1
|
Moalem Y, Katz R, Subramaniam AG, Malis Y, Yaffe Y, Borenstein-Auerbach N, Tadmor K, Raved R, Maoz BM, Yoo JS, Lustig Y, Luxenburg C, Perlson E, Einav S, Sklan EH. Numb-associated kinases regulate sandfly-borne Toscana virus entry. Emerg Microbes Infect 2024; 13:2382237. [PMID: 39017647 PMCID: PMC11285224 DOI: 10.1080/22221751.2024.2382237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/18/2024]
Abstract
Sandfly-borne Toscana virus (TOSV) is an enveloped tri-segmented negative single-strand RNA Phlebovirus. It is an emerging virus predominantly endemic in southwestern Europe and Northern Africa. Although TOSV infection is typically asymptomatic or results in mild febrile disease, it is neurovirulent and ranks among the three most common causes of summer meningitis in certain regions. Despite this clinical significance, our understanding of the molecular aspects and host factors regulating phlebovirus infection is limited. This study characterized the early steps of TOSV infection. Our findings reveal that two members of the Numb-associated kinases family of Ser/Thr kinases, namely adaptor-associated kinase 1 (AAK1) and cyclin G-associated kinase (GAK), play a role in regulating the early stages of TOSV entry. FDA-approved inhibitors targeting these kinases demonstrated significant inhibition of TOSV infection. This study suggests that AAK1 and GAK represent druggable targets for inhibiting TOSV infection and, potentially, related Phleboviruses.
Collapse
Affiliation(s)
- Yarden Moalem
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rodolfo Katz
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Anand G. Subramaniam
- Department of Physiology and Pharmacology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yehonathan Malis
- Department of Pathology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yakey Yaffe
- The Drimmer-Fischler Family Stem Cell Core Laboratory for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nofit Borenstein-Auerbach
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Keshet Tadmor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Roey Raved
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ben M. Maoz
- The Drimmer-Fischler Family Stem Cell Core Laboratory for Regenerative Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Ji Seung Yoo
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Yaniv Lustig
- Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Tel Hashomer, Israel
- School of Public Health, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Perlson
- Department of Physiology and Pharmacology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shirit Einav
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Ella H. Sklan
- Department of Clinical Microbiology and Immunology, Faculty of Medical & Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Patel MD, Lavekar SS, Jaisalmeria R, Oji S, Jayasi J, Cvetkovic C, Krencik R. Human Astrocytes Synchronize Neural Organoid Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618921. [PMID: 39464076 PMCID: PMC11507866 DOI: 10.1101/2024.10.17.618921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Biological neural networks exhibit synchronized activity within and across interconnected regions of the central nervous system. Understanding how these coordinated networks are established and maintained may reveal therapeutic targets for neurodegeneration and neuromodulation. Here, we tested the influence of astrocytes upon synchronous network activity using human pluripotent stem cell-derived bioengineered neural organoids. This study revealed that astrocytes significantly increase activity within individual organoids and across long distances among numerous rapidly merged organoids via influencing synapses and bioenergetics. Treatment of amyloid protein inhibited synchronous activity during neurodegeneration, yet this can be rescued by propagating activity from neighboring networks. Altogether, this study identifies critical contributions of human astrocytes to biological neural networks and delivers a rapid, reproducible, and scalable model to investigate long-range functional communication of the nervous system in healthy and disease states.
