1
|
Wang M, Lv L, Liu R, Han Y, Luan M, Tang SY, Niu G. Engineering of tnaC-Based Tryptophan Biosensors for Dynamic Control of Violacein Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39440815 DOI: 10.1021/acs.jafc.4c07638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Tryptophan not only serves as a fundamental building block for protein synthesis but also acts as a metabolic precursor for a diverse array of high-value chemicals. Although a few tryptophan-responsive biosensors are currently available, there is a growing interest in developing high-performance biosensors. In this study, we create a miniature toolkit of tryptophan biosensors based upon the leader regulatory region of the tnaCAB operon, which is responsible for tryptophan catabolism in Escherichia coli. Four variants are generated by engineering the tnaC leader sequence, which encodes a leader peptide composed of 24 amino acid residues. Subsequently, the performance of both the natural tnaC sequence and its engineered variants is assessed in a reporter strain based on the MazEF toxin-antitoxin system. The results demonstrate that two engineered variants exhibit increased sensitivity to low levels of tryptophan. Moreover, the engineered biosensors are further optimized by replacing the native promoter of tnaC with a phage-derived constitutive promoter. Intriguingly, the engineered biosensors can be reconstructed for extended application in Pseudomonas putida, a robust microbial chassis for metabolic engineering. In summary, our study expands the toolkit of tryptophan biosensors that can be broadly used for the bioproduction of many other high-value tryptophan-derived products.
Collapse
Affiliation(s)
- Meiyan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lanxin Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Rong Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co., Ltd., Chongqing 400060, China
| | - Yiran Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengao Luan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Shuang-Yan Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoqing Niu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
2
|
Zheng Y, Chai R, Wang T, Xu Z, He Y, Shen P, Liu J. RNA polymerase stalling-derived genome instability underlies ribosomal antibiotic efficacy and resistance evolution. Nat Commun 2024; 15:6579. [PMID: 39097616 PMCID: PMC11297953 DOI: 10.1038/s41467-024-50917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/24/2024] [Indexed: 08/05/2024] Open
Abstract
Bacteria often evolve antibiotic resistance through mutagenesis. However, the processes causing the mutagenesis have not been fully resolved. Here, we find that a broad range of ribosome-targeting antibiotics cause mutations through an underexplored pathway. Focusing on the clinically important aminoglycoside gentamicin, we find that the translation inhibitor causes genome-wide premature stalling of RNA polymerase (RNAP) in a loci-dependent manner. Further analysis shows that the stalling is caused by the disruption of transcription-translation coupling. Anti-intuitively, the stalled RNAPs subsequently induce lesions to the DNA via transcription-coupled repair. While most of the bacteria are killed by genotoxicity, a small subpopulation acquires mutations via SOS-induced mutagenesis. Given that these processes are triggered shortly after antibiotic addition, resistance rapidly emerges in the population. Our work reveals a mechanism of action of ribosomal antibiotics, illustrates the importance of dissecting the complex interplay between multiple molecular processes in understanding antibiotic efficacy, and suggests new strategies for countering the development of resistance.
Collapse
Affiliation(s)
- Yayun Zheng
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Ruochen Chai
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Tianmin Wang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zeqi Xu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Yihui He
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Ping Shen
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Jintao Liu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
3
|
O'Connor E, Micklefield J, Cai Y. Searching for the optimal microbial factory: high-throughput biosensors and analytical techniques for screening small molecules. Curr Opin Biotechnol 2024; 87:103125. [PMID: 38547587 DOI: 10.1016/j.copbio.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/09/2024]
Abstract
High-throughput screening technologies have been lacking in comparison to the plethora of high-throughput genetic diversification techniques developed in biotechnology. This review explores the challenges and advancements in high-throughput screening for high-value natural products, focusing on the critical need to expand ligand targets for biosensors and increase the throughput of analytical techniques in screening microbial cell libraries for optimal strain performance. The engineering techniques to broaden the scope of ligands for biosensors, such as transcription factors, G protein-coupled receptors and riboswitches are discussed. On the other hand, integration of microfluidics with traditional analytical methods is explored, covering fluorescence-activated cell sorting, Raman-activated cell sorting and mass spectrometry, emphasising recent developments in maximising throughput.
