1
|
Wang D, Li B, Ma Z, Zhang C, Liu L, Niu S, Han Z, Ren L. Capacitive pressure sensors based on bioinspired structured electrode for human-machine interaction applications. Biosens Bioelectron 2025; 271:117086. [PMID: 39721466 DOI: 10.1016/j.bios.2024.117086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Flexible pressure sensor is a crucial component of tactile sensors and plays an integral role in numerous significant fields. Despite the considerable effort put forth, how to further improve sensitivity with ingenious yet easy-to-manufacture structures and apply them to emerging fields such as structure/materials recognition, human motion monitoring, and human-machine interaction remains a challenge. Here, we develop a highly sensitive flexible capacitive pressure sensor featuring a structured electrode layer with embedded microcracks and a dielectric layer with micro-convex structures, which are combined with an iontronic interface. The sophisticated design endows the sensor with superior perceptual performance, showing a relatively linear sensitivity of 1613 kPa-1 in the range of 50 kPa and a detection limit of ∼6.7 Pa. Due to its excellent sensing capabilities, the sensors have been demonstrated for microstructure/material stiffness recognition and human motion monitoring. Furthermore, by integrating a single sensor with an inertial unit, the sensor gains the capability to output multiple sets of instructions. This work provides innovative design inspiration for flexible electronics.
Collapse
Affiliation(s)
- Dakai Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Bo Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China; The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China.
| | - Zhichao Ma
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, Jilin, 130022, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Changchao Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China
| | - Linpeng Liu
- Department of Mechanical Engineering, Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China; The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China; The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, China; The National Key Laboratory of Automotive Chassis Integration and Bionics (ACIB), College of Biological and Agricultural Engineering, Jilin University, Changchun, 130022, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China
| |
Collapse
|
2
|
Kim K, Oh S, Suh BL, Bae J, Namkoong M, Kim Y, Yoon J, Kim H, Lim S, Kim IS, Lee IG, Moon MW, Hur K, Park W, Cho H. In Situ Programmable, Active, and Interactive Crystallization by Localized Polymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2404092. [PMID: 39723740 DOI: 10.1002/adma.202404092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 12/05/2024] [Indexed: 12/28/2024]
Abstract
Additive manufacturing has sought active and interactive means of creating predictable structures with diverse materials. Compared to such active manufacturing tools, current crystallization strategies remain in statistical and passive programs of crystals via macroscale thermodynamic controllers, commonly lacking active means to intervene in crystal growth in a spatiotemporal manner. Herein, a strategy toward active and interactive programming and reprogramming of crystals, realized by real-time tangible feedback on growing crystals by delicately controlling the degree of in-situ, localized photopolymerization of polymeric structures via additive manufacturing is presented. Using this strategy, crystals can be seeded, guided, and even reprogrammed in a supersaturated liquid resin. In principle, the localized formation of sparse polymeric networks within supercooled resins can induce density fluctuation to trigger seed nucleation instantaneously, whereas the formation of dense networks can lower molecules' mobilities to inhibit crystal growth. Assisted by these active triggers and deterministic procedural aspects in additive manufacturing, growing crystals can be tangibly interacted through programmed polymeric structures, strengthening deterministic characteristics in crystal growth. It is suggested that crystal growth can be programmable with deterministic hierarchies within the created crystal's morphologies within the background of inherent stochasticity in crystallization, launching an era of convolutional growth of crystals.
