1
|
Hu XP, Brahmantio B, Bartoszek K, Lercher MJ. Most bacterial gene families are biased toward specific chromosomal positions. Science 2025; 388:186-191. [PMID: 40208975 DOI: 10.1126/science.adm9928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2025] [Accepted: 02/27/2025] [Indexed: 04/12/2025]
Abstract
The arrangement of genes along bacterial chromosomes influences their expression through growth rate-dependent gene copy number changes during DNA replication. Although translation- and transcription-related genes often cluster near the origin of replication, the extent of positional biases across gene families remains unclear. We hypothesized that natural selection broadly favors specific chromosomal positions to optimize growth rate-dependent expression. Analyzing 910 bacterial species and proteomics data from Escherichia coli and Bacillus subtilis, we found that about two-thirds of bacterial gene families are positionally biased. Natural selection drives genes mainly toward the origin or terminus of replication, with the strongest selection in fast-growing species. Our findings reveal chromosomal positioning as a fundamental mechanism for coordinating gene expression with growth rate, highlighting evolutionary constraints on bacterial genome architecture.
Collapse
Affiliation(s)
- Xiao-Pan Hu
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, Germany
| | - Bayu Brahmantio
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Krzysztof Bartoszek
- Department of Computer and Information Science, Linköping University, Linköping, Sweden
| | - Martin J Lercher
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Cylke A, Banerjee S. Mechanistic basis for non-exponential bacterial growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.29.646116. [PMID: 40236093 PMCID: PMC11996336 DOI: 10.1101/2025.03.29.646116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Bacterial populations typically exhibit exponential growth under resource-rich conditions, yet individual cells often deviate from this pattern. Recent work has shown that the elongation rates of Escherichia coli and Caulobacter crescentus increase throughout the cell cycle (super-exponential growth), while Bacillus subtilis displays a mid-cycle minimum (convex growth), and Mycobacterium tuberculosis grows linearly. Here, we develop a single-cell model linking gene expression, proteome allocation, and mass growth to explain these diverse growth trajectories. By calibrating model parameters with experimental data, we show that DNA-proportional mRNA transcription produces near-exponential growth, whereas deviations from this proportionality yield the observed non-exponential growth patterns. Analysis of gene expression perturbations reveals that ribosome expression primarily controls dry mass growth rate, whereas envelope expression more strongly affects cell elongation rate. Fitting our model to single-cell experimental data reproduces convex, super-exponential, and linear modes of growth, demonstrating how envelope and ribosome expression schedules drive cell-cycle-specific behaviors. These findings provide a mechanistic basis for non-exponential single-cell growth and offer insights into how bacterial cells dynamically regulate elongation rates within each generation.
Collapse
|
3
|
Espinoza Miranda SS, Abbaszade G, Hess WR, Drescher K, Saliba AE, Zaburdaev V, Chai L, Dreisewerd K, Grünberger A, Westendorf C, Müller S, Mascher T. Resolving spatiotemporal dynamics in bacterial multicellular populations: approaches and challenges. Microbiol Mol Biol Rev 2025; 89:e0013824. [PMID: 39853129 PMCID: PMC11948493 DOI: 10.1128/mmbr.00138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYThe development of multicellularity represents a key evolutionary transition that is crucial for the emergence of complex life forms. Although multicellularity has traditionally been studied in eukaryotes, it originates in prokaryotes. Coordinated aggregation of individual cells within the confines of a colony results in emerging, higher-level functions that benefit the population as a whole. During colony differentiation, an almost infinite number of ecological and physiological population-forming forces are at work, creating complex, intricate colony structures with divergent functions. Understanding the assembly and dynamics of such populations requires resolving individual cells or cell groups within such macroscopic structures. Addressing how each cell contributes to the collective action requires pushing the resolution boundaries of key technologies that will be presented in this review. In particular, single-cell techniques provide powerful tools for studying bacterial multicellularity with unprecedented spatial and temporal resolution. These advancements include novel microscopic techniques, mass spectrometry imaging, flow cytometry, spatial transcriptomics, single-bacteria RNA sequencing, and the integration of spatiotemporal transcriptomics with microscopy, alongside advanced microfluidic cultivation systems. This review encourages exploring the synergistic potential of the new technologies in the study of bacterial multicellularity, with a particular focus on individuals in differentiated bacterial biofilms (colonies). It highlights how resolving population structures at the single-cell level and understanding their respective functions can elucidate the overarching functions of bacterial multicellular populations.