Collapse
Affiliation(s)
- Eloise O'Connor
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Jason Micklefield
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
4
|
Judd HNG, Martínez AK, Klepacki D, Vázquez-Laslop N, Sachs MS, Cruz-Vera LR. Functional domains of a ribosome arresting peptide are affected by surrounding nonconserved residues. J Biol Chem 2024; 300:105780. [PMID: 38395310 PMCID: PMC10941005 DOI: 10.1016/j.jbc.2024.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Expression of the Escherichia coli tnaCAB operon, responsible for L-tryptophan (L-Trp) transport and catabolism, is regulated by L-Trp-directed translation arrest and the ribosome arresting peptide TnaC. The function of TnaC relies on conserved residues distributed throughout the peptide, which are involved in forming an L-Trp binding site at the ribosome exit tunnel and inhibiting the ribosome function. We aimed to understand whether nonconserved amino acids surrounding these critical conserved residues play a functional role in TnaC-mediated ribosome arrest. We have isolated two intragenic suppressor mutations that restore arrest function of TnaC mutants; one of these mutations is located near the L-Trp binding site, while the other mutation is located near the ribosome active site. We used reporter gene fusions to show that both suppressor mutations have similar effects on TnaC mutants at the conserved residues involved in forming a free L-Trp binding site. However, they diverge in suppressing loss-of-function mutations in a conserved TnaC residue at the ribosome active site. With ribosome toeprinting assays, we determined that both suppressor mutations generate TnaC peptides, which are highly sensitive to L-Trp. Puromycin-challenge assays with isolated arrested ribosomes indicate that both TnaC suppressor mutants are resistant to peptidyl-tRNA cleavage by puromycin in the presence of L-Trp; however, they differ in their resistance to puromycin in the absence of L-Trp. We propose that the TnaC peptide two functionally distinct segments, a sensor domain and a stalling domain, and that the functional versatility of these domains is fine-tuned by the nature of their surrounding nonconserved residues.
Collapse
Affiliation(s)
- Heather N G Judd
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA
| | - Allyson K Martínez
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Dorota Klepacki
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Nora Vázquez-Laslop
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, Illinois, USA; Center for Biomolecular Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Luis R Cruz-Vera
- Department of Biological Sciences, University of Alabama in Huntsville, Huntsville, Alabama, USA.
| |
Collapse
|
5
|
Feng H, Li F, Wang T, Xing XH, Zeng AP, Zhang C. Deep-learning-assisted Sort-Seq enables high-throughput profiling of gene expression characteristics with high precision. SCIENCE ADVANCES 2023; 9:eadg5296. [PMID: 37939173 PMCID: PMC10631719 DOI: 10.1126/sciadv.adg5296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Owing to the nondeterministic and nonlinear nature of gene expression, the steady-state intracellular protein abundance of a clonal population forms a distribution. The characteristics of this distribution, including expression strength and noise, are closely related to cellular behavior. However, quantitative description of these characteristics has so far relied on arrayed methods, which are time-consuming and labor-intensive. To address this issue, we propose a deep-learning-assisted Sort-Seq approach (dSort-Seq) in this work, enabling high-throughput profiling of expression properties with high precision. We demonstrated the validity of dSort-Seq for large-scale assaying of the dose-response relationships of biosensors. In addition, we comprehensively investigated the contribution of transcription and translation to noise production in Escherichia coli, from which we found that the expression noise is strongly coupled with the mean expression level. We also found that the transcriptional interference caused by overlapping RpoD-binding sites contributes to noise production, which suggested the existence of a simple and feasible noise control strategy in E. coli.