Collapse
Affiliation(s)
- Kibeom Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea
| | - Sangmin Oh
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea
| | - Bong Lim Suh
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea
| | - Junghyun Bae
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea
| | - Myeong Namkoong
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea
| | - Yeonji Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea
| | - Jinsik Yoon
- Institute for Wearable Convergence Electronics, Department of Electronics and Information Convergence Engineering, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Hyeli Kim
- Department of Electronic Engineering, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Sujeong Lim
- Department of Electronic Engineering, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - In Soo Kim
- Nanophotonics Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea
| | - In-Gyun Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Myoung-Woon Moon
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea
| | - Kahyun Hur
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea
| | - Wook Park
- Institute for Wearable Convergence Electronics, Department of Electronics and Information Convergence Engineering, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
- Department of Electronic Engineering, Kyung Hee University, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Hyesung Cho
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seoul, Seongbuk-gu, 02792, Republic of Korea
| |
Collapse
|
3
|
Kanhere E, Calais T, Jain S, Plamootil Mathai AR, Chooi A, Stalin T, Joseph VS, Valdivia Y Alvarado P. Upgrading and extending the life cycle of soft robots with in situ free-form liquid three-dimensional printing. Sci Robot 2024; 9:eadn4542. [PMID: 39630879 DOI: 10.1126/scirobotics.adn4542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Soft robotics hardware, with numerous applications ranging from health care to exploration of unstructured environments, suffers from limited life cycles, which lead to waste generation and poor sustainability. Soft robots combine soft or hybrid components via complex assembly and disassembly workflows, which complicate the repair of broken components, hinder upgradability, and ultimately reduce their life spans. In this work, an advanced extrusion-based additive manufacturing process, in situ free-form liquid three-dimensional printing (iFL3DP), was developed to facilitate functional upgrades and repairs in soft robots. A yield-stress hydrogel-a type of material that can maintain its shape until sufficient stress is applied-was first printed directly onto the robot surface, serving as a support for printing new components. This technique enabled the fabrication of advanced components with seamless integration onto already assembled robots. These components could combine multiple materials with intricate geometries, including overhangs and high-aspect ratio shapes, that are considerably challenging to manufacture and integrate via traditional methods such as casting. This approach was successfully applied to upgrade an existing soft robot by adding three advanced functionalities: whisker-like sensors for tactile feedback, a grasping mechanism, and a multifunctional passive whisker array. This study showcases the easy repairability of features, new and old, substantially extending the robot's life span. This workflow has potential to enhance the sustainable development of soft robots.
Collapse
Affiliation(s)
- Elgar Kanhere
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design, Singapore, Singapore
| | - Théo Calais
- ICB UMR 6303 CNRS, Belfort-Montbéliard University of Technology, UTBM, Belfort, France
| | - Snehal Jain
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design, Singapore, Singapore
| | - Aby Raj Plamootil Mathai
- Engineering Product Development (EPD), Singapore University of Technology and Design, Singapore, Singapore
| | - Aaron Chooi
- Engineering Product Development (EPD), Singapore University of Technology and Design, Singapore, Singapore
| | - Thileepan Stalin
- Engineering Product Development (EPD), Singapore University of Technology and Design, Singapore, Singapore
| | - Vincent Sebastian Joseph
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design, Singapore, Singapore
| | - Pablo Valdivia Y Alvarado
- Digital Manufacturing and Design Centre (DManD), Singapore University of Technology and Design, Singapore, Singapore
- Engineering Product Development (EPD), Singapore University of Technology and Design, Singapore, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR) Programme, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| |
Collapse
|
4
|
Ames DC, Propst S, Shah A, Mueller J. Voxel Interface Control in Multimaterial Extrusion 3D Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407599. [PMID: 39466976 DOI: 10.1002/adma.202407599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Indexed: 10/30/2024]
Abstract
Interfaces are crucial in natural and engineered systems, dictating essential biological, ecological, and technological properties that augment performance, functionality, and user experience. Yet, achieving precise interfacial control poses significant challenges in both conventional and additive manufacturing, where scalability constraints impede the controlled deposition of quasi-2D layers within 3D objects. This paper introduces Voxel-Interface 3D Printing (VI3DP), which enables comprehensive control over extruded voxel interfaces irrespective of the printhead diameter that conventionally dictates feature size. Various optical, mechanical, and electrical functionalizations, attaining interface thicknesses up to three orders of magnitude smaller than the voxel size are reported. Notable applications include encoding data in soft matter through fluorescent interfaces, creating tight fits and movable mechanisms through non-adhesive interfaces, fabricating bio-inspired composites with tailored failure modes, and developing a single filament capacitive touch sensor. VI3DP opens new avenues for enhanced functionality and efficiency across multiple fields, including biomedical technology, electronics, optics, and nanotechnology.