Collapse
Affiliation(s)
| | | | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | | | - Antoine-Emmanuel Saliba
- Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
| | - Vasily Zaburdaev
- Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Liraz Chai
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Alexander Grünberger
- Microsystems in Bioprocess Engineering (μBVT), Institute of Process Engineering in Life Sciences (BLT), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Christian Westendorf
- Peter Debye Institute for Soft Matter Physics, Leipzig University, Leipzig, Germany
| | - Susann Müller
- Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Thorsten Mascher
- General Microbiology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Tsuru S, Furusawa C. Genetic properties underlying transcriptional variability across different perturbations. Nat Commun 2025; 16:2421. [PMID: 40118842 PMCID: PMC11928491 DOI: 10.1038/s41467-025-57642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
The rate and direction of phenotypic evolution depend on the availability of phenotypic variants induced genetically or environmentally. It is widely accepted that organisms do not display uniform phenotypic variation, with certain variants arising more frequently than others in response to genetic or environmental perturbations. Previous studies have suggested that gene regulatory networks channel both environmental and genetic influences. However, how the gene regulatory networks influence phenotypic variation remains unclear. To address this, we characterize transcriptional variations in Escherichia coli under environmental and genetic perturbations. Based on the current understanding of transcriptional regulatory networks, we identify genetic properties that explain gene-to-gene differences in transcriptional variation. Our findings highlight the role of gene regulatory networks in shaping the shared phenotypic variability across different perturbations.
Collapse
Affiliation(s)
- Saburo Tsuru
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Chikara Furusawa
- Universal Biology Institute, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-7-1 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047, Japan.
| |
Collapse
|
5
|
Chen CZ, Wang J, Wang YC, Fu HM, Xu XW, Yan P, Chen YP. Transcriptional and molecular simulation analysis of the response mechanism of anammox bacteria to 3,4-dimethylpyrazole phosphate stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136867. [PMID: 39675083 DOI: 10.1016/j.jhazmat.2024.136867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/09/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Anaerobic ammonium oxidation (anammox) and nitrification are two vital biological pathways for ammonium oxidation, pivotal in microbial nitrogen cycling. 3,4-Dimethylpyrazole phosphate (DMPP) is commonly used as inhibitors in agricultural soils to reduce nitrogen losses from farmland, while whether it affect anammox is an open question. Acute inhibition tests revealed that 53.5 mg·L-1 DMPP caused 50 % reduction in anammox bacteria. After 36 days of prolonged exposure to 5 mg·L-1 DMPP, the ammonium(nitrite) removal rate of endnote decreased from 78.39(94.78) to 13.57(15.28) mgN·gVSS-1·d-1. Additionally, the abundance of Ca. Kuenenia decreased from 36.5 % to 6.06 %. Transcriptomic analysis revealed that the mRNA levels of ammonium transport genes (amt_1 and amt_4), and hydrazine synthase (hzs) were significantly downregulated. Molecular docking simulations indicated that DMPP bound with ammonium transport and hydrazine synthesis. This interaction hindered the transcriptional levels of genes encoding ammonium transporters and hzs. The study has guiding value to reduce the nitrogen loss involved in anammox bacteria in agricultural soils under the application of DMPP.