Collapse
Affiliation(s)
- Huibao Feng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fan Li
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tianmin Wang
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin-hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - An-ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg 21073, Germany
- Center of Synthetic Biology and Integrated Bioengineering, School of Engineering, Westlake University, Hangzhou 310024, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Han Y, Li W, Filko A, Li J, Zhang F. Genome-wide promoter responses to CRISPR perturbations of regulators reveal regulatory networks in Escherichia coli. Nat Commun 2023; 14:5757. [PMID: 37717013 PMCID: PMC10505187 DOI: 10.1038/s41467-023-41572-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/08/2023] [Indexed: 09/18/2023] Open
Abstract
Elucidating genome-scale regulatory networks requires a comprehensive collection of gene expression profiles, yet measuring gene expression responses for every transcription factor (TF)-gene pair in living prokaryotic cells remains challenging. Here, we develop pooled promoter responses to TF perturbation sequencing (PPTP-seq) via CRISPR interference to address this challenge. Using PPTP-seq, we systematically measure the activity of 1372 Escherichia coli promoters under single knockdown of 183 TF genes, illustrating more than 200,000 possible TF-gene responses in one experiment. We perform PPTP-seq for E. coli growing in three different media. The PPTP-seq data reveal robust steady-state promoter activities under most single TF knockdown conditions. PPTP-seq also enables identifications of, to the best of our knowledge, previously unknown TF autoregulatory responses and complex transcriptional control on one-carbon metabolism. We further find context-dependent promoter regulation by multiple TFs whose relative binding strengths determined promoter activities. Additionally, PPTP-seq reveals different promoter responses in different growth media, suggesting condition-specific gene regulation. Overall, PPTP-seq provides a powerful method to examine genome-wide transcriptional regulatory networks and can be potentially expanded to reveal gene expression responses to other genetic elements.
Collapse
Affiliation(s)
- Yichao Han
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Wanji Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Alden Filko
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Jingyao Li
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA.
- Division of Biological and Biomedical Sciences, Washington University in St. Louis, Saint Louis, Missouri, USA.
- Institute of Materials Science and Engineering, Washington University in St. Louis, Saint Louis, Missouri, USA.
| |
Collapse
|
7
|
Wang T, Shen P, He Y, Zhang Y, Liu J. Spatial transcriptome uncovers rich coordination of metabolism in E. coli K12 biofilm. Nat Chem Biol 2023:10.1038/s41589-023-01282-w. [PMID: 37055614 DOI: 10.1038/s41589-023-01282-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 02/02/2023] [Indexed: 04/15/2023]
Abstract
Microbial communities often display region-specific properties, which give rise to complex interactions and emergent behaviors that are critical to the homeostasis and stress response of the communities. However, systems-level understanding of these properties still remains elusive. In this study, we established RAINBOW-seq and profiled the transcriptome of Escherichia coli biofilm communities with high spatial resolution and high gene coverage. We uncovered three modes of community-level coordination, including cross-regional resource allocation, local cycling and feedback signaling, which were mediated by strengthened transmembrane transport and spatially specific activation of metabolism. As a consequence of such coordination, the nutrient-limited region of the community maintained an unexpectedly high level of metabolism, enabling it to express many signaling genes and functionally unknown genes with potential sociality functions. Our work provides an extended understanding of the metabolic interplay in biofilms and presents a new approach of investigating complex interactions in bacterial communities on the systems level.
Collapse
Affiliation(s)
- Tianmin Wang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ping Shen
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yihui He
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yuzhen Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Jintao Liu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
8
|
Development and Characterization of Indole-Responsive Whole-Cell Biosensor Based on the Inducible Gene Expression System from Pseudomonas putida KT2440. Int J Mol Sci 2022; 23:ijms23094649. [PMID: 35563040 PMCID: PMC9105386 DOI: 10.3390/ijms23094649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/10/2022] Open
Abstract
Indole is a biologically active compound naturally occurring in plants and some bacteria. It is an important specialty chemical that is used as a precursor by the pharmaceutical and chemical industries, as well as in agriculture. Recently, indole has been identified as an important signaling molecule for bacteria in the mammalian gut. The regulation of indole biosynthesis has been studied in several bacterial species. However, this has been limited by the lack of in vivo tools suitable for indole-producing species identification and monitoring. The genetically encoded biosensors have been shown to be useful for real-time quantitative metabolite analysis. This paper describes the identification and characterization of the indole-inducible system PpTrpI/PPP_RS00425 from Pseudomonas putida KT2440. Indole whole-cell biosensors based on Escherichia coli and Cupriavidus necator strains are developed and validated. The specificity and dynamics of biosensors in response to indole and its structurally similar derivatives are investigated. The gene expression system PpTrpI/PPP_RS00425 is shown to be specifically induced up to 639.6-fold by indole, exhibiting a linear response in the concentration range from approximately 0.4 to 5 mM. The results of this study form the basis for the use of whole-cell biosensors in indole metabolism-relevant bacterial species screening and characterization.
