1
|
Lin H, Liu H, Xi H, Li D, Jiang P, Wang Y, Cheng S, Jiang H, Deng H, Zhou X, Yu L. Oxygen-Independent Photodynamic Therapy-Mediated Selective Consumption of M1 Macrophage Against Ventricular Arrhythmias via Sympathetic Neuromodulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2409244. [PMID: 39711260 DOI: 10.1002/smll.202409244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/12/2024] [Indexed: 12/24/2024]
Abstract
The occurrence of myocardial infarction (MI)-induced malignant ventricular arrhythmias (VAs) is closely associated with the hyperactivation of left stellate ganglion (LSG). Proinflammatory M1 macrophage is reported to aggravate sympathetic overactivation and cause VAs. Therefore, the depletion of M1 macrophage is anticipated to inhibit LSG overactivation and alleviate MI-induced VAs. Herein, oxygen-independent photodynamic therapy (Oi-PDT) combined with M1 macrophage targeting is applied to selectively deplete M1 macrophage in LSG and further treat MI-induced VAs. Oi-PDT, which overcomes the limitation of extremely dependence on oxygen content in traditional PDT, is constructed through the generation of oxidizing photogenerated holes (h+) under the irradiation of near-infrared (NIR) light on the prepared Oi-PDT agent (PPSCD). Meanwhile, PPSCD targets M1 macrophage through conjunction with SR-A receptor. The selective consumption of M1 macrophage is attributed to both apoptosis and ferroptosis induced by h+, 1O2, and O2 •- generated in Oi-PDT. In vivo tests indicated neural activity experienced a notable reduction from 104.5 ± 2.9 to 51.5 ± 6.7 after MI with Oi-PDT treatment, thereby significantly inhibited VAs. The implementation of this study provides a promising strategy for selective consumption of M1 macrophages and treatment of VAs induced by MI.
Collapse
Affiliation(s)
- Heng Lin
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Hengyang Liu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Haosong Xi
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Dangwei Li
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, P. R. China
| | - Pengcheng Jiang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Yijun Wang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Siyi Cheng
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Hong Jiang
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| | - Hongbing Deng
- Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-based Medical Materials, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, P. R. China
| | - Xue Zhou
- Key Laboratory of Environment and Health, Ministry of Education, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, P. R. China
| | - Lilei Yu
- Cardiovascular Hospital, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Autonomic Nervous System Modulation, Cardiac Autonomic Nervous System Research Center of Wuhan University, Wuhan, 430060, P. R. China
| |
Collapse
|
2
|
Huey EL, Turecek J, Delisle MM, Mazor O, Romero GE, Dua M, Sarafis ZK, Hobble A, Booth KT, Goodrich LV, Corey DP, Ginty DD. The auditory midbrain mediates tactile vibration sensing. Cell 2024:S0092-8674(24)01331-X. [PMID: 39701100 DOI: 10.1016/j.cell.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 10/03/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024]
Abstract
Vibrations are ubiquitous in nature, shaping behavior across the animal kingdom. For mammals, mechanical vibrations acting on the body are detected by mechanoreceptors of the skin and deep tissues and processed by the somatosensory system, while sound waves traveling through air are captured by the cochlea and encoded in the auditory system. Here, we report that mechanical vibrations detected by the body's Pacinian corpuscle neurons, which are distinguished by their ability to entrain to high-frequency (40-1,000 Hz) environmental vibrations, are prominently encoded by neurons in the lateral cortex of the inferior colliculus (LCIC) of the midbrain. Remarkably, most LCIC neurons receive convergent Pacinian and auditory input and respond more strongly to coincident tactile-auditory stimulation than to either modality alone. Moreover, the LCIC is required for behavioral responses to high-frequency mechanical vibrations. Thus, environmental vibrations captured by Pacinian corpuscles are encoded in the auditory midbrain to mediate behavior.
Collapse
Affiliation(s)
- Erica L Huey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Josef Turecek
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michelle M Delisle
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ofer Mazor
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Gabriel E Romero
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Malvika Dua
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Zoe K Sarafis
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alexis Hobble
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Kevin T Booth
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David P Corey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
3
|
Ziolkowski LH, Nikolaev YA, Chikamoto A, Oda M, Feketa VV, Monedero-Alonso D, Ardasheva SA, Bae SS, Xu CS, Pang S, Gracheva EO, Bagriantsev SN. Structural and functional dissection of the Pacinian corpuscle reveals an active role of the inner core in touch detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609509. [PMID: 39253434 PMCID: PMC11383032 DOI: 10.1101/2024.08.24.609509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pacinian corpuscles are rapidly adapting mechanoreceptor end-organs that detect transient touch and high-frequency vibration. In the prevailing model, these properties are determined by the outer core, which acts as a mechanical filter limiting static and low-frequency stimuli from reaching the afferent terminal-the sole site of touch detection in corpuscles. Here, we determine the detailed 3D architecture of corpuscular components and reveal their contribution to touch detection. We show that the outer core is dispensable for rapid adaptation and frequency tuning. Instead, these properties arise from the inner core, composed of gap junction-coupled lamellar Schwann cells (LSCs) surrounding the afferent terminal. By acting as additional touch sensing structures, LSCs potentiate mechanosensitivity of the terminal, which detects touch via fast-inactivating ion channels. We propose a model in which Pacinian corpuscle function is mediated by an interplay between mechanosensitive LSCs and the afferent terminal in the inner core.
Collapse
Affiliation(s)
- Luke H. Ziolkowski
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yury A. Nikolaev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Akitoshi Chikamoto
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Mai Oda
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Viktor V. Feketa
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David Monedero-Alonso
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Serafima A. Ardasheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Samuel S. Bae
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - C. Shan Xu
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Song Pang
- FIB-SEM Collaboration Core, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elena O. Gracheva
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sviatoslav N. Bagriantsev
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Fenner A. Krause corpuscles act as genital vibration detectors. Nat Rev Urol 2024; 21:455. [PMID: 39014024 DOI: 10.1038/s41585-024-00922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
|
5
|
Reardon S. Sensory secrets of penis and clitoris unlocked after more than 150 years. Nature 2024:10.1038/d41586-024-02058-5. [PMID: 38898263 DOI: 10.1038/d41586-024-02058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
|
6
|
Zavitsanou AM, Abdus-Saboor I. Sex organs sense vibrations through specialized touch neurons. Nature 2024; 630:822-823. [PMID: 38898250 DOI: 10.1038/d41586-024-01645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
|