, Liu M, Park S. Association of Metabolic Diseases and Moderate Fat Intake with Myocardial Infarction Risk. Nutrients 2024; 16:4273. [PMID: 39770895 PMCID: PMC11679910 DOI: 10.3390/nu16244273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/29/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Myocardial infarction (MI) can range from mild to severe cardiovascular events and typically develops through complex interactions between genetic and lifestyle factors. OBJECTIVES We aimed to understand the genetic predisposition associated with MI through genetic correlation, colocalization analysis, and cells' gene expression values to develop more effective prevention and treatment strategies to reduce its burden. METHODS A polygenic risk score (PRS) was employed to estimate the genetic risk for MI and to analyze the dietary interactions with PRS that affect MI risk in adults over 45 years (n = 58,701). Genetic correlation (rg) between MI and metabolic syndrome-related traits was estimated with linkage disequilibrium score regression. Single-cell RNA sequencing (scRNA-seq) analysis was performed to investigate cellular heterogeneity in MI-associated genes. RESULTS Ten significant genetic variants associated with MI risk were related to cardiac, immune, and brain functions. A high PRS was associated with a threefold increase in MI risk (OR: 3.074, 95% CI: 2.354-4.014, p < 0.001). This increased the risk of MI plus obesity, hyperglycemia, dyslipidemia, and hypertension by about twofold after adjusting for MI-related covariates (p < 0.001). The PRS interacted with moderate fat intake (>15 energy percent), alcohol consumption (<30 g/day), and non-smoking, reducing MI risk in participants with a high PRS. MI was negatively correlated with the consumption of olive oil, sesame oil, and perilla oil used for cooking (rg = -0.364). MI risk was associated with storkhead box 1 (STOX1) and vacuolar protein sorting-associated protein 26A (VPS26A) in atrial and ventricular cardiomyocytes and fibroblasts. CONCLUSIONS This study identified novel genetic variants and gene expression patterns associated with MI risk, influenced by their interaction with fat and alcohol intake, and smoking status. Our findings provide insights for developing personalized prevention and treatment strategies targeting this complex clinical presentation of MI.
Collapse
Affiliation(s)
- Junyu Zhou
- Institute of Advanced Clinical Medicine, Peking University, Beijing 100191, China;
| | - Meiling Liu
- Department of Chemical Engineering, Shanxi Institute of Science and Technology, Jincheng 048011, China;
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro97bungil, BaeBang-Yup, Asan 31499, Republic of Korea
| |
Collapse
|
29
|
Kostina A, Kiselev A, Huang A, Lankerd H, Caywood S, Jurado-Fernandez A, Volmert B, O'Hern C, Juhong A, Liu Y, Qiu Z, Park S, Aguirre A. Self-organizing human heart assembloids with autologous and developmentally relevant cardiac neural crest-derived tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627627. [PMID: 39713343 PMCID: PMC11661279 DOI: 10.1101/2024.12.11.627627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Neural crest cells (NCCs) are a multipotent embryonic cell population of ectodermal origin that extensively migrate during early development and contribute to the formation of multiple tissues. Cardiac NCCs play a critical role in heart development by orchestrating outflow tract septation, valve formation, aortic arch artery patterning, parasympathetic innervation, and maturation of the cardiac conduction system. Abnormal migration, proliferation, or differentiation of cardiac NCCs can lead to severe congenital cardiovascular malformations. However, the complexity and timing of early embryonic heart development pose significant challenges to studying the molecular mechanisms underlying NCC-related cardiac pathologies. Here, we present a sophisticated functional model of human heart assembloids derived from induced pluripotent stem cells, which, for the first time, recapitulates cardiac NCC integration into the human embryonic heart in vitro . NCCs successfully integrated at developmentally relevant stages into heart organoids, and followed developmental trajectories known to occur in the human heart. They demonstrated extensive migration, differentiated into cholinergic neurons capable of generating nerve impulses, and formed mature glial cells. Additionally, they contributed to the mesenchymal populations of the developing outflow tract. Through transcriptomic analysis, we revealed that NCCs acquire molecular features of their cardiac derivatives as heart assembloids develop. NCC-derived parasympathetic neurons formed functional connections with cardiomyocytes, promoting the maturation of the cardiac conduction system. Leveraging this model's cellular complexity and functional maturity, we uncovered that early exposure of NCCs to antidepressants harms the development of NCC derivatives in the context of the developing heart. The commonly prescribed antidepressant Paroxetine disrupted the expression of a critical early neuronal transcription factor, resulting in impaired parasympathetic innervation and functional deficits in cardiac tissue. This advanced heart assembloid model holds great promise for high-throughput drug screening and unraveling the molecular mechanisms underlying NCC-related cardiac formation and congenital heart defects. IN BRIEF Human neural crest heart assembloids resembling the major directions of neural crest differentiation in the human embryonic heart, including parasympathetic innervation and the mesenchymal component of the outflow tract, provide a human-relevant embryonic platform for studying congenital heart defects and drug safety.
Collapse
|
30
|
Enninful A, Zhang Z, Klymyshyn D, Zong H, Bai Z, Farzad N, Su G, Baysoy A, Nam J, Yang M, Lu Y, Zhang NR, Braubach O, Xu ML, Ma Z, Fan R. Integration of Imaging-based and Sequencing-based Spatial Omics Mapping on the Same Tissue Section via DBiTplus. RESEARCH SQUARE 2024:rs.3.rs-5398491. [PMID: 39711562 PMCID: PMC11661374 DOI: 10.21203/rs.3.rs-5398491/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Spatially mapping the transcriptome and proteome in the same tissue section can significantly advance our understanding of heterogeneous cellular processes and connect cell type to function. Here, we present Deterministic Barcoding in Tissue sequencing plus (DBiTplus), an integrative multi-modality spatial omics approach that combines sequencing-based spatial transcriptomics and image-based spatial protein profiling on the same tissue section to enable both single-cell resolution cell typing and genome-scale interrogation of biological pathways. DBiTplus begins with in situ reverse transcription for cDNA synthesis, microfluidic delivery of DNA oligos for spatial barcoding, retrieval of barcoded cDNA using RNaseH, an enzyme that selectively degrades RNA in an RNA-DNA hybrid, preserving the intact tissue section for high-plex protein imaging with CODEX. We developed computational pipelines to register data from two distinct modalities. Performing both DBiT-seq and CODEX on the same tissue slide enables accurate cell typing in each spatial transcriptome spot and subsequently image-guided decomposition to generate single-cell resolved spatial transcriptome atlases. DBiTplus was applied to mouse embryos with limited protein markers but still demonstrated excellent integration for single-cell transcriptome decomposition, to normal human lymph nodes with high-plex protein profiling to yield a single-cell spatial transcriptome map, and to human lymphoma FFPE tissue to explore the mechanisms of lymphomagenesis and progression. DBiTplusCODEX is a unified workflow including integrative experimental procedure and computational innovation for spatially resolved single-cell atlasing and exploration of biological pathways cell-by-cell at genome-scale.