Collapse
|
3
|
Jovanovic VM, Narisu N, Bonnycastle LL, Tharakan R, Mesch KT, Glover HJ, Yan T, Sinha N, Sen C, Castellano D, Yang S, Blivis D, Ryu S, Bennett DF, Rosales-Soto G, Inman J, Ormanoglu P, LeClair CA, Xia M, Schneider M, Hernandez-Ochoa EO, Erdos MR, Simeonov A, Chen S, Collins FS, Doege CA, Tristan CA. Scalable Hypothalamic Arcuate Neuron Differentiation from Human Pluripotent Stem Cells Suitable for Modeling Metabolic and Reproductive Disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601062. [PMID: 39005353 PMCID: PMC11244856 DOI: 10.1101/2024.06.27.601062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The hypothalamus, composed of several nuclei, is essential for maintaining our body's homeostasis. The arcuate nucleus (ARC), located in the mediobasal hypothalamus, contains neuronal populations with eminent roles in energy and glucose homeostasis as well as reproduction. These neuronal populations are of great interest for translational research. To fulfill this promise, we used a robotic cell culture platform to provide a scalable and chemically defined approach for differentiating human pluripotent stem cells (hPSCs) into pro-opiomelanocortin (POMC), somatostatin (SST), tyrosine hydroxylase (TH) and gonadotropin-releasing hormone (GnRH) neuronal subpopulations with an ARC-like signature. This robust approach is reproducible across several distinct hPSC lines and exhibits a stepwise induction of key ventral diencephalon and ARC markers in transcriptomic profiling experiments. This is further corroborated by direct comparison to human fetal hypothalamus, and the enriched expression of genes implicated in obesity and type 2 diabetes (T2D). Genome-wide chromatin accessibility profiling by ATAC-seq identified accessible regulatory regions that can be utilized to predict candidate enhancers related to metabolic disorders and hypothalamic development. In depth molecular, cellular, and functional experiments unveiled the responsiveness of the hPSC-derived hypothalamic neurons to hormonal stimuli, such as insulin, neuropeptides including kisspeptin, and incretin mimetic drugs such as Exendin-4, highlighting their potential utility as physiologically relevant cellular models for disease studies. In addition, differential glucose and insulin treatments uncovered adaptability within the generated ARC neurons in the dynamic regulation of POMC and insulin receptors. In summary, the establishment of this model represents a novel, chemically defined, and scalable platform for manufacturing large numbers of hypothalamic arcuate neurons and serves as a valuable resource for modeling metabolic and reproductive disorders.
Collapse
Affiliation(s)
- Vukasin M. Jovanovic
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
- Hypothalamus Consortium
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Lori L. Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Ravi Tharakan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Kendall T. Mesch
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
- Hypothalamus Consortium
| | - Hannah J. Glover
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Hypothalamus Consortium
| | - Tingfen Yan
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Neelam Sinha
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Chaitali Sen
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
- Hypothalamus Consortium
| | - David Castellano
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Shu Yang
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Dvir Blivis
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Seungmi Ryu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Daniel F. Bennett
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Giovanni Rosales-Soto
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jason Inman
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Christopher A. LeClair
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Martin Schneider
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Erick O. Hernandez-Ochoa
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Michael R. Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
| | - Shuibing Chen
- Department of Surgery, Center for Genomic Health, Weill Cornell Medicine, New York, NY 10065, USA
- Hypothalamus Consortium
| | - Francis S. Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Hypothalamus Consortium
| | - Claudia A. Doege
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
- Hypothalamus Consortium
| | - Carlos A. Tristan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation Rockville, MD 20850, USA
- Hypothalamus Consortium
| |
Collapse
|
4
|
Lindhout FW, Krienen FM, Pollard KS, Lancaster MA. A molecular and cellular perspective on human brain evolution and tempo. Nature 2024; 630:596-608. [PMID: 38898293 DOI: 10.1038/s41586-024-07521-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
The evolution of the modern human brain was accompanied by distinct molecular and cellular specializations, which underpin our diverse cognitive abilities but also increase our susceptibility to neurological diseases. These features, some specific to humans and others shared with related species, manifest during different stages of brain development. In this multi-stage process, neural stem cells proliferate to produce a large and diverse progenitor pool, giving rise to excitatory or inhibitory neurons that integrate into circuits during further maturation. This process unfolds over varying time scales across species and has progressively become slower in the human lineage, with differences in tempo correlating with differences in brain size, cell number and diversity, and connectivity. Here we introduce the terms 'bradychrony' and 'tachycrony' to describe slowed and accelerated developmental tempos, respectively. We review how recent technical advances across disciplines, including advanced engineering of in vitro models, functional comparative genetics and high-throughput single-cell profiling, are leading to a deeper understanding of how specializations of the human brain arise during bradychronic neurodevelopment. Emerging insights point to a central role for genetics, gene-regulatory networks, cellular innovations and developmental tempo, which together contribute to the establishment of human specializations during various stages of neurodevelopment and at different points in evolution.
