1
|
Wade AR, Baker DH. Measuring contrast processing in the visual system using the steady state visually evoked potential (SSVEP). Vision Res 2025; 231:108614. [PMID: 40318606 DOI: 10.1016/j.visres.2025.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025]
Abstract
Contrast is the currency of the early visual system. Measuring the way that the computations underlying contrast processing depend on factors such as spatial and temporal frequency, age, clinical conditions, eccentricity, chromaticity and the presence of other stimuli has been a focus of vision science for over a century. One of the most productive experimental approaches in this field has been the use of the 'steady-state visually-evoked potential' (SSVEP): a technique where contrast modulating inputs are 'frequency tagged' (presented at well-defined frequencies and phases) and the electrical signals that they generate in the brain are analyzed in the temporal frequency domain. SSVEPs have several advantages over conventional measures of visually-evoked responses: they have relatively unambiguous ouput measures, a high signal to noise ratio (SNR), and they allow us to analyze interactions between stimulus components using a convenient mathematical framework. Here we describe how SSVEPs have been used to study visual contrast over the past 70 years. Because our thinking about SSVEPs is well-described by simple mathematical models, we embed code that illustrates key steps in the modelling and analysis. This paper can therefore be used both as a review of the use of SSVEP in measuring human contrast processing, and as an interactive learning aid.
Collapse
Affiliation(s)
- Alex R Wade
- Department of Psychology and York Biomedical Research Institute, University of York, UK
| | - Daniel H Baker
- Department of Psychology and York Biomedical Research Institute, University of York, UK
| |
Collapse
|
2
|
Li P, Ma H, Lu HD. Direction-selective neurons in macaque V4. J Neurophysiol 2025; 133:1572-1582. [PMID: 40080463 DOI: 10.1152/jn.00405.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/27/2024] [Accepted: 03/10/2025] [Indexed: 03/15/2025] Open
Abstract
In mammalian visual system, direction-selective (DS) neurons prefer visual motion in a particular direction and are specialized for visual motion processing. In area V4 of the macaque, about 13% neurons are direction-selective and form clusters (DS domains). The functional role of DS neurons in this form-processing area is still unknown. We implanted electrode arrays targeting these DS domains and recorded neurons' responses to moving stimuli such as gratings and simple shapes. We found that DS neurons were similar to non-DS neurons in their receptive field sizes and orientation-selectivity properties. However, population-wise, DS neurons responded slower and had lower firing rates than non-DS neurons, contrary to their traditional role in motion processing. In addition, direction selectivity of V4 neurons was stimulus-dependent (i.e., not invariant). DS neurons identified with grating stimuli may not exhibit direction selectivity to other types of stimuli such as random dots or contour shapes. These results suggest that, unlike DS neurons in other areas, V4 DS neurons may have a unique origin for their direction selectivity and nontraditional roles in visual motion processing.NEW & NOTEWORTHY The functional role of direction-selective (DS) neurons in the ventral pathway is unclear. We studied DS neurons in area V4 of awake macaques. Interestingly, these neurons have slower responses and lower firing rates than those non-DS neurons. In addition, direction selectivity of these neurons was stimulus-type dependent. DS neurons in V4 may play a functional role different from those typical DS neurons in V1 or MT.