Collapse
Affiliation(s)
- Archibald Enninful
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Zhaojun Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Dmytro Klymyshyn
- Akoya Biosciences, Inc. 1080 O’Brien Dr Suite A, Menlo Park, CA 94025 USA
| | - Hailing Zong
- Akoya Biosciences, Inc. 1080 O’Brien Dr Suite A, Menlo Park, CA 94025 USA
| | - Zhiliang Bai
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Negin Farzad
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Graham Su
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Alev Baysoy
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Jungmin Nam
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Mingyu Yang
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Yao Lu
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Nancy R. Zhang
- Department of Statistics and Data Science, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA
| | - Oliver Braubach
- Canopy Biosciences, 4340 Duncan Avenue, St. Louis, MO, 63110, USA
| | - Mina L. Xu
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Zongming Ma
- Department of Statistics and Data Science, Yale University, New Haven, CT, 06520, USA
| | - Rong Fan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
- Yale Stem Cell Center and Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA
- Human and Translational Immunology Program, Yale School of Medicine, New Haven, CT, 06520, USA
| |
Collapse
|
31
|
Sweat ME, Pu WIT. Genetic and Molecular Underpinnings of Atrial Fibrillation. NPJ CARDIOVASCULAR HEALTH 2024; 1:35. [PMID: 39867228 PMCID: PMC11759492 DOI: 10.1038/s44325-024-00035-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/02/2024] [Indexed: 01/28/2025]
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia, increases stroke and heart failure risks. Here we review genes linked to AF and mechanisms by which they alter AF risk. We highlight gene expression differences between atrial and ventricular cardiomyocytes, regulatory mechanisms responsible for these differences, and their potential contribution to AF. Understanding AF mechanisms through the lens of atrial gene regulation is crucial to improving AF treatment.
Collapse
Affiliation(s)
- Mason E. Sweat
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
| | - WIlliam T. Pu
- Department of Cardiology, Boston Children’s
Hospital, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge,
MA 02138, USA
| |
Collapse
|
32
|
Pedroni A, Yilmaz E, Del Vecchio L, Bhattarai P, Vidal IT, Dai YWE, Koutsogiannis K, Kizil C, Ampatzis K. Decoding the molecular, cellular, and functional heterogeneity of zebrafish intracardiac nervous system. Nat Commun 2024; 15:10483. [PMID: 39632839 PMCID: PMC11618350 DOI: 10.1038/s41467-024-54830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024] Open
Abstract
The proper functioning of the heart relies on the intricate interplay between the central nervous system and the local neuronal networks within the heart itself. While the central innervation of the heart has been extensively studied, the organization and functionality of the intracardiac nervous system (IcNS) remain largely unexplored. Here, we present a comprehensive taxonomy of the IcNS, utilizing single-cell RNA sequencing, anatomical studies, and electrophysiological techniques. Our findings reveal a diverse array of neuronal types within the IcNS, exceeding previous expectations. We identify a subset of neurons exhibiting characteristics akin to pacemaker/rhythmogenic neurons similar to those found in Central Pattern Generator networks of the central nervous system. Our results underscore the heterogeneity within the IcNS and its key role in regulating the heart's rhythmic functionality. The classification and characterization of the IcNS presented here serve as a valuable resource for further exploration into the mechanisms underlying heart functionality and the pathophysiology of associated cardiac disorders.
Collapse
Affiliation(s)
- Andrea Pedroni
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Elanur Yilmaz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Lisa Del Vecchio
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Prabesh Bhattarai
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA
| | - Inés Talaya Vidal
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Yu-Wen E Dai
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | | | - Caghan Kizil
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Columbia University Irving Medical Center, Columbia University, New York, NY, 10032, USA.
| | | |
Collapse
|
33
|
Vascular cells of blood vessels and organs across the human body. Nat Med 2024; 30:3431-3432. [PMID: 39643674 DOI: 10.1038/s41591-024-03410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
34
|
Li R, Strobl J, Poyner EFM, Balbaa A, Torabi F, Mazin PV, Chipampe NJ, Stephenson E, Ramírez-Suástegi C, Shanmugiah VBM, Gardner L, Olabi B, Coulthard R, Botting RA, Zila N, Prigmore E, Gopee NH, Chroscik MA, Kritikaki E, Engelbert J, Goh I, Chan HM, Johnson HF, Ellis J, Rowe V, Tun W, Reynolds G, Yang D, Foster AR, Gambardella L, Winheim E, Admane C, Rumney B, Steele L, Jardine L, Nenonen J, Pickard K, Lumley J, Hampton P, Hu S, Liu F, Liu X, Horsfall D, Basurto-Lozada D, Grimble L, Bacon CM, Weatherhead SC, Brauner H, Wang Y, Bai F, Reynolds NJ, Allen JE, Jonak C, Brunner PM, Teichmann SA, Haniffa M. Cutaneous T cell lymphoma atlas reveals malignant T H2 cells supported by a B cell-rich tumor microenvironment. Nat Immunol 2024; 25:2320-2330. [PMID: 39558094 PMCID: PMC11588665 DOI: 10.1038/s41590-024-02018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Cutaneous T cell lymphoma (CTCL) is a potentially fatal clonal malignancy of T cells primarily affecting the skin. The most common form of CTCL, mycosis fungoides, can be difficult to diagnose, resulting in treatment delay. We performed single-cell and spatial transcriptomics analysis of skin from patients with mycosis fungoides-type CTCL and an integrated comparative analysis with human skin cell atlas datasets from healthy and inflamed skin. We revealed the co-optation of T helper 2 (TH2) cell-immune gene programs by malignant CTCL cells and modeling of the tumor microenvironment to support their survival. We identified MHC-II+ fibroblasts and dendritic cells that can maintain TH2 cell-like tumor cells. CTCL tumor cells are spatially associated with B cells, forming tertiary lymphoid structure-like aggregates. Finally, we validated the enrichment of B cells in CTCL and its association with disease progression across three independent patient cohorts. Our findings provide diagnostic aids, potential biomarkers for disease staging and therapeutic strategies for CTCL.