Collapse
Affiliation(s)
- Daniel C Ames
- Department of Civil and Systems Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD, 21218, USA
| | - Sarah Propst
- Department of Civil and Systems Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD, 21218, USA
| | - Aadarsh Shah
- Department of Civil and Systems Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD, 21218, USA
| | - Jochen Mueller
- Department of Civil and Systems Engineering, Johns Hopkins University, 3400 N Charles St., Baltimore, MD, 21218, USA
| |
Collapse
|
5
|
Mieszczanek P, Corke P, Mehanian C, Dalton PD, Hutmacher DW. Towards industry-ready additive manufacturing: AI-enabled closed-loop control for 3D melt electrowriting. COMMUNICATIONS ENGINEERING 2024; 3:158. [PMID: 39501063 PMCID: PMC11538274 DOI: 10.1038/s44172-024-00302-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
Melt electrowriting (MEW) is an emerging high-resolution 3D printing technology used in biomedical engineering, regenerative medicine, and soft robotics. Its transition from academia to industry faces challenges such as slow experimentation, low printing throughput, poor reproducibility, and user-dependent operation, largely due to the nonlinear and multiparametric nature of the MEW process. To address these challenges, we applied computer vision and machine learning to monitor and analyze the process in real-time through imaging of the MEW jet between the nozzle-collector gap. To collect data for training we developed an automated data collection methodology that eases the experimental time from days to hours. A feedforward neural network, working in concert with optimization methods and a feedback loop, is used to develop closed-loop control ensuring reproducibility of the printed parts. We demonstrate that machine learning allows streamlining the MEW operation via closed-loop control of the highly nonlinear 3D printing technology.
Collapse
Affiliation(s)
- Pawel Mieszczanek
- ARC Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, QLD, Australia
- Australian Centre for Robotic Vision, Queensland University of Technology, Brisbane, QLD, Australia
| | - Peter Corke
- Australian Centre for Robotic Vision, Queensland University of Technology, Brisbane, QLD, Australia
| | - Courosh Mehanian
- Global Health Labs, Bellevue, WA, USA
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Paul D Dalton
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Dietmar W Hutmacher
- ARC Training Centre in Additive Biomanufacturing, Queensland University of Technology, Brisbane, QLD, Australia.
- ARC Industrial Transformation Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing, Queensland University of Technology, Brisbane, QLD, Australia.
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Yin S, Yao DR, Song Y, Heng W, Ma X, Han H, Gao W. Wearable and Implantable Soft Robots. Chem Rev 2024; 124:11585-11636. [PMID: 39392765 DOI: 10.1021/acs.chemrev.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Soft robotics presents innovative solutions across different scales. The flexibility and mechanical characteristics of soft robots make them particularly appealing for wearable and implantable applications. The scale and level of invasiveness required for soft robots depend on the extent of human interaction. This review provides a comprehensive overview of wearable and implantable soft robots, including applications in rehabilitation, assistance, organ simulation, surgical tools, and therapy. We discuss challenges such as the complexity of fabrication processes, the integration of responsive materials, and the need for robust control strategies, while focusing on advances in materials, actuation and sensing mechanisms, and fabrication techniques. Finally, we discuss the future outlook, highlighting key challenges and proposing potential solutions.