Collapse
Affiliation(s)
- Cui-Zhong Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China
| | - Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yi-Cheng Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
6
|
Herrick J, Norris V, Kohiyama M. 60 Years of Studies into the Initiation of Chromosome Replication in Bacteria. Biomolecules 2025; 15:203. [PMID: 40001506 PMCID: PMC11853086 DOI: 10.3390/biom15020203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/20/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025] Open
Abstract
The Replicon Theory has guided the way experiments into DNA replication have been designed and interpreted for 60 years. As part of the related, explanatory package guiding experiments, it is thought that the timing of the cell cycle depends in some way on a critical mass for initiation, Mi, as licensed by a variety of macromolecules and molecules reflecting the state of the cell. To help in the re-interpretation of this data, we focus mainly on the roles of DnaA, RNA polymerase, SeqA, and ribonucleotide reductase in the context of the "nucleotypic effect".
Collapse
Affiliation(s)
- John Herrick
- Independent Researcher, 3 rue des Jeûneurs, 75002 Paris, France;
| | - Vic Norris
- Laboratory of Bacterial Communication and Anti-Infection Strategies, EA 4312, University of Rouen, 76000 Rouen, France
| | - Masamichi Kohiyama
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France;
| |
Collapse
|
7
|
Lewin GR. mSphere of Influence: How the single cell contributes to the collective. mSphere 2025; 10:e0043124. [PMID: 39660837 PMCID: PMC11774019 DOI: 10.1128/msphere.00431-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Gina Lewin works in the field of microbial ecology, with a focus on the human microbiota. In this mSphere of Influence article, she reflects on how two papers describing bacterial single-cell RNA-seq-"Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing" by S. B. Blattman, W. Jiang, P. Oikonomou, and S. Tavazoie (Nat Microbiol 5:1192-1201, 2020, https://doi.org/10.1038/s41564-020-0729-6) and "Microbial single-cell RNA sequencing by split-pool barcoding" by A. Kuchina, L. M. Brettner, L. Paleologu, C. M. Roco, et al. (Science 371:eaba5257, 2021, https://doi.org/10.1126/science.aba5257)-impacted her work by developing a new approach to study how single cells of bacteria contribute to ecosystem-level processes.
Collapse
Affiliation(s)
- Gina R. Lewin
- Department of Pathology, Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology, Cleveland, Ohio, USA
| |
Collapse
|
8
|
Sarfatis A, Wang Y, Twumasi-Ankrah N, Moffitt JR. Highly multiplexed spatial transcriptomics in bacteria. Science 2025; 387:eadr0932. [PMID: 39847624 DOI: 10.1126/science.adr0932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 11/07/2024] [Indexed: 01/25/2025]
Abstract
Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial messenger RNA. To overcome this challenge, we combined 1000-fold volumetric expansion with multiplexed error-robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH. This method enables high-throughput, spatially resolved profiling of thousands of operons within individual bacteria. Using bacterial-MERFISH, we dissected the response of Escherichia coli to carbon starvation, systematically mapped subcellular RNA organization, and charted the adaptation of a gut commensal Bacteroides thetaiotaomicron to micrometer-scale niches in the mammalian colon. We envision that bacterial-MERFISH will be broadly applicable to the study of bacterial single-cell heterogeneity in diverse, spatially structured, and native environments.
Collapse
Affiliation(s)
- Ari Sarfatis
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Yuanyou Wang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Nana Twumasi-Ankrah
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| |
Collapse
|
9
|
Cooke MB, Herman C, Sivaramakrishnan P. Clues to transcription/replication collision-induced DNA damage: it was RNAP, in the chromosome, with the fork. FEBS Lett 2025; 599:209-243. [PMID: 39582266 DOI: 10.1002/1873-3468.15063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024]
Abstract
DNA replication and RNA transcription processes compete for the same DNA template and, thus, frequently collide. These transcription-replication collisions are thought to lead to genomic instability, which places a selective pressure on organisms to avoid them. Here, we review the predisposing causes, molecular mechanisms, and downstream consequences of transcription-replication collisions (TRCs) with a strong emphasis on prokaryotic model systems, before contrasting prokaryotic findings with cases in eukaryotic systems. Current research points to genomic structure as the primary determinant of steady-state TRC levels and RNA polymerase regulation as the primary inducer of excess TRCs. We review the proposed mechanisms of TRC-induced DNA damage, attempting to clarify their mechanistic requirements. Finally, we discuss what drives genomes to select against TRCs.