Collapse
Affiliation(s)
- Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Johanna Strobl
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Elizabeth F M Poyner
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Aya Balbaa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Pavel V Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | | | | | - Louis Gardner
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Bayanne Olabi
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Rowen Coulthard
- NovoPath, Department of Cellular Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Rachel A Botting
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Nina Zila
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- Section Biomedical Science, University of Applied Sciences FH Campus Wien, Vienna, Austria
| | - Elena Prigmore
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nusayhah H Gopee
- Biosciences Institute, Newcastle University, Newcastle, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marta A Chroscik
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Efpraxia Kritikaki
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Justin Engelbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Issac Goh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Hon Man Chan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Jasmine Ellis
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Victoria Rowe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Win Tun
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Gary Reynolds
- Biosciences Institute, Newcastle University, Newcastle, UK
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Dexin Yang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | | | | | - Elena Winheim
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Chloe Admane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Benjamin Rumney
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lloyd Steele
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Laura Jardine
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Julia Nenonen
- Division of Dermatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Keir Pickard
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Jennifer Lumley
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philip Hampton
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Simeng Hu
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking University, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - David Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Louise Grimble
- Biosciences Institute, Newcastle University, Newcastle, UK
| | - Chris M Bacon
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Sophie C Weatherhead
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Hanna Brauner
- Division of Dermatology, Department of Medicine, Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Yang Wang
- Department of Dermatology and Venerology, Peking University First Hospital, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center and School of Life Sciences, Peking University, Beijing, China
| | - Nick J Reynolds
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Patrick M Brunner
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Biosciences Institute, Newcastle University, Newcastle, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle, Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
35
|
Barnett SN, Cujba AM, Yang L, Maceiras AR, Li S, Kedlian VR, Pett JP, Polanski K, Miranda AMA, Xu C, Cranley J, Kanemaru K, Lee M, Mach L, Perera S, Tudor C, Joseph PD, Pritchard S, Toscano-Rivalta R, Tuong ZK, Bolt L, Petryszak R, Prete M, Cakir B, Huseynov A, Sarropoulos I, Chowdhury RA, Elmentaite R, Madissoon E, Oliver AJ, Campos L, Brazovskaja A, Gomes T, Treutlein B, Kim CN, Nowakowski TJ, Meyer KB, Randi AM, Noseda M, Teichmann SA. An organotypic atlas of human vascular cells. Nat Med 2024; 30:3468-3481. [PMID: 39566559 PMCID: PMC11645277 DOI: 10.1038/s41591-024-03376-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 10/25/2024] [Indexed: 11/22/2024]
Abstract
The human vascular system, comprising endothelial cells (ECs) and mural cells, covers a vast surface area in the body, providing a critical interface between blood and tissue environments. Functional differences exist across specific vascular beds, but their molecular determinants across tissues remain largely unknown. In this study, we integrated single-cell transcriptomics data from 19 human organs and tissues and defined 42 vascular cell states from approximately 67,000 cells (62 donors), including angiotypic transitional signatures along the arterial endothelial axis from large to small caliber vessels. We also characterized organotypic populations, including splenic littoral and blood-brain barrier ECs, thus clarifying the molecular profiles of these important cell states. Interrogating endothelial-mural cell molecular crosstalk revealed angiotypic and organotypic communication pathways related to Notch, Wnt, retinoic acid, prostaglandin and cell adhesion signaling. Transcription factor network analysis revealed differential regulation of downstream target genes in tissue-specific modules, such as those of FOXF1 across multiple lung vascular subpopulations. Additionally, we make mechanistic inferences of vascular drug targets within different vascular beds. This open-access resource enhances our understanding of angiodiversity and organotypic molecular signatures in human vascular cells, and has therapeutic implications for vascular diseases across tissues.
Collapse
Affiliation(s)
- Sam N Barnett
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Ana-Maria Cujba
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ana Raquel Maceiras
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Shuang Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Veronika R Kedlian
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | | | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Kazumasa Kanemaru
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | | | | | - Zewen K Tuong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, University of Queensland, Brisbane, Queensland, Australia
| | - Liam Bolt
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Alik Huseynov
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ioannis Sarropoulos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK
| | - Rasheda A Chowdhury
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Cambridge, UK
| | - Elo Madissoon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Lia Campos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Tomás Gomes
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Barbara Treutlein
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Chang N Kim
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College London, London, UK
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK.
- British Heart Foundation Centre of Research Excellence, Imperial College London, London, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Cambridge Stem Cell Institute and Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Juhasz V, Charlier FT, Zhao TX, Tsiantoulas D. Targeting the adaptive immune continuum in atherosclerosis and post-MI injury. Atherosclerosis 2024; 399:118616. [PMID: 39546915 DOI: 10.1016/j.atherosclerosis.2024.118616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/04/2024] [Accepted: 09/24/2024] [Indexed: 11/17/2024]
Abstract
Atherosclerotic disease is a cholesterol-rich lipoprotein particle-driven disease resulting in the formation of atherosclerotic plaques in large and medium size arteries. Rupture or erosion of atherosclerotic plaques can trigger the formation of a thrombus causing the obstruction of the blood flow in the coronary artery and thereby leading to myocardial infarction (MI). Inflammation is a crucial pillar of the mechanisms leading to atherosclerosis and governing the cardiac repair post-MI. Dissecting the complex and sophisticated networks of the immune responses underlying the formation of atherosclerotic plaques and affecting the healing of the heart after MI will allow the designing of highly precise immunomodulatory therapies for these settings. Notably, MI also accelerates atherosclerosis via modulating the response of the immune system. Therefore, for the identification of effective and safe therapeutic targets, it is critical to consider the inflammatory continuum that interconnects the two pathologies and identify immunomodulatory strategies that confer a protective effect in both settings or at least, affect each pathology independently. Adaptive immunity, which consists of B and T lymphocytes, is a major regulator of atherosclerosis and post-MI cardiac repair. Here, we review and discuss the effect of potential adaptive immunity-targeting therapies, such as cell-depleting therapies, in atherosclerosis and post-MI cardiac injury.
Collapse
Affiliation(s)
- Viktoria Juhasz
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Fiona T Charlier
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Tian X Zhao
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Cardiology, Royal Papworth Hospital NHS Trust, Cambridge, United Kingdom
| | | |
Collapse
|
37
|
Yoshida T, Yoshida S, Inukai K, Kato K, Yura Y, Hattori T, Taki K, Enomoto A, Ohashi K, Okumura T, Ouchi N, Kawase H, Wettschureck N, Offermanns S, Murohara T, Takefuji M. ALPK2 prevents cardiac diastolic dysfunction in heart failure with preserved ejection fraction. FASEB J 2024; 38:e70192. [PMID: 39556326 PMCID: PMC11599786 DOI: 10.1096/fj.202402103r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024]
Abstract
Protein phosphorylation, controlled by protein kinases, is central to regulating various pathophysiological processes, including cardiac systolic function. The dysregulation of protein kinase activity plays a significant role in the pathogenesis of cardiac systolic dysfunction. While cardiac contraction mechanisms are well documented, the mechanisms underlying cardiac diastole remain elusive. This gap persists owing to the historical focus on systolic dysfunction in heart failure research. Recently, heart failure with preserved ejection fraction (HFpEF), an age-related disease characterized by cardiac diastolic dysfunction, has emerged as a major public health concern. However, its underlying mechanism remains unclear. In this study, we investigated cardiac protein kinases by analyzing the gene expression of 518 protein kinases in human tissues. We identified alpha-kinase 2 (ALPK2) as a novel cardiac-specific atypical kinase and generated tamoxifen-inducible, cardiomyocyte-specific Alpk2-knockout mice and Alpk2-overexpressing mice. Alpk2 deficiency did not affect cardiac systolic dysfunction in the myocardial infarction model or the pressure-overload-induced heart failure model. Notably, cardiomyocyte-specific Alpk2 deficiency exacerbated cardiac diastolic dysfunction induced by aging and in the HFpEF model. Conversely, Alpk2 overexpression increased the phosphorylation of tropomyosin 1, a major regulator that binds myosin to actin, and mitigated cardiac stiffness in HFpEF. This study provides novel evidence that ALPK2 represents a potential therapeutic target for cardiac diastolic dysfunction in HFpEF and age-related cardiac impairments.