Collapse
Affiliation(s)
- Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Yu Song
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Xiaotian Ma
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Hong Han
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
7
|
Bao H, Zhang X, Zhang X, Fan X, Boley JW, Ping J. Neural network-enabled, all-electronic control of non-Newtonian fluid flow. APPLIED PHYSICS LETTERS 2024; 125:164105. [PMID: 39430054 PMCID: PMC11490316 DOI: 10.1063/5.0226525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/17/2024] [Indexed: 10/22/2024]
Abstract
Real-time, all-electronic control of non-Newtonian fluid flow through a microscale channel is crucial for various applications in manufacturing and healthcare. However, existing methods lack the sensitivity required for accurate measurement and the real-time responsiveness necessary for effective adjustment. Here, we demonstrate an all-electronic system that enables closed-loop, real-time, high-sensitivity control of various waveforms of non-Newtonian fluid flow (0.76 μl min-1) through a micro-sized outlet. Our approach combines a contactless, cuff-like flow sensor with a neural-network control program. This system offers a simple, miniaturized, versatile, yet high-performance solution for non-Newtonian fluid flow control, easily integrated into existing setups.
Collapse
Affiliation(s)
- Huilu Bao
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Xin Zhang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Xiaoyu Zhang
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Xiao Fan
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | | | - Jinglei Ping
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
Kiker MT, Recker EA, Uddin A, Page ZA. Simultaneous Color- and Dose-Controlled Thiol-Ene Resins for Multimodulus 3D Printing with Programmable Interfacial Gradients. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409811. [PMID: 39194370 DOI: 10.1002/adma.202409811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Indexed: 08/29/2024]
Abstract
Drawing inspiration from nature's own intricate designs, synthetic multimaterial structures have the potential to offer properties and functionality that exceed those of the individual components. However, several contemporary hurdles, from a lack of efficient chemistries to processing constraints, preclude the rapid and precise manufacturing of such materials. Herein, the development of a photocurable resin comprising color-selective initiators is reported, triggering disparate polymerization mechanisms between acrylate and thiol functionality. Exposure of the resin to UV light (365 nm) leads to the formation of a rigid, highly crosslinked network via a radical chain-growth mechanism, while violet light (405 nm) forms a soft, lightly crosslinked network via an anionic step-growth mechanism. The efficient photocurable resin is employed in multicolor digital light processing 3D printing to provide structures with moduli spanning over two orders of magnitude. Furthermore, local intensity (i.e., grayscale) control enables the formation of programmable stiffness gradients with ≈150× change in modulus occurring across sharp (≈200 µm) and shallow (≈9 mm) interfaces, mimetic of the human knee entheses and squid beaks, respectively. This study provides composition-processing-property relationships to inform advanced manufacturing of next-generation multimaterial objects having a myriad of applications from healthcare to education.
Collapse
Affiliation(s)
- Meghan T Kiker
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Elizabeth A Recker
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ain Uddin
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zachariah A Page
- Department of Chemistry, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
9
|
Davies J, Thai MT, Sharma B, Hoang TT, Nguyen CC, Phan PT, Vuong TNAM, Ji A, Zhu K, Nicotra E, Toh YC, Stevens M, Hayward C, Phan HP, Lovell NH, Do TN. Soft robotic artificial left ventricle simulator capable of reproducing myocardial biomechanics. Sci Robot 2024; 9:eado4553. [PMID: 39321276 DOI: 10.1126/scirobotics.ado4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
The heart's intricate myocardial architecture has been called the Gordian knot of anatomy, an impossible tangle of intricate muscle fibers. This complexity dictates equally complex cardiac motions that are difficult to mimic in physical systems. If these motions could be generated by a robotic system, then cardiac device testing, cardiovascular disease studies, and surgical procedure training could reduce their reliance on animal models, saving time, costs, and lives. This work introduces a bioinspired soft robotic left ventricle simulator capable of reproducing the minutiae of cardiac motion while providing physiological pressures. This device uses thin-filament artificial muscles to mimic the multilayered myocardial architecture. To demonstrate the device's ability to follow the cardiac motions observed in the literature, we used canine myocardial strain data as input signals that were subsequently applied to each artificial myocardial layer. The device's ability to reproduce physiological volume and pressure under healthy and heart failure conditions, as well as effective simulation of a cardiac support device, were experimentally demonstrated in a left-sided mock circulation loop. This work also has the potential to deliver faithful simulated cardiac motion for preclinical device and surgical procedure testing, with the potential to simulate patient-specific myocardial architecture and motion.