Collapse
Affiliation(s)
- Matthew B Cooke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Priya Sivaramakrishnan
- Center for Computational and Genomic Medicine, Children's Hospital of Philadelphia, PA, USA
| |
Collapse
|
10
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. Nat Commun 2024; 15:10184. [PMID: 39580490 PMCID: PMC11585574 DOI: 10.1038/s41467-024-54581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display metabolic and transcriptional diversity along with recalcitrance to antibiotics and host immune defenses. Here, we present an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. BaSSSh-seq captures extensive transcriptional heterogeneity during biofilm compared to planktonic growth. We quantify and visualize transcriptional regulatory networks across heterogeneous biofilm subpopulations and identify gene sets that are associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detects alterations in biofilm metabolism, stress response, and virulence induced by distinct immune cell populations. This work facilitates the exploration of biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
Affiliation(s)
- Lee E Korshoj
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
11
|
Jiang Y, Meng F, Ge Z, Zhou Y, Fan Z, Du J. Bioinspired peptide/polyamino acid assemblies as quorum sensing inhibitors for the treatment of bacterial infections. J Mater Chem B 2024; 12:11596-11610. [PMID: 39436377 DOI: 10.1039/d4tb01685h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Insufficient development of new antibiotics and the rise in antimicrobial resistance are putting the world at risk of losing curative medicines against bacterial infection. Quorum sensing is a type of cellular signaling for cell-to-cell communication that plays critical roles in biofilm formation and antimicrobial resistance, and is expected to be a new type of effective target for drug resistant bacteria. In this review we highlight recent advances in bioinspired peptide/polyamino acid assemblies as quorum sensing inhibitors across various microbial communities. In addition, existing obstacles and future development directions of peptide/polyamino acid assemblies as quorum sensing inhibitors were proposed for broader clinical applications and translations. Overall, quorum sensing peptide/polyamino acid assemblies could be vital tools against bacterial infection and antimicrobial resistance.
Collapse
Affiliation(s)
- Yanan Jiang
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Fanying Meng
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhenghong Ge
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Zhen Fan
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Jianzhong Du
- School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
12
|
Fondi M, Pini F, Riccardi C, Gemo P, Brilli M. A new selective force driving metabolic gene clustering. mSystems 2024; 9:e0096024. [PMID: 39465945 PMCID: PMC11629862 DOI: 10.1128/msystems.00960-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/18/2024] [Indexed: 10/29/2024] Open
Abstract
The evolution of operons has puzzled evolutionary biologists since their discovery, and many theories exist to explain their emergence, spreading, and evolutionary conservation. In this work, we suggest that DNA replication introduces a selective force for the clustering of functionally related genes on chromosomes, which we interpret as a preliminary and necessary step in operon formation. Our reasoning starts from the observation that DNA replication produces copy number variations of genomic regions, and we propose that such changes perturb metabolism. The formalization of this effect by exploiting concepts from metabolic control analysis suggests that the minimization of such perturbations during evolution could be achieved through the formation of gene clusters and operons. We support our theoretical derivations with simulations based on a realistic metabolic network, and we confirm that present-day genomes have a degree of compaction of functionally related genes, which is significantly correlated to the proposed perturbations introduced by replication. The formation of clusters of functionally related genes in microbial genomes has puzzled microbiologists since their first discovery. Here, we suggest that replication, and the copy number variations due to the replisome passage, might play a role in the process through a perturbation in metabolite homeostasis. We provide theoretical support to this hypothesis, and we found that both simulations and genomic analysis support our hypothesis. IMPORTANCE The formation of clusters of functionally related genes in microbial genomes has puzzled microbiologists since their discovery. Here, we suggest that replication, and the copy number variations due to the replisome passage, might play a role in the process through a perturbation in metabolite homeostasis. We provide theoretical support to this hypothesis, and we found that both simulations and genomic analysis support our hypothesis.