Collapse
Affiliation(s)
- Tatsuya Yoshida
- Department of CardiologyNagoya University School of MedicineNagoyaJapan
| | - Satoya Yoshida
- Department of CardiologyNagoya University School of MedicineNagoyaJapan
| | - Kohei Inukai
- Department of CardiologyNagoya University School of MedicineNagoyaJapan
| | - Katsuhiro Kato
- Department of CardiologyNagoya University School of MedicineNagoyaJapan
| | - Yoshimitsu Yura
- Department of CardiologyNagoya University School of MedicineNagoyaJapan
| | - Tomoki Hattori
- Department of CardiologyNagoya University School of MedicineNagoyaJapan
| | - Kentaro Taki
- Division for Medical Research EngineeringNagoya University School of MedicineNagoyaJapan
| | - Atsushi Enomoto
- Department of PathologyNagoya University School of MedicineNagoyaJapan
| | - Koji Ohashi
- Department of Molecular Medicine and CardiologyNagoya University School of MedicineNagoyaJapan
| | - Takahiro Okumura
- Department of CardiologyNagoya University School of MedicineNagoyaJapan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and CardiologyNagoya University School of MedicineNagoyaJapan
| | - Haruya Kawase
- Department of CardiologyNagoya University School of MedicineNagoyaJapan
- Department of PharmacologyMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Nina Wettschureck
- Department of PharmacologyMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Stefan Offermanns
- Department of PharmacologyMax Planck Institute for Heart and Lung ResearchBad NauheimGermany
| | - Toyoaki Murohara
- Department of CardiologyNagoya University School of MedicineNagoyaJapan
| | - Mikito Takefuji
- Department of CardiologyNagoya University School of MedicineNagoyaJapan
| |
Collapse
|
38
|
Lim AA, Pouyabahar D, Ashraf M, Huang K, Lohbihler M, Murareanu BM, Chang ML, Kwan M, Alibhai FJ, Tran T, Mazine A, Laflamme MA, Bader GD, Laksman Z, Protze S. Single-cell transcriptome analysis reveals CD34 as a marker of human sinoatrial node pacemaker cardiomyocytes. Nat Commun 2024; 15:10206. [PMID: 39604360 PMCID: PMC11603134 DOI: 10.1038/s41467-024-54337-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
The sinoatrial node regulates the heart rate throughout life. Failure of this primary pacemaker results in life-threatening, slow heart rhythm. Despite its critical function, the cellular and molecular composition of the human sinoatrial node is not resolved. Particularly, no cell surface marker to identify and isolate sinoatrial node pacemaker cells has been reported. Here we use single-nuclei/cell RNA sequencing of fetal and human pluripotent stem cell-derived sinoatrial node cells to reveal that they consist of three subtypes of pacemaker cells: Core Pacemaker, Sinus Venosus, and Transitional Cells. Our study identifies a host of sinoatrial node pacemaker markers including MYH11, BMP4, and the cell surface antigen CD34. We demonstrate that sorting for CD34+ cells from stem cell differentiation cultures enriches for sinoatrial node cells exhibiting a functional pacemaker phenotype. This sinoatrial node pacemaker cell surface marker is highly valuable for stem cell-based disease modeling, drug discovery, cell replacement therapies, and the targeted delivery of therapeutics to sinoatrial node cells in vivo using antibody-drug conjugates.
Collapse
Affiliation(s)
- Amos A Lim
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Delaram Pouyabahar
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Mishal Ashraf
- Centre for Heart and Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Kate Huang
- Centre for Heart and Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Lohbihler
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Brandon M Murareanu
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Matthew L Chang
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Maggie Kwan
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Faisal J Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
| | - Thinh Tran
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amine Mazine
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Cardiac Surgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Michael A Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Zachary Laksman
- Centre for Heart and Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Experimental Medicine Program, University of British Columbia, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Stephanie Protze
- McEwen Stem Cell Institute, University Health Network, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Ma XR, Conley SD, Kosicki M, Bredikhin D, Cui R, Tran S, Sheth MU, Qiu WL, Chen S, Kundu S, Kang HY, Amgalan D, Munger CJ, Duan L, Dang K, Rubio OM, Kany S, Zamirpour S, DePaolo J, Padmanabhan A, Olgin J, Damrauer S, Andersson R, Gu M, Priest JR, Quertermous T, Qiu X, Rabinovitch M, Visel A, Pennacchio L, Kundaje A, Glass IA, Gifford CA, Pirruccello JP, Goodyer WR, Engreitz JM. Molecular convergence of risk variants for congenital heart defects leveraging a regulatory map of the human fetal heart. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.20.24317557. [PMID: 39606363 PMCID: PMC11601760 DOI: 10.1101/2024.11.20.24317557] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Congenital heart defects (CHD) arise in part due to inherited genetic variants that alter genes and noncoding regulatory elements in the human genome. These variants are thought to act during fetal development to influence the formation of different heart structures. However, identifying the genes, pathways, and cell types that mediate these effects has been challenging due to the immense diversity of cell types involved in heart development as well as the superimposed complexities of interpreting noncoding sequences. As such, understanding the molecular functions of both noncoding and coding variants remains paramount to our fundamental understanding of cardiac development and CHD. Here, we created a gene regulation map of the healthy human fetal heart across developmental time, and applied it to interpret the functions of variants associated with CHD and quantitative cardiac traits. We collected single-cell multiomic data from 734,000 single cells sampled from 41 fetal hearts spanning post-conception weeks 6 to 22, enabling the construction of gene regulation maps in 90 cardiac cell types and states, including rare populations of cardiac conduction cells. Through an unbiased analysis of all 90 cell types, we find that both rare coding variants associated with CHD and common noncoding variants associated with valve traits converge to affect valvular interstitial cells (VICs). VICs are enriched for high expression of known CHD genes previously identified through mapping of rare coding variants. Eight CHD genes, as well as other genes in similar molecular pathways, are linked to common noncoding variants associated with other valve diseases or traits via enhancers in VICs. In addition, certain common noncoding variants impact enhancers with activities highly specific to particular subanatomic structures in the heart, illuminating how such variants can impact specific aspects of heart structure and function. Together, these results implicate new enhancers, genes, and cell types in the genetic etiology of CHD, identify molecular convergence of common noncoding and rare coding variants on VICs, and suggest a more expansive view of the cell types instrumental in genetic risk for CHD, beyond the working cardiomyocyte. This regulatory map of the human fetal heart will provide a foundational resource for understanding cardiac development, interpreting genetic variants associated with heart disease, and discovering targets for cell-type specific therapies.