Collapse
|
9
|
Structural basis for the tryptophan sensitivity of TnaC-mediated ribosome stalling. Nat Commun 2021; 12:5340. [PMID: 34504068 PMCID: PMC8429421 DOI: 10.1038/s41467-021-25663-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Free L-tryptophan (L-Trp) stalls ribosomes engaged in the synthesis of TnaC, a leader peptide controlling the expression of the Escherichia coli tryptophanase operon. Despite extensive characterization, the molecular mechanism underlying the recognition and response to L-Trp by the TnaC-ribosome complex remains unknown. Here, we use a combined biochemical and structural approach to characterize a TnaC variant (R23F) with greatly enhanced sensitivity for L-Trp. We show that the TnaC-ribosome complex captures a single L-Trp molecule to undergo termination arrest and that nascent TnaC prevents the catalytic GGQ loop of release factor 2 from adopting an active conformation at the peptidyl transferase center. Importantly, the L-Trp binding site is not altered by the R23F mutation, suggesting that the relative rates of L-Trp binding and peptidyl-tRNA cleavage determine the tryptophan sensitivity of each variant. Thus, our study reveals a strategy whereby a nascent peptide assists the ribosome in detecting a small metabolite.
Collapse
|
10
|
Gwon DA, Seok JY, Jung GY, Lee JW. Biosensor-Assisted Adaptive Laboratory Evolution for Violacein Production. Int J Mol Sci 2021; 22:ijms22126594. [PMID: 34205463 PMCID: PMC8233975 DOI: 10.3390/ijms22126594] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Violacein is a naturally occurring purple pigment, widely used in cosmetics and has potent antibacterial and antiviral properties. Violacein can be produced from tryptophan, consequently sufficient tryptophan biosynthesis is the key to violacein production. However, the complicated biosynthetic pathways and regulatory mechanisms often make the tryptophan overproduction challenging in Escherichia coli. In this study, we used the adaptive laboratory evolution (ALE) strategy to improve violacein production using galactose as a carbon source. During the ALE, a tryptophan-responsive biosensor was employed to provide selection pressure to enrich tryptophan-producing cells. From the biosensor-assisted ALE, we obtained an evolved population of cells capable of effectively catabolizing galactose to tryptophan and subsequently used the population to obtain the best violacein producer. In addition, whole-genome sequencing of the evolved strain identified point mutations beneficial to the overproduction. Overall, we demonstrated that the biosensor-assisted ALE strategy could be used to rapidly and selectively evolve the producers to yield high violacein production.
Collapse
Affiliation(s)
- Da-ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (D.G.); (G.Y.J.)
| | - Joo Yeon Seok
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea;
| | - Gyoo Yeol Jung
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (D.G.); (G.Y.J.)
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea;
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea; (D.G.); (G.Y.J.)
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Korea;
- Correspondence:
| |
Collapse
|
11
|
Sherman MW, Sandeep S, Contreras LM. The Tryptophan-Induced tnaC Ribosome Stalling Sequence Exposes High Amino Acid Cross-Talk That Can Be Mitigated by Removal of NusB for Higher Orthogonality. ACS Synth Biol 2021; 10:1024-1038. [PMID: 33835775 DOI: 10.1021/acssynbio.0c00547] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A growing number of engineered synthetic circuits have employed biological parts coupling transcription and translation in bacterial systems to control downstream gene expression. One such example, the leader sequence of the tryptophanase (tna) operon, is a transcription-translation system commonly employed as an l-tryptophan inducible circuit controlled by ribosome stalling. While induction of the tna operon has been well-characterized in response to l-tryptophan, cross-talk of this modular component with other metabolites in the cell, such as other naturally occurring amino acids, has been less explored. In this study, we investigated the impact of natural metabolites and E. coli host factors on induction of the tna leader sequence. To do so, we constructed and biochemically validated an experimental assay using the tna operon leader sequence to assess differential regulation of transcription elongation and translation in response to l-tryptophan. Operon induction was then assessed following addition of each of the 20 naturally occurring amino acids to discover that several additional amino acids (e.g., l-alanine, l-cysteine, l-glycine, l-methionine, and l-threonine) also induce expression of the tna leader sequence. Following characterization of dose-dependent induction by l-cysteine relative to l-tryptophan, the effect on induction by single gene knockouts of protein factors associated with transcription and/or translation were interrogated. Our results implicate the endogenous cellular protein, NusB, as an important factor associated with induction of the operon by the alternative amino acids. As such, removal of the nusB gene from strains intended for tryptophan-sensing utilizing the tna leader region reduces amino acid cross-talk, resulting in enhanced orthogonal control of this commonly used synthetic system.