Collapse
Affiliation(s)
- Marco Fondi
- Department of Biology,
University of Florence,
Florence, Italy
| | - Francesco Pini
- Department of
Biosciences, Biotechnology and Environment (DBBA), University of Bari
Aldo Moro, Bari,
Italy
| | | | - Pietro Gemo
- Department of
Biosciences, University of Milan,
Milan, Italy
| | - Matteo Brilli
- Department of
Biosciences, University of Milan,
Milan, Italy
| |
Collapse
|
13
|
Muskhelishvili G, Nasser W, Reverchon S, Travers A. DNA as a Double-Coding Device for Information Conversion and Organization of a Self-Referential Unity. DNA 2024; 4:473-493. [PMID: 40098770 PMCID: PMC7617498 DOI: 10.3390/dna4040032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Living systems are capable on the one hand of eliciting a coordinated response to changing environments (also known as adaptation), and on the other hand, they are capable of reproducing themselves. Notably, adaptation to environmental change requires the monitoring of the surroundings, while reproduction requires monitoring oneself. These two tasks appear separate and make use of different sources of information. Yet, both the process of adaptation as well as that of reproduction are inextricably coupled to alterations in genomic DNA expression, while a cell behaves as an indivisible unity in which apparently independent processes and mechanisms are both integrated and coordinated. We argue that at the most basic level, this integration is enabled by the unique property of the DNA to act as a double coding device harboring two logically distinct types of information. We review biological systems of different complexities and infer that the inter-conversion of these two distinct types of DNA information represents a fundamental self-referential device underlying both systemic integration and coordinated adaptive responses.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences and Biotechnology, Agricultural University of Georgia, 0159Tbilisi, Georgia
| | - William Nasser
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon 1, F-69622Villeurbanne, France
| | - Sylvie Reverchon
- INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation, Pathogénie, Université Lyon 1, F-69622Villeurbanne, France
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, CambridgeCB2 0QH, UK
| |
Collapse
|
14
|
Rashid FZM, Dame RT. 2024: A "nucleoid space" odyssey featuring H-NS. Bioessays 2024; 46:e2400098. [PMID: 39324242 DOI: 10.1002/bies.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024]
Abstract
The three-dimensional architecture of the bacterial chromosome is intertwined with genome processes such as transcription and replication. Conspicuously so, that the structure of the chromosome permits accurate prediction of active genome processes. Although appreciation of this interplay has developed rapidly in the past two decades, our understanding of this subject is still in its infancy, with research primarily focusing on how the process of transcription regulates and is regulated by chromosome structure. Here, we summarize the latest developments in the field with a focus on the interplay between chromosome structure and transcription in Escherichia coli (E. coli) as mediated by H-NS-a model nucleoid structuring protein. We describe how the organization of chromosomes at the global and local scales is dependent on transcription, and how transcription is regulated by chromosome structure. Finally, we take note of studies that highlight our limited knowledge of structure-function relationships in the chromosome, and we point out research tracks that will improve our insight in the topic.