Collapse
Affiliation(s)
- X Rosa Ma
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Stephanie D Conley
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Danila Bredikhin
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Ran Cui
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven Tran
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Maya U Sheth
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Wei-Lin Qiu
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sijie Chen
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Helen Y Kang
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Current address: PhD Program in Computational and Systems Biology, MIT, Cambridge, MA, USA
| | - Dulguun Amgalan
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
| | - Chad J Munger
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lauren Duan
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Katherine Dang
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Oriane Matthys Rubio
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Shinwan Kany
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Siavash Zamirpour
- School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - John DePaolo
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arun Padmanabhan
- Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco School of Medicine, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Jeffrey Olgin
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Scott Damrauer
- Division of Vascular Surgery and Endovascular Therapy, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael Crescenz VA Medical Center, Philadelphia, PA, USA
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robin Andersson
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mingxia Gu
- Center for Stem Cell and Organoid Medicine, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - James R Priest
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Tenaya Therapeutics, South San Francisco, CA, USA
| | - Thomas Quertermous
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Medicine, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Xiaojie Qiu
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Stanford Bio-X, Stanford University, Stanford, CA, USA
| | - Marlene Rabinovitch
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Diseases, Stanford University, Stanford, CA, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | - Len Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA, 94720, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Ian A Glass
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Department of Pediatrics and Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Casey A Gifford
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - James P Pirruccello
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Cardiology, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- Bakar Computation Health Sciences Institute, University of California, San Francisco, CA, USA
| | - William R Goodyer
- Department of Pediatrics, Stanford University, Stanford, CA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Jesse M Engreitz
- Basic Science and Engineering (BASE) Initiative, Stanford Children's Health, Betty Irene Moore Children's Heart Center, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Maternal and Child Health Research Institute, Stanford University, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
40
|
Tomida S, Ishima T, Nagai R, Aizawa K. T-Type Voltage-Gated Calcium Channels: Potential Regulators of Smooth Muscle Contractility. Int J Mol Sci 2024; 25:12420. [PMID: 39596484 PMCID: PMC11594734 DOI: 10.3390/ijms252212420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Emerging evidence has indicated a possible link between attenuation of contractility in aortic smooth muscle cells and pathogenesis of aortic dissection, as revealed through comprehensive, multi-omic analyses of familial thoracic aortic aneurysm and dissection models. While L-type voltage-gated calcium channels have been extensively investigated for their roles in smooth muscle contraction, more recent investigations have suggested that downregulation of T-type voltage-gated calcium channels, rather than their L-type counterparts, may be more closely associated with impaired contractility observed in vascular smooth muscle cells. This review provides a detailed examination of T-type voltage-gated calcium channels, highlighting their structure, electrophysiology, biophysics, expression patterns, functional roles, and potential mechanisms through which their downregulation may contribute to reduced contractile function. Furthermore, the application of multi-omic approaches in investigating calcium channels is discussed.
Collapse
Affiliation(s)
- Shota Tomida
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
- School of Medicine, Faculty of Medicine, Gunma University, Maebashi 371-8511, Japan
| | - Tamaki Ishima
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Ryozo Nagai
- Jichi Medical University, Shimotsuke 329-0498, Japan
| | - Kenichi Aizawa
- Division of Clinical Pharmacology, Department of Pharmacology, Jichi Medical University, Shimotsuke 329-0498, Japan
- Clinical Pharmacology Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
- Division of Translational Research, Clinical Research Center, Jichi Medical University Hospital, Shimotsuke 329-0498, Japan
| |
Collapse
|
41
|
Hill MC, Simonson B, Roselli C, Xiao L, Herndon CN, Chaffin M, Mantineo H, Atwa O, Bhasin H, Guedira Y, Bedi KC, Margulies KB, Klattenhoff CA, Tucker NR, Ellinor PT. Large-scale single-nuclei profiling identifies role for ATRNL1 in atrial fibrillation. Nat Commun 2024; 15:10002. [PMID: 39562555 PMCID: PMC11576987 DOI: 10.1038/s41467-024-54296-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia in humans, yet the molecular basis of AF remains incompletely understood. To determine the cell type-specific transcriptional changes underlying AF, we perform single-nucleus RNA-seq (snRNA-seq) on left atrial (LA) samples from patients with AF and controls. From more than 175,000 nuclei we find that only cardiomyocytes (CMs) and macrophages (MΦs) have a significant number of differentially expressed genes in patients with AF. Attractin Like 1 (ATRNL1) was overexpressed in CMs among patients with AF and localized to the intercalated disks. Further, in both knockdown and overexpression experiments we identify a potent role for ATRNL1 in cell stress response, and in the modulation of the cardiac action potential. Finally, we detect an unexpected expression pattern for a leading AF candidate gene, KCNN3. In sum, we uncover a role for ATRNL1 which may serve as potential therapeutic target for this common arrhythmia.
Collapse
Affiliation(s)
- Matthew C Hill
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Bridget Simonson
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carolina Roselli
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ling Xiao
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Caroline N Herndon
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mark Chaffin
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Helene Mantineo
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ondine Atwa
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harshit Bhasin
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Guedira
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenneth C Bedi
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Nathan R Tucker
- Departments of Pharmacology and Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
42
|
Wang MG, Chen L, Zhang XF. Dual decoding of cell types and gene expression in spatial transcriptomics with PANDA. Nucleic Acids Res 2024; 52:12173-12190. [PMID: 39404057 PMCID: PMC11551751 DOI: 10.1093/nar/gkae876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/24/2024] [Accepted: 09/24/2024] [Indexed: 11/12/2024] Open
Abstract
Sequencing-based spatial transcriptomics technologies have revolutionized our understanding of complex biological systems by enabling transcriptome profiling while preserving spatial context. However, spot-level expression measurements often amalgamate signals from diverse cells, obscuring potential heterogeneity. Existing methods aim to deconvolute spatial transcriptomics data into cell type proportions for each spot using single-cell RNA sequencing references but overlook cell-type-specific gene expression, essential for uncovering intra-type heterogeneity. We present PANDA (ProbAbilistic-based decoNvolution with spot-aDaptive cell type signAtures), a novel method that concurrently deciphers spot-level gene expression into both cell type proportions and cell-type-specific gene expression. PANDA integrates archetypal analysis to capture within-cell-type heterogeneity and dynamically learns cell type signatures for each spot during deconvolution. Simulations demonstrate PANDA's superior performance. Applied to real spatial transcriptomics data from diverse tissues, including tumor, brain, and developing heart, PANDA reconstructs spatial structures and reveals subtle transcriptional variations within specific cell types, offering a comprehensive understanding of tissue dynamics.
Collapse
Affiliation(s)
- Meng-Guo Wang
- School of Mathematics and Statistics, and Hubei Key Lab–Math. Sci., Central China Normal University, Wuhan 430079, Hubei, China
| | - Luonan Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, Zhejiang, China
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai 519031, Guangdong, China
| | - Xiao-Fei Zhang
- School of Mathematics and Statistics, and Hubei Key Lab–Math. Sci., Central China Normal University, Wuhan 430079, Hubei, China
- Key Laboratory of Nonlinear Analysis & Applications (Ministry of Education), Central China Normal University, Wuhan 430079, Hubei, China
| |
Collapse
|
43
|
Li J, Wiesinger A, Fokkert L, Bakker P, de Vries DK, Tijsen AJ, Pinto YM, Verkerk AO, Christoffels VM, Boink GJJ, Devalla HD. Modeling the atrioventricular conduction axis using human pluripotent stem cell-derived cardiac assembloids. Cell Stem Cell 2024; 31:1667-1684.e6. [PMID: 39260368 PMCID: PMC11546832 DOI: 10.1016/j.stem.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/19/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
The atrioventricular (AV) conduction axis provides electrical continuity between the atrial and ventricular chambers. The "nodal" cardiomyocytes populating this region (AV canal in the embryo, AV node from fetal stages onward) propagate impulses slowly, ensuring sequential contraction of the chambers. Dysfunction of AV nodal tissue causes severe disturbances in rhythm and contraction, and human models that capture its salient features are limited. Here, we report an approach for the reproducible generation of AV canal cardiomyocytes (AVCMs) with in vivo-like gene expression and electrophysiological profiles. We created the so-called "assembloids" composed of atrial, AVCM, and ventricular spheroids, which effectively recapitulated unidirectional conduction and the "fast-slow-fast" activation pattern typical for the vertebrate heart. We utilized these systems to reveal intracellular calcium mishandling as the basis of LMNA-associated AV conduction block. In sum, our study introduces novel cell differentiation and tissue construction strategies to facilitate the study of complex disorders affecting heart rhythm.