Collapse
Affiliation(s)
- Pengcheng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Heng Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Haidong D Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
3
|
Cooper ML, Gildea HK, Selles MC, Katafygiotou E, Liddelow SA, Chao MV. Astrocytes in the mouse brain respond bilaterally to unilateral retinal neurodegeneration. Proc Natl Acad Sci U S A 2025; 122:e2418249122. [PMID: 40063795 PMCID: PMC11929491 DOI: 10.1073/pnas.2418249122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/16/2025] [Indexed: 03/25/2025] Open
Abstract
Glaucomatous optic neuropathy, or glaucoma, is the world's primary cause of irreversible blindness. Glaucoma is comorbid with other neurodegenerative diseases, but how it might impact the environment of the full central nervous system to increase neurodegenerative vulnerability is unknown. Two neurodegenerative events occur early in the optic nerve, the structural link between the retina and brain: loss of anterograde transport in retinal ganglion cell (RGC) axons and early alterations in astrocyte structure and function. Here, we used whole-mount tissue clearing of full mouse brains to image RGC anterograde transport function and astrocyte responses across retinorecipient regions early in a unilateral microbead occlusion model of glaucoma. Using light sheet imaging, we found that RGC projections terminating specifically in the accessory optic tract are the first to lose transport function. Although degeneration was induced in one retina, astrocytes in both brain hemispheres responded to transport loss in a retinotopic pattern that mirrored the degenerating RGCs. A subpopulation of these astrocytes in contact with large descending blood vessels were immunopositive for LCN2, a marker associated with astrocyte reactivity. Together, these data suggest that even early stages of unilateral glaucoma have broad impacts on the health of astrocytes across both hemispheres of the brain, implying a glial mechanism behind neurodegenerative comorbidity in glaucoma.
Collapse
Affiliation(s)
- Melissa L. Cooper
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Holly K. Gildea
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Maria Clara Selles
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Eleni Katafygiotou
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Shane A. Liddelow
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Ophthalmology, New York University Langone Health, New York, NY10016
| | - Moses V. Chao
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Psychiatry, New York University Langone Health, New York, NY10016
| |
Collapse
|
4
|
Somaiya RD, Po MA, Feller MB, Shekhar K. Cholinergic waves have a modest influence on the transcriptome of retinal ganglion cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.627027. [PMID: 39713433 PMCID: PMC11661095 DOI: 10.1101/2024.12.05.627027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
In the early stages of development, correlated activity known as retinal waves causes periodic depolarizations of retinal ganglion cells (RGCs). The β2KO mouse, which lacks the β2 subunit of the nicotinic acetylcholine receptor, serves as a model for understanding the role of these cholinergic waves. β2KO mice have disruptions in several developmental processes of the visual system, including reduced retinotopic and eye-specific refinement of RGC axonal projections to their primary brain targets and an impact on the retinal circuits underlying direction selectivity. However, the effects of this mutation on gene expression in individual functional RGC types remain unclear. Here, we performed single-cell RNA sequencing on RGCs isolated at the end of the first postnatal week from wild-type and β2KO mice. We found that in β2KO mice, the molecular programs governing RGC differentiation were not impacted and the magnitude of transcriptional changes was modest compared to those observed during two days of normal postnatal maturation. This contrasts with the substantial transcriptomic changes seen in downstream visual system areas under wave disruption in recent studies. However, we identified ∼238 genes whose expression was altered in a type-specific manner. We confirmed this result via in situ hybridization and whole-cell recording by focusing on one of the downregulated genes in aRGCs, Kcnk9 , which encodes the two-pore domain leak potassium channel TASK3. Our study reveals a limited transcriptomic impact of cholinergic signaling in the retina and instead of affecting all RGCs uniformly, these waves show subtle modulation of molecular programs in a type-specific manner. SIGNIFICANCE STATEMENT Spontaneous retinal waves are critical for the development of the mammalian visual system. However, their role in transcriptional regulation in the retina across the diverse retinal ganglion cell (RGC) types that underpin the detection and transmission of visual features is unclear. Using single-cell RNA sequencing, we analyzed RGC transcriptome from wild-type mice and mice with disrupted retinal waves. We identified several genes that show RGC-type-specific regulation in their expression, including multiple neuropeptides and ion channels. However, wave-dependent changes in the transcriptome were more subtle than developmental changes, indicating that spontaneous activity-dependent molecular changes in retinal ganglion cells are not primarily manifested at the transcriptomic level.