Collapse
Affiliation(s)
- Feline W Lindhout
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| | - Fenna M Krienen
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, Institute for Computational Health Sciences, and Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
5
|
Farbehi N, Neavin DR, Cuomo ASE, Studer L, MacArthur DG, Powell JE. Integrating population genetics, stem cell biology and cellular genomics to study complex human diseases. Nat Genet 2024; 56:758-766. [PMID: 38741017 DOI: 10.1038/s41588-024-01731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
Human pluripotent stem (hPS) cells can, in theory, be differentiated into any cell type, making them a powerful in vitro model for human biology. Recent technological advances have facilitated large-scale hPS cell studies that allow investigation of the genetic regulation of molecular phenotypes and their contribution to high-order phenotypes such as human disease. Integrating hPS cells with single-cell sequencing makes identifying context-dependent genetic effects during cell development or upon experimental manipulation possible. Here we discuss how the intersection of stem cell biology, population genetics and cellular genomics can help resolve the functional consequences of human genetic variation. We examine the critical challenges of integrating these fields and approaches to scaling them cost-effectively and practically. We highlight two areas of human biology that can particularly benefit from population-scale hPS cell studies, elucidating mechanisms underlying complex disease risk loci and evaluating relationships between common genetic variation and pharmacotherapeutic phenotypes.
Collapse
Affiliation(s)
- Nona Farbehi
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, New South Wales, Australia
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
| | - Drew R Neavin
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Anna S E Cuomo
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
| | - Lorenz Studer
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA
- The Center for Stem Cell Biology and Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, University of New South Wales, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joseph E Powell
- Garvan Weizmann Center for Cellular Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Aligning Science Across Parkinson's Collaborative Research Network, Chevy Chase, MD, USA.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Ciceri G, Studer L. Epigenetic control and manipulation of neuronal maturation timing. Curr Opin Genet Dev 2024; 85:102164. [PMID: 38412562 PMCID: PMC11175593 DOI: 10.1016/j.gde.2024.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
During brain development, the sequence of developmental steps and the underlying transcriptional regulatory logic are largely conserved across species. However, the temporal unfolding of developmental programs varies dramatically across species and within a given species varies across brain regions and cell identities. The maturation of neurons in the human cerebral cortex is particularly slow and lasts for many years compared with only a few weeks for the corresponding mouse neurons. The mechanisms setting the 'schedule' of neuronal maturation remain unclear but appear to be linked to a cell-intrinsic 'clock'. Here, we discuss recent findings that highlight a role for epigenetic factors in the timing of neuronal maturation. Manipulations of those factors in stem cell-based models can override the intrinsic pace of neuronal maturation, including its protracted nature in human cortical neurons. We then contextualize the epigenetic regulation of maturation programs with findings from other model systems and propose potential interactions between epigenetic pathways and other drivers of developmental rates.
