1
|
Huisman BD, Michelson DA, Rubin SA, Kohlsaat K, Gomarga W, Fang Y, Lee JM, Del Nido P, Nathan M, Benoist C, Zon L, Mathis D. Cross-species analyses of thymic mimetic cells reveal evolutionarily ancient origins and both conserved and species-specific elements. Immunity 2024:S1074-7613(24)00540-5. [PMID: 39731911 DOI: 10.1016/j.immuni.2024.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/19/2024] [Accepted: 11/27/2024] [Indexed: 12/30/2024]
Abstract
Thymic mimetic cells are molecular hybrids between medullary-thymic-epithelial cells (mTECs) and diverse peripheral cell types. They are involved in eliminating autoreactive T cells and can perform supplementary functions reflective of their peripheral-cell counterparts. Current knowledge about mimetic cells derives largely from mouse models. To provide the high resolution that proved revelatory for mice, we performed single-cell RNA sequencing on purified mimetic-cell compartments from human pediatric donors. The single-cell profiles of individual donors were surprisingly similar, with diversification of neuroendocrine subtypes and expansion of the muscle subtype relative to mice. Informatic and imaging studies on the muscle-mTEC population highlighted a maturation trajectory suggestive of skeletal-muscle differentiation, some striated structures, and occasional cellular groupings reminiscent of neuromuscular junctions. We also profiled thymic mimetic cells from zebrafish. Integration of data from the three species identified species-specific adaptations but substantial interspecies conservation, highlighting the evolutionarily ancient nature of mimetic mTECs. Our findings provide a landscape view of human mimetic cells, with anticipated relevance in autoimmunity.
Collapse
Affiliation(s)
- Brooke D Huisman
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Daniel A Michelson
- Department of Immunology, Harvard Medical School, Boston, MA, USA; Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA; PhD Program in Immunology, Harvard Medical School, Boston, MA, USA
| | - Sara A Rubin
- Harvard-MIT Program in Health Sciences and Technology, Harvard Medical School, Boston, MA, USA; PhD Program in Immunology, Harvard Medical School, Boston, MA, USA; Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Katherine Kohlsaat
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Wilson Gomarga
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Yuan Fang
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Ji Myung Lee
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pedro Del Nido
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Meena Nathan
- Department of Cardiac Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Harvard Medical School, Boston, MA, USA
| | | | - Leonard Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Howard Hughes Medical Institute and Boston Children's Hospital, Boston, MA, USA
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Lee CYC, McCaffrey J, McGovern D, Clatworthy MR. Profiling immune cell tissue niches in the spatial -omics era. J Allergy Clin Immunol 2024:S0091-6749(24)01178-3. [PMID: 39522655 DOI: 10.1016/j.jaci.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Immune responses require complex, spatially coordinated interactions between immune cells and their tissue environment. For decades, we have imaged tissue sections to visualize a limited number of immune-related macromolecules in situ, functioning as surrogates for cell types or processes of interest. However, this inevitably provides a limited snapshot of the tissue's immune landscape. Recent developments in high-throughput spatial -omics technologies, particularly spatial transcriptomics, and its application to human samples has facilitated a more comprehensive understanding of tissue immunity by mapping fine-grained immune cell states to their precise tissue location while providing contextual information about their immediate cellular and tissue environment. These data provide opportunities to investigate mechanisms underlying the spatial distribution of immune cells and its functional implications, including the identification of immune niches, although the criteria used to define this term have been inconsistent. Here, we review recent technological and analytic advances in multiparameter spatial profiling, focusing on how these methods have generated new insights in translational immunology. We propose a 3-step framework for the definition and characterization of immune niches, which is powerfully facilitated by new spatial profiling methodologies. Finally, we summarize current approaches to analyze adaptive immune repertoires and lymphocyte clonal expansion in a spatially resolved manner.
Collapse
Affiliation(s)
- Colin Y C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James McCaffrey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Dominic McGovern
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.
| |
Collapse
|