Collapse
|
5
|
Su C, Mendes-Platt RF, Alonso JM, Swadlow HA, Bereshpolova Y. Retinal direction of motion is reliably transmitted to visual cortex through highly selective thalamocortical connections. Curr Biol 2025; 35:217-223.e4. [PMID: 39644892 DOI: 10.1016/j.cub.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/27/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Motion perception is crucial to animal survival and effective environmental interactions. In mammals, detection of movement begins in the retina. Directionally selective (DS) retinal ganglion cells were first discovered in the rabbit eye,1 and they have since been found in mouse,2,3 cat,4 and monkey.5,6 These DS retinal neurons contact a small population of neurons in the visual thalamus (dorsal lateral geniculate nucleus [LGN]) that are highly DS.7,8,9,10 The primary visual cortex (V1) also contains DS neurons, but whether directional selectivity in V1 emerges de novo11,12,13 or is inherited from DS thalamic inputs14,15,16 remains unclear. We previously found that LGN-DS neurons generate strong and focal synaptic currents in rabbit V1, similar to those generated by LGN concentric cells.17 Thus, the synaptic drive generated by LGN-DS neurons in V1 is spatially well situated to influence the firing of layer 4 (L4) simple cells, most of which show strong directional selectivity.18 However, two important questions remain: do LGN-DS neurons synaptically target DS simple cells in L4, and, if so, do they contribute to the directional preferences of these V1 DS neurons? We used spike-train cross-correlation analysis of pairs of LGN-DS and L4 simple cells to address these questions. We found that LGN-DS neurons do target L4 DS simple cells and that the targeting is highly selective, largely following a simple set of "connectivity rules." We conclude that this highly selective thalamocortical connectivity of LGN-DS neurons contributes to the sharp directional selectivity of cortical simple cells.
Collapse
Affiliation(s)
- Chuyi Su
- Deptartment of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | | - Jose-Manuel Alonso
- Deptartment of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA; Deptartment of Biological and Vision Sciences, SUNY-Optometry, New York, NY 10036, USA
| | - Harvey A Swadlow
- Deptartment of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA; Deptartment of Biological and Vision Sciences, SUNY-Optometry, New York, NY 10036, USA
| | - Yulia Bereshpolova
- Deptartment of Psychological Sciences, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
6
|
Zeng Y, Rong R, You M, Zhu P, Zhang J, Xia X. Light-eye-body axis: exploring the network from retinal illumination to systemic regulation. Theranostics 2025; 15:1496-1523. [PMID: 39816683 PMCID: PMC11729557 DOI: 10.7150/thno.106589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025] Open
Abstract
The human body is an intricate system, where diverse and complex signaling among different organs sustains physiological activities. The eye, as a primary organ for information acquisition, not only plays a crucial role in visual perception but also, as increasing evidence suggests, exerts a broad influence on the entire body through complex circuits upon receiving light signals which is called non-image-forming vision. However, the extent and mechanisms of light's impact on the body through the eyes remain insufficiently explored. There is also a dearth of comprehensive reviews elucidating the intricate interplay between light, the eye, and the systemic connections to the entire body. Herein, we propose the concept of the light-eye-body axis to systematically encapsulate the extensive non-image-forming effects of light signals received by the retina on the entire body. We reviewed the visual-neural structure basis of the light-eye-body axis, summarized the mechanism by which the eyes regulate the whole body and the current research status and challenges within the physiological and pathological processes involved in the light-eye-body axis. Future research should aim to expand the influence of the light-eye-body axis and explore its deeper mechanisms. Understanding and investigating the light-eye-body axis will contribute to improving lighting conditions to optimize health and guide the establishment of phototherapy standards in clinical practice.