Collapse
Affiliation(s)
- Jiuru Li
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Alexandra Wiesinger
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Lianne Fokkert
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Priscilla Bakker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Dylan K de Vries
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Anke J Tijsen
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Yigal M Pinto
- Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Department of Experimental Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands; Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands
| | - Harsha D Devalla
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, Amsterdam 1105 AZ, the Netherlands.
| |
Collapse
|
44
|
Psarras S. The Macrophage-Fibroblast Dipole in the Context of Cardiac Repair and Fibrosis. Biomolecules 2024; 14:1403. [PMID: 39595580 PMCID: PMC11591949 DOI: 10.3390/biom14111403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Stromal and immune cells and their interactions have gained the attention of cardiology researchers and clinicians in recent years as their contribution in cardiac repair is increasingly recognized. The repair process in the heart is a particularly critical constellation of complex molecular and cellular events and interactions that characteristically fail to ensure adequate recovery following injury, insult, or exposure to stress conditions in this regeneration-hostile organ. The tremendous consequence of this pronounced inability to maintain homeostatic states is being translated in numerous ways promoting progress into heart failure, a deadly, irreversible condition requiring organ transplantation. Fibrosis is in fact a repair response eventually promoting cardiac dysfunction and cardiac fibroblasts are the major cellular players in this process, overproducing collagens and other extracellular matrix components when activated. On the other hand, macrophages may differentially affect fibroblasts and cardiac repair depending on their status and subsets. The opposite interaction is also probable. We discuss here the multifaceted aspects and crosstalk of this cell dipole and the opportunities it may offer for beneficial manipulation approaches that will hopefully lead to progress in heart disease interventions.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efesiou 4, 115 27 Athens, Greece
| |
Collapse
|
45
|
Seeler S, Arnarsson K, Dreßen M, Krane M, Doppler SA. Beyond the Heartbeat: Single-Cell Omics Redefining Cardiovascular Research. Curr Cardiol Rep 2024; 26:1183-1196. [PMID: 39158785 DOI: 10.1007/s11886-024-02117-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore recent advances in single-cell omics techniques as applied to various regions of the human heart, illuminating cellular diversity, regulatory networks, and disease mechanisms. We examine the contributions of single-cell transcriptomics, genomics, proteomics, epigenomics, and spatial transcriptomics in unraveling the complexity of cardiac tissues. RECENT FINDINGS Recent strides in single-cell omics technologies have revolutionized our understanding of the heart's cellular composition, cell type heterogeneity, and molecular dynamics. These advancements have elucidated pathological conditions as well as the cellular landscape in heart development. We highlight emerging applications of integrated single-cell omics, particularly for cardiac regeneration, disease modeling, and precision medicine, and emphasize the transformative potential of these technologies to advance cardiovascular research and clinical practice.
Collapse
Affiliation(s)
- Sabine Seeler
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Kristjan Arnarsson
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Martina Dreßen
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
| | - Markus Krane
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Division of Cardiac Surgery, Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Stefanie A Doppler
- Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Lazarettstr. 36, 80636, Munich, Germany.
- Institute for Translational Cardiac Surgery (INSURE), Department of Cardiovascular Surgery, German Heart Center Munich, School of Medicine and Health, TUM University Hospital, Technical University Munich, Munich, Germany.
| |
Collapse
|
46
|
Oliver AJ, Huang N, Bartolome-Casado R, Li R, Koplev S, Nilsen HR, Moy M, Cakir B, Polanski K, Gudiño V, Melón-Ardanaz E, Sumanaweera D, Dimitrov D, Milchsack LM, FitzPatrick MEB, Provine NM, Boccacino JM, Dann E, Predeus AV, To K, Prete M, Chapman JA, Masi AC, Stephenson E, Engelbert J, Lobentanzer S, Perera S, Richardson L, Kapuge R, Wilbrey-Clark A, Semprich CI, Ellams S, Tudor C, Joseph P, Garrido-Trigo A, Corraliza AM, Oliver TRW, Hook CE, James KR, Mahbubani KT, Saeb-Parsy K, Zilbauer M, Saez-Rodriguez J, Høivik ML, Bækkevold ES, Stewart CJ, Berrington JE, Meyer KB, Klenerman P, Salas A, Haniffa M, Jahnsen FL, Elmentaite R, Teichmann SA. Single-cell integration reveals metaplasia in inflammatory gut diseases. Nature 2024; 635:699-707. [PMID: 39567783 PMCID: PMC11578898 DOI: 10.1038/s41586-024-07571-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/15/2024] [Indexed: 11/22/2024]
Abstract
The gastrointestinal tract is a multi-organ system crucial for efficient nutrient uptake and barrier immunity. Advances in genomics and a surge in gastrointestinal diseases1,2 has fuelled efforts to catalogue cells constituting gastrointestinal tissues in health and disease3. Here we present systematic integration of 25 single-cell RNA sequencing datasets spanning the entire healthy gastrointestinal tract in development and in adulthood. We uniformly processed 385 samples from 189 healthy controls using a newly developed automated quality control approach (scAutoQC), leading to a healthy reference atlas with approximately 1.1 million cells and 136 fine-grained cell states. We anchor 12 gastrointestinal disease datasets spanning gastrointestinal cancers, coeliac disease, ulcerative colitis and Crohn's disease to this reference. Utilizing this 1.6 million cell resource (gutcellatlas.org), we discover epithelial cell metaplasia originating from stem cells in intestinal inflammatory diseases with transcriptional similarity to cells found in pyloric and Brunner's glands. Although previously linked to mucosal healing4, we now implicate pyloric gland metaplastic cells in inflammation through recruitment of immune cells including T cells and neutrophils. Overall, we describe inflammation-induced changes in stem cells that alter mucosal tissue architecture and promote further inflammation, a concept applicable to other tissues and diseases.