Collapse
Affiliation(s)
- James Davies
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mai Thanh Thai
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Bibhu Sharma
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Trung Thien Hoang
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Chi Cong Nguyen
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Phuoc Thien Phan
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Thao Nhu Anne Marie Vuong
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Adrienne Ji
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kefan Zhu
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Emanuele Nicotra
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yi-Chin Toh
- School of Mechanical, Medical, and Process Engineering, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Michael Stevens
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Christopher Hayward
- Department of Cardiology, St Vincent's Hospital, Sydney, NSW 2010, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hoang-Phuong Phan
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
- School of Mechanical and Manufacturing Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Nigel Hamilton Lovell
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| | - Thanh Nho Do
- Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
10
|
Chen D, Han Z, Zhang J, Xue L, Liu S. Additive Manufacturing Provides Infinite Possibilities for Self-Sensing Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400816. [PMID: 38767180 PMCID: PMC11267329 DOI: 10.1002/advs.202400816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Indexed: 05/22/2024]
Abstract
Integrating sensors and other functional parts in one device can enable a new generation of integrated intelligent devices that can perform self-sensing and monitoring autonomously. Applications include buildings that detect and repair damage, robots that monitor conditions and perform real-time correction and reconstruction, aircraft capable of real-time perception of the internal and external environment, and medical devices and prosthetics with a realistic sense of touch. Although integrating sensors and other functional parts into self-sensing intelligent devices has become increasingly common, additive manufacturing has only been marginally explored. This review focuses on additive manufacturing integrated design, printing equipment, and printable materials and stuctures. The importance of the material, structure, and function of integrated manufacturing are highlighted. The study summarizes current challenges to be addressed and provides suggestions for future development directions.
Collapse
Affiliation(s)
- Daobing Chen
- The Institute of Technological ScienceWuhan UniversitySouth Donghu Road 8Wuhan430072China
| | - Zhiwu Han
- The Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchunJilin130022China
| | - Junqiu Zhang
- The Key Laboratory of Bionic Engineering (Ministry of Education)Jilin UniversityChangchunJilin130022China
| | - Longjian Xue
- School of Power and Mechanical EngineeringWuhan UniversitySouth Donghu Road 8Wuhan430072China
| | - Sheng Liu
- The Institute of Technological ScienceWuhan UniversitySouth Donghu Road 8Wuhan430072China
| |
Collapse
|
11
|
Lai J, Liu Y, Lu G, Yung P, Wang X, Tuan RS, Li ZA. 4D bioprinting of programmed dynamic tissues. Bioact Mater 2024; 37:348-377. [PMID: 38694766 PMCID: PMC11061618 DOI: 10.1016/j.bioactmat.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 03/28/2024] [Indexed: 05/04/2024] Open
Abstract
Setting time as the fourth dimension, 4D printing allows us to construct dynamic structures that can change their shape, property, or functionality over time under stimuli, leading to a wave of innovations in various fields. Recently, 4D printing of smart biomaterials, biological components, and living cells into dynamic living 3D constructs with 4D effects has led to an exciting field of 4D bioprinting. 4D bioprinting has gained increasing attention and is being applied to create programmed and dynamic cell-laden constructs such as bone, cartilage, and vasculature. This review presents an overview on 4D bioprinting for engineering dynamic tissues and organs, followed by a discussion on the approaches, bioprinting technologies, smart biomaterials and smart design, bioink requirements, and applications. While much progress has been achieved, 4D bioprinting as a complex process is facing challenges that need to be addressed by transdisciplinary strategies to unleash the full potential of this advanced biofabrication technology. Finally, we present future perspectives on the rapidly evolving field of 4D bioprinting, in view of its potential, increasingly important roles in the development of advanced dynamic tissues for basic research, pharmaceutics, and regenerative medicine.