Collapse
Affiliation(s)
- Yi Zeng
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Rong Rong
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Mengling You
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Peng Zhu
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Jinglin Zhang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| | - Xiaobo Xia
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P.R. China
- Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, P.R. China
- National clinical key specialty of ophthalmology, Changsha, Hunan, 410008, P.R. China
- National Clinical Research Center for Geriatric Diseases (Xiangya Hospital), Central South University, Changsha, Hunan, 410008, P.R. China
| |
Collapse
|
7
|
Tsai NY, Nimkar K, Zhao M, Lum MR, Yi Y, Garrett TR, Wang Y, Toma K, Caval-Holme F, Reddy N, Ehrlich AT, Kriegstein AR, Do MTH, Sivyer B, Shekhar K, Duan X. Molecular and spatial analysis of ganglion cells on retinal flatmounts: diversity, topography, and perivascularity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.15.628587. [PMID: 39763751 PMCID: PMC11702564 DOI: 10.1101/2024.12.15.628587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Diverse retinal ganglion cells (RGCs) transmit distinct visual features from the eye to the brain. Recent studies have categorized RGCs into 45 types in mice based on transcriptomic profiles, showing strong alignment with morphological and electrophysiological properties. However, little is known about how these types are spatially arranged on the two-dimensional retinal surface-an organization that influences visual encoding-and how their local microenvironments impact development and neurodegenerative responses. To address this gap, we optimized a workflow combining imaging-based spatial transcriptomics (MERFISH) and immunohistochemical co-staining on thin flatmount retinal sections. We used computational methods to register en face somata distributions of all molecularly defined RGC types. More than 75% (34/45) of types exhibited non-uniform distributions, likely reflecting adaptations of the retina's anatomy to the animal's visual environment. By analyzing the local neighborhoods of each cell, we identified perivascular RGCs located near blood vessels. Seven RGC types are enriched in the perivascular niche, including members of intrinsically photosensitive RGC (ipRGC) and direction-selective RGC (DSGC) subclasses. Orthologous human RGC counterparts of perivascular types - Melanopsin-enriched ipRGCs and ON DSGCs - were also proximal to blood vessels, suggesting their perivascularity may be evolutionarily conserved. Following optic nerve crush in mice, the perivascular M1-ipRGCs and ON DSGCs showed preferential survival, suggesting that proximity to blood vessels may render cell-extrinsic neuroprotection to RGCs through an mTOR-independent mechanism. Overall, our work offers a resource characterizing the spatial profiles of RGC types, enabling future studies of retinal development, physiology, and neurodegeneration at individual neuron type resolution across the two-dimensional space.
Collapse
Affiliation(s)
- Nicole Y Tsai
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
| | - Kushal Nimkar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- These authors contributed equally
| | - Mengya Zhao
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Matthew R Lum
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yujuan Yi
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Tavita R Garrett
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Yixiao Wang
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Franklin Caval-Holme
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School. Boston, MA, USA
| | - Nikhil Reddy
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Aliza T Ehrlich
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology and The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Michael Tri H Do
- F. M. Kirby Neurobiology Center and Department of Neurology, Boston Children's Hospital and Harvard Medical School. Boston, MA, USA
| | - Benjamin Sivyer
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - Karthik Shekhar
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute; Vision Sciences Graduate Program; Center for Computational Biology; Biophysics Graduate Group, University of California, Berkeley, CA, USA
- These authors contributed equally
| | - Xin Duan
- Department of Ophthalmology, School of Medicine, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology and Kavli Institute for Fundamental Neuroscience, University of California San Francisco, San Francisco, CA, USA
- These authors contributed equally
- Lead contact
| |
Collapse
|
8
|
Huang KC, Tawfik M, Samuel MA. Retinal ganglion cell circuits and glial interactions in humans and mice. Trends Neurosci 2024; 47:994-1013. [PMID: 39455342 PMCID: PMC11631666 DOI: 10.1016/j.tins.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Retinal ganglion cells (RGCs) are the brain's gateway for vision, and their degeneration underlies several blinding diseases. RGCs interact with other neuronal cell types, microglia, and astrocytes in the retina and in the brain. Much knowledge has been gained about RGCs and glia from mice and other model organisms, often with the assumption that certain aspects of their biology may be conserved in humans. However, RGCs vary considerably between species, which could affect how they interact with their neuronal and glial partners. This review details which RGC and glial features are conserved between mice, humans, and primates, and which differ. We also discuss experimental approaches for studying human and primate RGCs. These strategies will help to bridge the gap between rodent and human RGC studies and increase study translatability to guide future therapeutic strategies.