Collapse
Affiliation(s)
- Amanda J Oliver
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Raquel Bartolome-Casado
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, US
| | - Simon Koplev
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Hogne R Nilsen
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Madelyn Moy
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Victoria Gudiño
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Elisa Melón-Ardanaz
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | | | - Daniel Dimitrov
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | | | - Michael E B FitzPatrick
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas M Provine
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Ken To
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Jonathan A Chapman
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Andrea C Masi
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Justin Engelbert
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Sebastian Lobentanzer
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Laura Richardson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Rakeshlal Kapuge
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | | | - Sophie Ellams
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Catherine Tudor
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | | | - Alba Garrido-Trigo
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Ana M Corraliza
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Thomas R W Oliver
- Department of Histopathology and Cytology, Cambridge University Hospitals, Cambridge, UK
| | | | - Kylie R James
- Translational Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Krishnaa T Mahbubani
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge, UK
- Department of Haematology, Cambridge Stem Cell Institute, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery, University of Cambridge, Cambridge, UK
- Cambridge Biorepository for Translational Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge, UK
| | - Matthias Zilbauer
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- University Department of Paediatrics, University of Cambridge, Cambridge, UK
- Department of Paediatric Gastroenterology, Hepatology and Nutrition, Cambridge University Hospitals, Cambridge, UK
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Heidelberg University, Faculty of Medicine, Heidelberg University Hospital, Bioquant, Heidelberg, Germany
| | - Marte Lie Høivik
- Department of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Espen S Bækkevold
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | | | - Janet E Berrington
- Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Paul Klenerman
- Translational Gastroenterology and Liver Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Azucena Salas
- Inflammatory Bowel Disease Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and National Institute for Health Research (NIHR) Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Frode L Jahnsen
- Department of Pathology, University of Oslo and Oslo University Hospital-Rikshospitalet, Oslo, Norway
| | - Rasa Elmentaite
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
- Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Cambridge, UK
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Ensocell Therapeutics, BioData Innovation Centre, Wellcome Genome Campus, Cambridge, UK.
- Theory of Condensed Matter, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- CIFAR Macmillan Multi-scale Human Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
47
|
To K, Fei L, Pett JP, Roberts K, Blain R, Polański K, Li T, Yayon N, He P, Xu C, Cranley J, Moy M, Li R, Kanemaru K, Huang N, Megas S, Richardson L, Kapuge R, Perera S, Tuck E, Wilbrey-Clark A, Mulas I, Memi F, Cakir B, Predeus AV, Horsfall D, Murray S, Prete M, Mazin P, He X, Meyer KB, Haniffa M, Barker RA, Bayraktar O, Chédotal A, Buckley CD, Teichmann SA. A multi-omic atlas of human embryonic skeletal development. Nature 2024; 635:657-667. [PMID: 39567793 PMCID: PMC11578895 DOI: 10.1038/s41586-024-08189-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/09/2024] [Indexed: 11/22/2024]
Abstract
Human embryonic bone and joint formation is determined by coordinated differentiation of progenitors in the nascent skeleton. The cell states, epigenetic processes and key regulatory factors that underlie lineage commitment of these cells remain elusive. Here we applied paired transcriptional and epigenetic profiling of approximately 336,000 nucleus droplets and spatial transcriptomics to establish a multi-omic atlas of human embryonic joint and cranium development between 5 and 11 weeks after conception. Using combined modelling of transcriptional and epigenetic data, we characterized regionally distinct limb and cranial osteoprogenitor trajectories across the embryonic skeleton and further described regulatory networks that govern intramembranous and endochondral ossification. Spatial localization of cell clusters in our in situ sequencing data using a new tool, ISS-Patcher, revealed mechanisms of progenitor zonation during bone and joint formation. Through trajectory analysis, we predicted potential non-canonical cellular origins for human chondrocytes from Schwann cells. We also introduce SNP2Cell, a tool to link cell-type-specific regulatory networks to polygenic traits such as osteoarthritis. Using osteolineage trajectories characterized here, we simulated in silico perturbations of genes that cause monogenic craniosynostosis and implicate potential cell states and disease mechanisms. This work forms a detailed and dynamic regulatory atlas of bone and cartilage maturation and advances our fundamental understanding of cell-fate determination in human skeletal development.
Collapse
Affiliation(s)
- Ken To
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Surgery, University of Cambridge, Cambridge, UK
| | - Lijiang Fei
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - J Patrick Pett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kenny Roberts
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Raphael Blain
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Tong Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nadav Yayon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - Peng He
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Chuan Xu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - James Cranley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Madelyn Moy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ruoyan Li
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Ni Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Stathis Megas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, Cambridge, UK
| | | | - Rakesh Kapuge
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Shani Perera
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Ilaria Mulas
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Fani Memi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Batuhan Cakir
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - David Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Simon Murray
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Martin Prete
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Xiaoling He
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Newcastle University, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- Institut de Pathologie, Groupe Hospitalier Est, Hospices Civils de Lyon, Lyon, France
- University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, Lyon, France
| | | | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Cambridge Centre for AI in Medicine, Department of Applied Mathematics and Theoretical Physics, Cambridge, UK.
- Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.
- CIFAR Macmillan Multi-scale Human Programme, CIFAR, Toronto, Canada.
| |
Collapse
|
48
|
Lubberding AF, Veedfald S, Achter JS, Nissen SD, Soattin L, Sorrentino A, Vega ET, Linz B, Eggertsen CHE, Mulvey J, Toräng S, Larsen SA, Nissen A, Petersen LG, Bilir SE, Bentzen BH, Rosenkilde MM, Hartmann B, Lilleør TNB, Qazi S, Møller CH, Tfelt-Hansen J, Sattler SM, Jespersen T, Holst JJ, Lundby A. Glucagon-like peptide-1 increases heart rate by a direct action on the sinus node. Cardiovasc Res 2024; 120:1427-1441. [PMID: 38832935 PMCID: PMC11472427 DOI: 10.1093/cvr/cvae120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/01/2024] [Accepted: 04/18/2024] [Indexed: 06/06/2024] Open
Abstract
AIMS Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are increasingly used to treat type 2 diabetes and obesity. Albeit cardiovascular outcomes generally improve, treatment with GLP-1 RAs is associated with increased heart rate, the mechanism of which is unclear. METHODS AND RESULTS We employed a large animal model, the female landrace pig, and used multiple in vivo and ex vivo approaches including pharmacological challenges, electrophysiology, and high-resolution mass spectrometry to explore how GLP-1 elicits an increase in heart rate. In anaesthetized pigs, neither cervical vagotomy, adrenergic blockers (alpha, beta, or combined alpha-beta blockade), ganglionic blockade (hexamethonium), nor inhibition of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (ivabradine) abolished the marked chronotropic effect of GLP-1. GLP-1 administration to isolated perfused pig hearts also increased heart rate, which was abolished by GLP-1 receptor blockade. Electrophysiological characterization of GLP-1 effects in vivo and in isolated perfused hearts localized electrical modulation to the atria and conduction system. In isolated sinus nodes, GLP-1 administration shortened the action potential cycle length of pacemaker cells and shifted the site of earliest activation. The effect was independent of HCN blockade. Collectively, these data support a direct effect of GLP-1 on GLP-1 receptors within the heart. Consistently, single nucleus RNA sequencing showed GLP-1 receptor expression in porcine pacemaker cells. Quantitative phosphoproteomics analyses of sinus node samples revealed that GLP-1 administration leads to phosphorylation changes of calcium cycling proteins of the sarcoplasmic reticulum, known to regulate heart rate. CONCLUSION GLP-1 has direct chronotropic effects on the heart mediated by GLP-1 receptors in pacemaker cells of the sinus node, inducing changes in action potential morphology and the leading pacemaker site through a calcium signalling response characterized by PKA-dependent phosphorylation of Ca2+ cycling proteins involved in pacemaking. Targeting the pacemaker calcium clock may be a strategy to lower heart rate in people treated with GLP-1 RAs.