Collapse
Affiliation(s)
- Jiahui Lai
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
| | - Yuwei Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong, China
| | - Gang Lu
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Patrick Yung
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou, 510640, China
| | - Rocky S. Tuan
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, NT, Hong Kong SAR, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, NT, Hong Kong SAR, China
- Key Laboratory of Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
12
|
Yao DR, Kim I, Yin S, Gao W. Multimodal Soft Robotic Actuation and Locomotion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308829. [PMID: 38305065 DOI: 10.1002/adma.202308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/02/2024] [Indexed: 02/03/2024]
Abstract
Diverse and adaptable modes of complex motion observed at different scales in living creatures are challenging to reproduce in robotic systems. Achieving dexterous movement in conventional robots can be difficult due to the many limitations of applying rigid materials. Robots based on soft materials are inherently deformable, compliant, adaptable, and adjustable, making soft robotics conducive to creating machines with complicated actuation and motion gaits. This review examines the mechanisms and modalities of actuation deformation in materials that respond to various stimuli. Then, strategies based on composite materials are considered to build toward actuators that combine multiple actuation modes for sophisticated movements. Examples across literature illustrate the development of soft actuators as free-moving, entirely soft-bodied robots with multiple locomotion gaits via careful manipulation of external stimuli. The review further highlights how the application of soft functional materials into robots with rigid components further enhances their locomotive abilities. Finally, taking advantage of the shape-morphing properties of soft materials, reconfigurable soft robots have shown the capacity for adaptive gaits that enable transition across environments with different locomotive modes for optimal efficiency. Overall, soft materials enable varied multimodal motion in actuators and robots, positioning soft robotics to make real-world applications for intricate and challenging tasks.
Collapse
Affiliation(s)
- Dickson R Yao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inho Kim
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Shukun Yin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
13
|
Xiao C, Guo X, Li J. From nano- to macroarchitectures: designing and constructing MOF-derived porous materials for persulfate-based advanced oxidation processes. Chem Commun (Camb) 2024; 60:4395-4418. [PMID: 38587500 DOI: 10.1039/d4cc00433g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Persulfate-based advanced oxidation processes (PS-AOPs) have gained significant attention as an effective approach for the elimination of emerging organic contaminants (EOCs) in water treatment. Metal-organic frameworks (MOFs) and their derivatives are regarded as promising catalysts for activating peroxydisulfate (PDS) and peroxymonosulfate (PMS) due to their tunable and diverse structure and composition. By the rational nanoarchitectured design of MOF-derived nanomaterials, the excellent performance and customized functions can be achieved. However, the intrinsic fine powder form and agglomeration ability of MOF-derived nanomaterials have limited their practical engineering application. Recently, a great deal of effort has been put into shaping MOFs into macroscopic objects without sacrificing the performance. This review presents recent advances in the design and synthetic strategies of MOF-derived nano- and macroarchitectures for PS-AOPs to degrade EOCs. Firstly, the strategies of preparing MOF-derived diverse nanoarchitectures including hierarchically porous, hollow, yolk-shell, and multi-shell structures are comprehensively summarized. Subsequently, the approaches of manufacturing MOF-based macroarchitectures are introduced in detail. Moreover, the PS-AOP application and mechanisms of MOF-derived nano- and macromaterials as catalysts to eliminate EOCs are discussed. Finally, the prospects and challenges of MOF-derived materials in PS-AOPs are discussed. This work will hopefully guide the design and development of MOF-derived porous materials in SR-AOPs.
Collapse
Affiliation(s)
- Chengming Xiao
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Xin Guo
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| |
Collapse
|