Collapse
Affiliation(s)
- Kang-Chieh Huang
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| | - Mohamed Tawfik
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA
| | - Melanie A Samuel
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030. USA.
| |
Collapse
|
9
|
D’Angelo JC, Tiruveedhula P, Weber RJ, Arathorn DW, Roorda A. A paradoxical misperception of relative motion. Proc Natl Acad Sci U S A 2024; 121:e2410755121. [PMID: 39570307 PMCID: PMC11621632 DOI: 10.1073/pnas.2410755121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/24/2024] [Indexed: 11/22/2024] Open
Abstract
Detecting the motion of an object relative to a world-fixed frame of reference is an exquisite human capability [G. E. Legge, F. Campbell, Vis. Res. 21, 205-213 (1981)]. However, there is a special condition where humans are unable to accurately detect relative motion: Images moving in a direction consistent with retinal slip where the motion is unnaturally amplified can, under some conditions, appear stable [D. W. Arathorn, S. B. Stevenson, Q. Yang, P. Tiruveedhula, A. Roorda, J. Vis. 13, 22 (2013)]. We asked: Is world-fixed retinal image background content necessary for the visual system to compute the direction of eye motion, and consequently generate stable percepts of images moving with amplified slip? Or, are nonvisual cues sufficient? Subjects adjusted the parameters of a stimulus moving in a random trajectory to match the perceived motion of images moving contingent to the retina. Experiments were done with and without retinal image background content. The perceived motion of stimuli moving with amplified retinal slip was suppressed in the presence of a visible background; however, higher magnitudes of motion were perceived under conditions when there was none. Our results demonstrate that the presence of retinal image background content is essential for the visual system to compute its direction of motion. The visual content that might be thought to provide a strong frame of reference to detect amplified retinal slips, instead paradoxically drives the misperception of relative motion.
Collapse
Affiliation(s)
- Josephine C. D’Angelo
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA94720
| | - Pavan Tiruveedhula
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA94720
| | - Raymond J. Weber
- Electrical and Computer Engineering Department, Montana State University, Bozeman, MT59717-3780
| | - David W. Arathorn
- Electrical and Computer Engineering Department, Montana State University, Bozeman, MT59717-3780
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA94720
| |
Collapse
|
10
|
Kling A, Cooler S, Manookin MB, Rhoades C, Brackbill N, Field G, Rieke F, Sher A, Litke A, Chichilnisky EJ. Functional diversity in the output of the primate retina. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621339. [PMID: 39554060 PMCID: PMC11565969 DOI: 10.1101/2024.10.31.621339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The visual image transmitted by the retina to the brain has long been understood in terms of spatial filtering by the center-surround receptive fields of retinal ganglion cells (RGCs). Recently, this textbook view has been challenged by the stunning functional diversity and specificity observed in ∼40 distinct RGC types in the mouse retina. However, it is unclear whether the ∼20 morphologically and molecularly identified RGC types in primates exhibit similar functional diversity, or instead exhibit center-surround organization at different spatial scales. Here, we reveal striking and surprising functional diversity in macaque and human RGC types using large-scale multi-electrode recordings from isolated macaque and human retinas. In addition to the five well-known primate RGC types, 18-27 types were distinguished by their functional properties, likely revealing several previously unknown types. Surprisingly, many of these cell types exhibited striking non-classical receptive field structure, including irregular spatial and chromatic properties not previously reported in any species. Qualitatively similar results were observed in recordings from the human retina. The receptive fields of less-understood RGC types formed uniform mosaics covering visual space, confirming their classification, and the morphological counterparts of two types were established using single-cell recording. The striking receptive field diversity was paralleled by distinctive responses to natural movies and complexity of visual computation. These findings suggest that diverse RGC types, rather than merely filtering the scene at different spatial scales, instead play specialized roles in human vision.