Collapse
Affiliation(s)
- Mark W. Sherman
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Sanjna Sandeep
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78714, United States
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78714, United States
| |
Collapse
|
12
|
Wu Y, Jameel A, Xing XH, Zhang C. Advanced strategies and tools to facilitate and streamline microbial adaptive laboratory evolution. Trends Biotechnol 2021; 40:38-59. [PMID: 33958227 DOI: 10.1016/j.tibtech.2021.04.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/17/2021] [Accepted: 04/01/2021] [Indexed: 12/18/2022]
Abstract
Adaptive laboratory evolution (ALE) has served as a historic microbial engineering method that mimics natural selection to obtain desired microbes. The past decade has witnessed improvements in all aspects of ALE workflow, in terms of growth coupling, genotypic diversification, phenotypic selection, and genotype-phenotype mapping. The developing growth-coupling strategies facilitate ALE to a wider range of appealing traits. In vivo mutagenesis methods and multiplexed automated culture platforms open new gates to streamline its execution. Meanwhile, the application of multi-omics analyses and multiplexed genetic engineering promote efficient knowledge mining. This article provides a comprehensive and updated review of these advances, highlights newest significant applications, and discusses future improvements, aiming to provide a practical guide for implementation of novel, effective, and efficient ALE experiments.
Collapse
Affiliation(s)
- Yinan Wu
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Aysha Jameel
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
13
|
Feng H, Yuan Y, Yang Z, Xing XH, Zhang C. Genome-wide genotype-phenotype associations in microbes. J Biosci Bioeng 2021; 132:1-8. [PMID: 33895083 DOI: 10.1016/j.jbiosc.2021.03.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/24/2022]
Abstract
The concept of a gene has been developed a lot since the Mendelian era owing to the rapid progress in molecular biology and informatics. To explore the nature of life, varieties of biological tools have been continuously established. Many achievements have been made to clarify the relationships between genotypes and phenotypes. However, it is still not completely clear that how traits of an organism are encoded by its genome. In this review, we will summarize and discuss representative works in systematical functional genomic studies in microbes. By analyzing their developmental progressions and limitations, we may have chances to design more powerful means to decipher the code of life.
Collapse
Affiliation(s)
- Huibao Feng
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yaomeng Yuan
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Zheng Yang
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Chong Zhang
- MOE Key Laboratory for Industrial Biocatalysis, Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Protein Interactomes of Streptococcus mutans YidC1 and YidC2 Membrane Protein Insertases Suggest SRP Pathway-Independent- and -Dependent Functions, Respectively. mSphere 2021; 6:6/2/e01308-20. [PMID: 33658280 PMCID: PMC8546722 DOI: 10.1128/msphere.01308-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Virulence properties of cariogenic Streptococcus mutans depend on integral membrane proteins. Bacterial cotranslational protein trafficking involves the signal recognition particle (SRP) pathway components Ffh and FtsY, the SecYEG translocon, and YidC chaperone/insertases. Unlike Escherichia coli, S. mutans survives loss of the SRP pathway and has two yidC paralogs. This study characterized YidC1 and YidC2 interactomes to clarify respective functions alone and in concert with the SRP and/or Sec translocon. Western blots of formaldehyde cross-linked or untreated S. mutans lysates were reacted with anti-Ffh, anti-FtsY, anti-YidC1, or anti-YidC2 antibodies followed by mass spectrometry (MS) analysis of gel-shifted bands. Cross-linked lysates of wild-type and ΔyidC2 strains were reacted with anti-YidC2-coupled Dynabeads, and cocaptured proteins were identified by MS. Last, YidC1 and YidC2 C-terminal tail-captured proteins were subjected to two-dimensional (2D) difference gel electrophoresis and MS analysis. Direct interactions of putative YidC1 and YidC2 binding partners were confirmed by bacterial two-hybrid assay. Our results suggest YidC2 works preferentially with the SRP pathway, while YidC1 is preferred for SRP-independent Sec translocon-mediated translocation. YidC1 and YidC2 autonomous pathways were also apparent. Two-hybrid assay identified interactions between holotranslocon