Collapse
Affiliation(s)
- Anniek Frederike Lubberding
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jonathan Samuel Achter
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Sarah Dalgas Nissen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Luca Soattin
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Andrea Sorrentino
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Estefania Torres Vega
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Benedikt Linz
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Caroline Harriet Eggert Eggertsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - John Mulvey
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Signe Toräng
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sara Agnete Larsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Nissen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lonnie Grove Petersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Secil Erbil Bilir
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Bo Hjorth Bentzen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | | | - Saddiq Qazi
- Department of Cardiothoracic Surgery, Rigshospitalet, Copenhagen, Denmark
| | | | - Jacob Tfelt-Hansen
- Department of Cardiology, Heart Centre, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Michael Sattler
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Department of Cardiology, Herlev and Gentofte University Hospital, Hellerup, Denmark
| | - Thomas Jespersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alicia Lundby
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| |
Collapse
|
49
|
Easter QT, Alvarado-Martinez Z, Kunz M, Matuck BF, Rupp BT, Weaver T, Ren Z, Tata A, Caballero-Perez J, Oscarson N, Hasuike A, Ghodke AN, Kimple AJ, Tata PR, Randell SH, Koo H, Ko KI, Byrd KM. Polybacterial Intracellular Macromolecules Shape Single-Cell Epikine Profiles in Upper Airway Mucosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617279. [PMID: 39416216 PMCID: PMC11482982 DOI: 10.1101/2024.10.08.617279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The upper airway, particularly the nasal and oral mucosal epithelium, serves as a primary barrier for microbial interactions throughout life. Specialized niches like the anterior nares and the tooth are especially susceptible to dysbiosis and chronic inflammatory diseases. To investigate host-microbial interactions in mucosal epithelial cell types, we reanalyzed our single-cell RNA sequencing atlas of human oral mucosa, identifying polybacterial signatures (20% Gram-positive, 80% Gram-negative) within both epithelial- and stromal-resident cells. This analysis revealed unique responses of bacterial-associated epithelia when compared to two inflammatory disease states of mucosa. Single-cell RNA sequencing, in situ hybridization, and immunohistochemistry detected numerous persistent macromolecules from Gram-positive and Gram-negative bacteria within human oral keratinocytes (HOKs), including bacterial rRNA, mRNA and glycolipids. Epithelial cells with higher concentrations of 16S rRNA and glycolipids exhibited enhanced receptor-ligand signaling in vivo. HOKs with a spectrum of polybacterial intracellular macromolecular (PIM) concentrations were challenged with purified exogenous lipopolysaccharide, resulting in the synergistic upregulation of select innate (CXCL8, TNFSF15) and adaptive (CXCL17, CCL28) epikines. Notably, endogenous lipoteichoic acid, rather than lipopolysaccharide, directly correlated with epikine expression in vitro and in vivo. Application of the Drug2Cell algorithm to health and inflammatory disease data suggested altered drug efficacy predictions based on PIM detection. Our findings demonstrate that PIMs persist within mucosal epithelial cells at variable concentrations, linearly driving single-cell effector cytokine expression and influencing drug responses, underscoring the importance of understanding host-microbe interactions and the implications of PIMs on cell behavior in health and disease at single-cell resolution.
Collapse
Affiliation(s)
- Quinn T Easter
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Zabdiel Alvarado-Martinez
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Meik Kunz
- The Bioinformatics CRO, Orlando, FL, USA
| | - Bruno Fernandes Matuck
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Brittany T Rupp
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Theresa Weaver
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Zhi Ren
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Aleksandra Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | | | - Nick Oscarson
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
| | - Akira Hasuike
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
- Department of Periodontology, Nihon University School of Dentistry, Tokyo, JP
| | - Ameer N Ghodke
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Adam J Kimple
- Department of Otolaryngology-Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Purushothama R Tata
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| | - Scott H Randell
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Hyun Koo
- Biofilm Research Laboratories, Center for Innovation & Precision Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kang I Ko
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin M Byrd
- Lab of Oral & Craniofacial Innovation (LOCI), ADA Science & Research Institute, Gaithersburg, MD, USA
- UNC Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
Gómez-Del Arco P, Isern J, Jimenez-Carretero D, López-Maderuelo D, Piñeiro-Sabarís R, El Abdellaoui-Soussi F, Torroja C, Vera-Pedrosa ML, Grima-Terrén M, Benguria A, Simón-Chica A, Queiro-Palou A, Dopazo A, Sánchez-Cabo F, Jalife J, de la Pompa JL, Filgueiras-Rama D, Muñoz-Cánoves P, Redondo JM. The G4 resolvase Dhx36 modulates cardiomyocyte differentiation and ventricular conduction system development. Nat Commun 2024; 15:8602. [PMID: 39366945 PMCID: PMC11452623 DOI: 10.1038/s41467-024-52809-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Extensive genetic studies have elucidated cardiomyocyte differentiation and associated gene networks using single-cell RNA-seq, yet the intricate transcriptional mechanisms governing cardiac conduction system (CCS) development and working cardiomyocyte differentiation remain largely unexplored. Here we show that mice deleted for Dhx36 (encoding the Dhx36 helicase) in the embryonic or neonatal heart develop overt dilated cardiomyopathy, surface ECG alterations related to cardiac impulse propagation, and (in the embryonic heart) a lack of a ventricular conduction system (VCS). Heart snRNA-seq and snATAC-seq reveal the role of Dhx36 in CCS development and in the differentiation of working cardiomyocytes. Dhx36 deficiency directly influences cardiomyocyte gene networks by disrupting the resolution of promoter G-quadruplexes in key cardiac genes, impacting cardiomyocyte differentiation and CCS morphogenesis, and ultimately leading to dilated cardiomyopathy and atrioventricular block. These findings further identify crucial genes and pathways that regulate the development and function of the VCS/Purkinje fiber (PF) network.
Collapse
Affiliation(s)
- Pablo Gómez-Del Arco
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain.
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
| | - Joan Isern
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Daniel Jimenez-Carretero
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Dolores López-Maderuelo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Rebeca Piñeiro-Sabarís
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fadoua El Abdellaoui-Soussi
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Center for Stem Cells and Organoid Medicine (CuSTOM), Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carlos Torroja
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - María Linarejos Vera-Pedrosa
- Cardiac Arrhythmia Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Mercedes Grima-Terrén
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Alberto Benguria
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ana Simón-Chica
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Antonio Queiro-Palou
- Institute for Rare Diseases Research, Instituto de Salud Carlos III (ISCIII). Majadahonda, Madrid, Spain
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Ana Dopazo
- Genomics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Fátima Sánchez-Cabo
- Bioinformatics Unit, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - José Jalife
- Cardiac Arrhythmia Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- University of Michigan, Ann Arbor, MI, USA
| | - José Luis de la Pompa
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Intercellular Signaling in Cardiovascular Development and Disease Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Filgueiras-Rama
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Novel Arrhythmogenic Mechanisms Program, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Cardiovascular Institute, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Pura Muñoz-Cánoves
- Altos Labs, Inc., San Diego Institute of Science, San Diego, CA, USA.
- Tissue Regeneration Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Department of Experimental & Health Sciences, University Pompeu Fabra (UPF)/CIBERNED, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Juan Miguel Redondo
- Gene Regulation in Cardiovascular Remodelling and Inflammation Laboratory, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain.
- Cell-Cell Communication & Inflammation Unit, Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|