Collapse
|
11
|
Warwick RA, Riccitelli S, Heukamp AS, Yaakov H, Swain BP, Ankri L, Mayzel J, Gilead N, Parness-Yossifon R, Di Marco S, Rivlin-Etzion M. Top-down modulation of the retinal code via histaminergic neurons of the hypothalamus. SCIENCE ADVANCES 2024; 10:eadk4062. [PMID: 39196935 PMCID: PMC11352916 DOI: 10.1126/sciadv.adk4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
The mammalian retina is considered an autonomous circuit, yet work dating back to Ramon y Cajal indicates that it receives inputs from the brain. How such inputs affect retinal processing has remained unknown. We confirmed brain-to-retina projections of histaminergic neurons from the mouse hypothalamus. Histamine application ex vivo altered the activity of various retinal ganglion cells (RGCs), including direction-selective RGCs that gained responses to high motion velocities. These results were reproduced in vivo with optic tract recordings where histaminergic retinopetal axons were activated chemogenetically. Such changes could improve vision of fast-moving objects (e.g., while running), which fits with the known increased activity of histaminergic neurons during arousal. An antihistamine drug reduced optomotor responses to high-speed moving stimuli in freely moving mice. In humans, the same antihistamine nonuniformly modulated visual sensitivity across the visual field, indicating an evolutionary conserved function of the histaminergic system. Our findings expose a previously unappreciated role for brain-to-retina projections in modulating retinal function.
Collapse
Affiliation(s)
- Rebekah A. Warwick
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Serena Riccitelli
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alina S. Heukamp
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hadar Yaakov
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Bani Prasad Swain
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Lea Ankri
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Jonathan Mayzel
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Gilead
- Ophthalmology Department, Kaplan Medical Center, Rehovot, Israel
| | | | - Stefano Di Marco
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | | |
Collapse
|
12
|
Fu J, Pierzchlewicz PA, Willeke KF, Bashiri M, Muhammad T, Diamantaki M, Froudarakis E, Restivo K, Ponder K, Denfield GH, Sinz F, Tolias AS, Franke K. Heterogeneous orientation tuning in the primary visual cortex of mice diverges from Gabor-like receptive fields in primates. Cell Rep 2024; 43:114639. [PMID: 39167488 PMCID: PMC11463840 DOI: 10.1016/j.celrep.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/19/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
A key feature of neurons in the primary visual cortex (V1) of primates is their orientation selectivity. Recent studies using deep neural network models showed that the most exciting input (MEI) for mouse V1 neurons exhibit complex spatial structures that predict non-uniform orientation selectivity across the receptive field (RF), in contrast to the classical Gabor filter model. Using local patches of drifting gratings, we identified heterogeneous orientation tuning in mouse V1 that varied up to 90° across sub-regions of the RF. This heterogeneity correlated with deviations from optimal Gabor filters and was consistent across cortical layers and recording modalities (calcium vs. spikes). In contrast, model-synthesized MEIs for macaque V1 neurons were predominantly Gabor like, consistent with previous studies. These findings suggest that complex spatial feature selectivity emerges earlier in the visual pathway in mice than in primates. This may provide a faster, though less general, method of extracting task-relevant information.
Collapse
Affiliation(s)
- Jiakun Fu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paweł A Pierzchlewicz
- Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany; Georg-August University Göttingen, Göttingen, Germany
| | - Konstantin F Willeke
- Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany; Georg-August University Göttingen, Göttingen, Germany
| | - Mohammad Bashiri
- Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany; Georg-August University Göttingen, Göttingen, Germany
| | - Taliah Muhammad
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Diamantaki
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology - Hellas, Heraklion, Crete, Greece; School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Emmanouil Froudarakis
- Institute of Molecular Biology & Biotechnology, Foundation of Research & Technology - Hellas, Heraklion, Crete, Greece; School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Kelli Restivo