Collapse
Affiliation(s)
- Gabriele Ciceri
- The Center for Stem Cell Biology and Developmental Biology program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Lorenz Studer
- The Center for Stem Cell Biology and Developmental Biology program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Alamin M, Humaira Sultana M, Babarinde IA, Azad AKM, Moni MA, Xu H. Single-cell RNA-seq data analysis reveals functionally relevant biomarkers of early brain development and their regulatory footprints in human embryonic stem cells (hESCs). Brief Bioinform 2024; 25:bbae230. [PMID: 38739758 PMCID: PMC11089419 DOI: 10.1093/bib/bbae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/07/2024] [Accepted: 04/27/2024] [Indexed: 05/16/2024] Open
Abstract
The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are valuable resources for future research into human brain development and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Md Alamin
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | | | - Isaac Adeyemi Babarinde
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - A K M Azad
- Department of Mathematics and Statistics, College of Science, Imam Muhammad Ibn Saud Islamic University, Riyadh 11432, Saudi Arabia
| | - Mohammad Ali Moni
- Artificial Intelligence and Cyber Futures Institute, Charles Sturt University, Bathurst, NSW 2795, Australia
| | - Haiming Xu
- Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Appiah B, Fullio CL, Ossola C, Bertani I, Restelli E, Cheffer A, Polenghi M, Haffner C, Garcia‐Miralles M, Zeis P, Treppner M, Bovio P, Schlichtholz L, Mas‐Sanchez A, Zografidou L, Winter J, Binder H, Grün D, Kalebic N, Taverna E, Vogel T. DOT1L activity affects neural stem cell division mode and reduces differentiation and ASNS expression. EMBO Rep 2023; 24:e56233. [PMID: 37382163 PMCID: PMC10398646 DOI: 10.15252/embr.202256233] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/26/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Cortical neurogenesis depends on the balance between self-renewal and differentiation of apical progenitors (APs). Here, we study the epigenetic control of AP's division mode by focusing on the enzymatic activity of the histone methyltransferase DOT1L. Combining lineage tracing with single-cell RNA sequencing of clonally related cells, we show at the cellular level that DOT1L inhibition increases neurogenesis driven by a shift of APs from asymmetric self-renewing to symmetric neurogenic consumptive divisions. At the molecular level, DOT1L activity prevents AP differentiation by promoting transcription of metabolic genes. Mechanistically, DOT1L inhibition reduces activity of an EZH2/PRC2 pathway, converging on increased expression of asparagine synthetase (ASNS), a microcephaly associated gene. Overexpression of ASNS in APs phenocopies DOT1L inhibition, and also increases neuronal differentiation of APs. Our data suggest that DOT1L activity/PRC2 crosstalk controls AP lineage progression by regulating asparagine metabolism.
Collapse
Affiliation(s)
- Bismark Appiah
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Present address:
Institute of Medical Bioinformatics and Systems Medicine, Medical Center–University of Freiburg, Faculty of MedicineUniversity of FreiburgFreiburgGermany
| | - Camila L Fullio
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | | | | | - Arquimedes Cheffer
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | | | - Christiane Haffner
- Max Planck Institute for Molecular Cell Biology and GeneticsDresdenGermany
| | - Marta Garcia‐Miralles
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Patrice Zeis
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS‐MCB)FreiburgGermany
| | - Martin Treppner
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Center for Data Analysis and ModelingAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Patrick Bovio
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Faculty of BiologyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Laura Schlichtholz
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Aina Mas‐Sanchez
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
- Institute of Molecular Biology (IMB) gGmbHMainzGermany
| | - Lea Zografidou
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
| | - Jennifer Winter
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University MainzMainzGermany
- German Resilience CentreUniversity Medical Center MainzMainzGermany
| | - Harald Binder
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical CenterAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Center for Data Analysis and ModelingAlbert‐Ludwigs‐University FreiburgFreiburgGermany
| | - Dominic Grün
- Würzburg Institute of Systems ImmunologyMax Planck Research Group at Julius‐Maximilians‐University WürzburgWürzburgGermany
- Helmholtz Institute for RNA‐based Infection Research (HIRI), Helmholtz‐Center for Infection Research (HZI)WürzburgGermany
| | | | | | - Tanja Vogel
- Institute of Anatomy and Cell Biology, Department of Molecular Embryology, Faculty of MedicineAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Center for Basics in NeuroModulation (NeuroModul Basics), Medical FacultyAlbert‐Ludwigs‐University FreiburgFreiburgGermany
- Freiburg Institute for Advanced Studies (FRIAS), Albert‐Ludwigs‐University FreiburgFreiburgGermany
| |
Collapse
|