Collapse
Affiliation(s)
- Fatema-Zahra M Rashid
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| | - Remus T Dame
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
- Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands
- Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
15
|
Chen KD, Chen W, Zhang Q, Li Q. The impact of antibiotic induction on virulence and antibiotic resistance in Klebsiella pneumoniae: a comparative study of CSKP and CRKP strains. Front Microbiol 2024; 15:1498779. [PMID: 39498139 PMCID: PMC11532078 DOI: 10.3389/fmicb.2024.1498779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/03/2024] [Indexed: 11/07/2024] Open
Abstract
Background Klebsiella pneumoniae is an opportunistic pathogen causing nosocomial infections, classified into carbapenem-sensitive and carbapenem-resistant strains. Understanding the virulence factors and antibiotic resistance of these strains is essential for effective clinical management. Objective This study compared the virulence genes and antibiotic resistance profiles of 50 CSKP and 50 CRKP strains, examining their expression under antibiotic pressure and the mechanisms contributing to their pathogenicity. Methods Virulence genes (rmpA, rmpA2, iucA, iutA, Peg-344, ybts, iroB) were detected in both strains using polymerase chain reaction (PCR). Antibiotic susceptibility testing established minimum inhibitory concentrations (MICs) for key antibiotics. Gene expression analysis was performed with quantitative reverse transcription PCR (qRT-PCR) after 10 days of antibiotic exposure. Results CSKP strains exhibited significantly higher positivity rates for virulence genes compared to CRKP strains. CRKP strains predominantly expressed resistance genes KPC, SHV, and CTX-M3, whereas no resistance genes were found in CSKP. Antibiotic susceptibility tests showed increased MICs, particularly for ciprofloxacin and imipenem, following antibiotic induction. CSKP demonstrated elevated expression of rmpA and rmpA2, while CRKP showed increased expression of SHV, and KPC after antibiotic exposure. Conclusion This study highlights the intricate relationship between virulence and resistance in Klebsiella pneumoniae. CSKP strains show strong virulence factor expression, while CRKP strains adapt to antibiotic pressure through altered gene expression patterns. These findings underscore the urgent need for continuous surveillance and innovative therapeutic strategies to combat multidrug-resistant Klebsiella pneumoniae infections.
Collapse
Affiliation(s)
- Ke-Da Chen
- Department of Blood Transfusion, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Wei Chen
- Department of Blood Transfusion, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Qian Zhang
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Qingcao Li
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Iuliani I, Mbemba G, Lagomarsino MC, Sclavi B. Direct single-cell observation of a key Escherichia coli cell-cycle oscillator. SCIENCE ADVANCES 2024; 10:eado5398. [PMID: 39018394 PMCID: PMC466948 DOI: 10.1126/sciadv.ado5398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
Initiation of DNA replication in Escherichia coli is coupled to cell size via the DnaA protein, whose activity is dependent on its nucleotide-bound state. However, the oscillations in DnaA activity have never been observed at the single-cell level. By measuring the volume-specific production rate of a reporter protein under control of a DnaA-regulated promoter, we could distinguish two distinct cell-cycle oscillators. The first, driven by both DnaA activity and SeqA repression, shows a causal relationship with cell size and divisions, similarly to initiation events. The second one, a reporter of DnaA activity alone, loses the synchrony and causality properties. Our results show that transient inhibition of gene expression by SeqA keeps the oscillation of volume-sensing DnaA activity in phase with the subsequent division event and suggest that DnaA activity peaks do not correspond directly to initiation events.