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kayla Ponder
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - George H Denfield
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabian Sinz
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA; Institute for Bioinformatics and Medical Informatics, Tübingen University, Tübingen, Germany; Georg-August University Göttingen, Göttingen, Germany
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA 94303, USA; Stanford Bio-X, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Katrin Franke
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX 77030, USA; Department of Ophthalmology, Byers Eye Institute, Stanford University School of Medicine, Stanford, CA 94303, USA; Stanford Bio-X, Stanford University, Stanford, CA 94305, USA; Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
13
|
Lee SCS, Wei AJ, Martin PR, Grünert U. Thorny and Tufted Retinal Ganglion Cells Express the Transcription Factor Forkhead Proteins Foxp1 and Foxp2 in Marmoset (Callithrix jacchus). J Comp Neurol 2024; 532:e25663. [PMID: 39235164 DOI: 10.1002/cne.25663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/06/2024]
Abstract
The transcription factor forkhead/winged-helix domain proteins Foxp1 and Foxp2 have previously been studied in mouse retina, where they are expressed in retinal ganglion cells named F-mini and F-midi. Here we show that both transcription factors are expressed by small subpopulations (on average less than 10%) of retinal ganglion cells in the retina of the marmoset monkey (Callithrix jacchus). The morphology of Foxp1- and Foxp2-expressing cells was revealed by intracellular DiI injections of immunofluorescent cells. Foxp1- and Foxp2-expressing cells comprised multiple types of wide-field ganglion cells, including broad thorny cells, narrow thorny cells, and tufted cells. The large majority of Foxp2-expressing cells were identified as tufted cells. Tufted cells stratify broadly in the middle of the inner plexiform layer. They resemble broad thorny cells but their proximal dendrites are bare of branches and the distal dendrites branch frequently forming dense dendritic tufts. Double labeling with calretinin, a previously established marker for broad thorny and narrow thorny cells, showed that only a small proportion of ganglion cells co-expressed calretinin and Foxp1 or Foxp2 supporting the idea that the two markers are differentially expressed in retinal ganglion cells of marmoset retina.
Collapse
Affiliation(s)
- Sammy C S Lee
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anlai J Wei
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Paul R Martin
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Ulrike Grünert
- Save Sight Institute and Discipline of Ophthalmology, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
D'Angelo JC, Tiruveedhula P, Weber RJ, Arathorn DW, Roorda A. A paradoxical misperception of relative motion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.596708. [PMID: 38895454 PMCID: PMC11185587 DOI: 10.1101/2024.06.04.596708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Motion perception is considered a hyperacuity. The presence of a visual frame of reference to compute relative motion is necessary to achieve this sensitivity [Legge, Gordon E., and F. W. Campbell. "Displacement detection in human vision." Vision Research 21.2 (1981): 205-213.]. However, there is a special condition where humans are unable to accurately detect relative motion: images moving in a direction consistent with retinal slip where the motion is unnaturally amplified can, under some conditions, appear stable [Arathorn, David W., et al. "How the unstable eye sees a stable and moving world." Journal of Vision 13.10.22 (2013)]. In this study, we asked: Is world-fixed retinal image background content necessary for the visual system to compute the direction of eye motion to render in the percept images moving with amplified slip as stable? Or, are non-visual cues sufficient? Subjects adjusted the parameters of a stimulus moving in a random trajectory to match the perceived motion of images moving contingent to the retina. Experiments were done with and without retinal image background content. The perceived motion of stimuli moving with amplified retinal slip was suppressed in the presence of visual content; however, higher magnitudes of motion were perceived under conditions with no visual cues. Our results demonstrate that the presence of retinal image background content is essential for the visual system to compute its direction of motion. The visual content that might be thought to provide a strong frame of reference to detect amplified retinal slips, instead paradoxically drives the misperception of relative motion.