Collapse
Affiliation(s)
- Ilaria Iuliani
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 91190 Gif-sur-Yvette, France
- LCQB, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Gladys Mbemba
- LBPA, UMR 8113, CNRS, ENS Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Marco Cosentino Lagomarsino
- IFOM ETS—The AIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
- Dipartimento di Fisica, Università degli Studi di Milano, and I.N.F.N, Via Celoria 16, 20133 Milan, Italy
| | - Bianca Sclavi
- LCQB, UMR 7238, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
17
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601229. [PMID: 38979200 PMCID: PMC11230364 DOI: 10.1101/2024.06.28.601229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display vast metabolic and transcriptional diversity along with high recalcitrance to antibiotics and host immune defenses. Investigating the complex heterogeneity within biofilm has been hindered by the lack of a sensitive and high-throughput method to assess stochastic transcriptional activity and regulation between bacterial subpopulations, which requires single-cell resolution. We have developed an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. We validated the ability of BaSSSh-seq to capture extensive transcriptional heterogeneity during biofilm compared to planktonic growth. Application of new computational tools revealed transcriptional regulatory networks across the heterogeneous biofilm subpopulations and identification of gene sets that were associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detected alterations in biofilm metabolism, stress response, and virulence that were tailored to distinct immune cell populations. This work provides an innovative platform to explore biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
|
18
|
Sarfatis A, Wang Y, Twumasi-Ankrah N, Moffitt JR. Highly Multiplexed Spatial Transcriptomics in Bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601034. [PMID: 38979245 PMCID: PMC11230453 DOI: 10.1101/2024.06.27.601034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Single-cell decisions made in complex environments underlie many bacterial phenomena. Image-based transcriptomics approaches offer an avenue to study such behaviors, yet these approaches have been hindered by the massive density of bacterial mRNA. To overcome this challenge, we combine 1000-fold volumetric expansion with multiplexed error robust fluorescence in situ hybridization (MERFISH) to create bacterial-MERFISH. This method enables high-throughput, spatially resolved profiling of thousands of operons within individual bacteria. Using bacterial-MERFISH, we dissect the response of E. coli to carbon starvation, systematically map subcellular RNA organization, and chart the adaptation of a gut commensal B. thetaiotaomicron to micron-scale niches in the mammalian colon. We envision bacterial-MERFISH will be broadly applicable to the study of bacterial single-cell heterogeneity in diverse, spatially structured, and native environments.
Collapse
Affiliation(s)
- Ari Sarfatis
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Yuanyou Wang
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Nana Twumasi-Ankrah
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
| | - Jeffrey R. Moffitt
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA 02115 USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115 USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142 USA
| |
Collapse
|
19
|
Attwaters M. A TRIP to understand gene regulation. Nat Rev Genet 2024; 25:234. [PMID: 38355835 DOI: 10.1038/s41576-024-00706-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
|
20
|
Golding I, Amir A. Gene expression in growing cells: A biophysical primer. ARXIV 2023:arXiv:2311.12143v1. [PMID: 38045483 PMCID: PMC10690283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cell growth and gene expression, two essential elements of all living systems, have long been the focus of biophysical interrogation. Advances in experimental single-cell methods have invigorated theoretical studies into these processes. However, until recently, there was little dialog between the two areas of study. In particular, most theoretical models for gene regulation assumed gene activity to be oblivious to the progression of the cell cycle between birth and division. But, in fact, there are numerous ways in which the periodic character of all cellular observables can modulate gene expression. The molecular factors required for transcription and translation-RNA polymerase, transcription factors, ribosomes-increase in number during the cell cycle, but are also diluted due to the continuous increase in cell volume. The replication of the genome changes the dosage of those same cellular players but also provides competing targets for regulatory binding. Finally, cell division reduces their number again, and so forth. Stochasticity is inherent to all these biological processes, manifested in fluctuations in the synthesis and degradation of new cellular components as well as the random partitioning of molecules at each cell division event. The notion of gene expression as stationary is thus hard to justify. In this review, we survey the emerging paradigm of cell-cycle regulated gene expression, with an emphasis on the global expression patterns rather than gene-specific regulation. We discuss recent experimental reports where cell growth and gene expression were simultaneously measured in individual cells, providing first glimpses into the coupling between the two, and motivating several questions. How do the levels of gene expression products - mRNA and protein - scale with the cell volume and cell-cycle progression? What are the molecular origins of the observed scaling laws, and when do they break down to yield non-canonical behavior? What are the consequences of cell-cycle dependence for the heterogeneity ("noise") in gene expression within a cell population? While the experimental findings, not surprisingly, differ among genes, organisms, and environmental conditions, several theoretical models have emerged that attempt to reconcile these differences and form a unifying framework for understanding gene expression in growing cells.
Collapse
Affiliation(s)
- Ido Golding
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ariel Amir
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|