Collapse
Affiliation(s)
- Josephine C D'Angelo
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA 94720
| | - Pavan Tiruveedhula
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA 94720
| | - Raymond J Weber
- Electrical and Computer Engineering Department, Montana Sate University, Bozeman, MT 59717-3780
| | - David W Arathorn
- Electrical and Computer Engineering Department, Montana Sate University, Bozeman, MT 59717-3780
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA 94720
| |
Collapse
|
15
|
Baden T. The vertebrate retina: a window into the evolution of computation in the brain. Curr Opin Behav Sci 2024; 57:None. [PMID: 38899158 PMCID: PMC11183302 DOI: 10.1016/j.cobeha.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 06/21/2024]
Abstract
Animal brains are probably the most complex computational machines on our planet, and like everything in biology, they are the product of evolution. Advances in developmental and palaeobiology have been expanding our general understanding of how nervous systems can change at a molecular and structural level. However, how these changes translate into altered function - that is, into 'computation' - remains comparatively sparsely explored. What, concretely, does it mean for neuronal computation when neurons change their morphology and connectivity, when new neurons appear or old ones disappear, or when transmitter systems are slowly modified over many generations? And how does evolution use these many possible knobs and dials to constantly tune computation to give rise to the amazing diversity in animal behaviours we see today? Addressing these major gaps of understanding benefits from choosing a suitable model system. Here, I present the vertebrate retina as one perhaps unusually promising candidate. The retina is ancient and displays highly conserved core organisational principles across the entire vertebrate lineage, alongside a myriad of adjustments across extant species that were shaped by the history of their visual ecology. Moreover, the computational logic of the retina is readily interrogated experimentally, and our existing understanding of retinal circuits in a handful of species can serve as an anchor when exploring the visual circuit adaptations across the entire vertebrate tree of life, from fish deep in the aphotic zone of the oceans to eagles soaring high up in the sky.
Collapse
|
16
|
Gogliettino AR, Cooler S, Vilkhu RS, Brackbill NJ, Rhoades C, Wu EG, Kling A, Sher A, Litke AM, Chichilnisky EJ. Modeling responses of macaque and human retinal ganglion cells to natural images using a convolutional neural network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586353. [PMID: 38585930 PMCID: PMC10996505 DOI: 10.1101/2024.03.22.586353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Linear-nonlinear (LN) cascade models provide a simple way to capture retinal ganglion cell (RGC) responses to artificial stimuli such as white noise, but their ability to model responses to natural images is limited. Recently, convolutional neural network (CNN) models have been shown to produce light response predictions that were substantially more accurate than those of a LN model. However, this modeling approach has not yet been applied to responses of macaque or human RGCs to natural images. Here, we train and test a CNN model on responses to natural images of the four numerically dominant RGC types in the macaque and human retina - ON parasol, OFF parasol, ON midget and OFF midget cells. Compared with the LN model, the CNN model provided substantially more accurate response predictions. Linear reconstructions of the visual stimulus were more accurate for CNN compared to LN model-generated responses, relative to reconstructions obtained from the recorded data. These findings demonstrate the effectiveness of a CNN model in capturing light responses of major RGC types in the macaque and human retinas in natural conditions.
Collapse
|
17
|
McDonald H, Gardner-Russell J, Alarcon-Martinez L. Orchestrating Blood Flow in the Retina: Interpericyte Tunnelling Nanotube Communication. Results Probl Cell Differ 2024; 73:229-247. [PMID: 39242382 DOI: 10.1007/978-3-031-62036-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
The retina transforms light into electrical signals, which are sent to the brain via the optic nerve to form our visual perception. This complex signal processing is performed by the retinal neuron and requires a significant amount of energy. Since neurons are unable to store energy, they must obtain glucose and oxygen from the bloodstream to produce energy to match metabolic needs. This process is called neurovascular coupling (NVC), and it is based on a precise mechanism that is not totally understood. The discovery of fine tubular processes termed tunnelling nanotubes (TNTs) set a new type of cell-to-cell communication. TNTs are extensions of the cellular membrane that allow the transfer of material between connected cells. Recently, they have been reported in the brain and retina of living mice, where they connect pericytes, which are vascular mural cells that regulate vessel diameter. Accordingly, these TNTs were termed interpericyte tunnelling nanotubes (IPTNTs), which showed a vital role in blood delivery and NVC. In this chapter, we review the involvement of TNTs in NVC and discuss their implications in retinal neurodegeneration.
Collapse
Affiliation(s)
- Hannah McDonald
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Jesse Gardner-Russell
- Centre for Eye Research Australia, Melbourne, VIC, Australia
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia
| | - Luis Alarcon-Martinez
- Centre for Eye Research Australia, Melbourne, VIC, Australia.
- Department of Ophthalmology, University of Melbourne, Melbourne, VIC, Australia.
- The Royal Victorian Eye and Ear Hospital, Melbourne, VIC, Australia.
| |
Collapse
|