components SecYEG/YajC and YidC1. Both YidC1 and YidC2 interacted with Ffh, FtsY, and chaperones DnaK and RopA. Putative membrane-localized substrates HlyX, LemA, and SMU_591c interacted with both YidC1 and YidC2. Identification of several Rgp proteins in the YidC1 interactome suggested its involvement in bacitracin resistance, which was decreased in ΔyidC1 and SRP-deficient mutants. Collectively, YidC1 and YidC2 interactome analyses has further distinguished these paralogs in the Gram-positive bacterium S. mutans. IMPORTANCEStreptococcus mutans is a prevalent oral pathogen and major causative agent of tooth decay. Many proteins that enable this bacterium to thrive in its environmental niche and cause disease are embedded in its cytoplasmic membrane. The machinery that transports proteins into bacterial membranes differs between Gram-negative and Gram-positive organisms, an important difference being the presence of multiple YidC paralogs in Gram-positive bacteria. Characterization of a protein’s interactome can help define its physiological role. Herein, we characterized the interactomes of S. mutans YidC1 and YidC2. Results demonstrated substantial overlap between their interactomes but also revealed several differences in their direct protein binding partners. Membrane transport machinery components were identified in the context of a large network of proteins involved in replication, transcription, translation, and cell division/cell shape. This information contributes to our understanding of protein transport in Gram-positive bacteria in general and informs our understanding of S. mutans pathogenesis.
Collapse
|
15
|
Microbiota-Mediated Immune Regulation in Atherosclerosis. Molecules 2021; 26:molecules26010179. [PMID: 33401401 PMCID: PMC7795654 DOI: 10.3390/molecules26010179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/19/2022] Open
Abstract
There is a high level of interest in identifying metabolites of endogenously produced or dietary compounds generated by the gastrointestinal (GI) tract microbiota, and determining the functions of these metabolites in health and disease. There is a wealth of compelling evidence that the microbiota is linked with many complex chronic inflammatory diseases, including atherosclerosis. Macrophages are key target immune cells in atherosclerosis. A hallmark of atherosclerosis is the accumulation of pro-inflammatory macrophages in coronary arteries that respond to pro-atherogenic stimuli and failure of digesting lipids that contribute to foam cell formation in atherosclerotic plaques. This review illustrates the role of tryptophan-derived microbiota metabolites as an aryl hydrocarbon receptor (AhR) ligand that has immunomodulatory properties. Also, microbiota-dependent trimethylamine-N-oxide (TMAO) metabolite production is associated with a deleterious effect that promotes atherosclerosis, and metabolite indoxyl sulfate has been shown to exacerbate atherosclerosis. Our objective in this review is to discuss the role of microbiota-derived metabolites in atherosclerosis, specifically the consequences of microbiota-induced effects of innate immunity in response to atherogenic stimuli, and how specific beneficial/detrimental metabolites impact the development of atherosclerosis by regulating chronic endotoxemic and lipotoxic inflammation.
Collapse
|
16
|
Slobodin B, Dikstein R. So close, no matter how far: multiple paths connecting transcription to mRNA translation in eukaryotes. EMBO Rep 2020; 21:e50799. [PMID: 32803873 PMCID: PMC7507372 DOI: 10.15252/embr.202050799] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transcription of DNA into mRNA and translation of mRNA into proteins are two major processes underlying gene expression. Due to the distinct molecular mechanisms, timings, and locales of action, these processes are mainly considered to be independent. During the last two decades, however, multiple factors and elements were shown to coordinate transcription and translation, suggesting an intricate level of synchronization. This review discusses the molecular mechanisms that impact both processes in eukaryotic cells of different origins. The emerging global picture suggests evolutionarily conserved regulation and coordination between transcription and mRNA translation, indicating the importance of this phenomenon for the fine-tuning of gene expression and the adjustment to constantly changing conditions.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | - Rivka Dikstein
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
17
|
Dever TE, Ivanov IP, Sachs MS. Conserved Upstream Open Reading Frame Nascent Peptides That Control Translation. Annu Rev Genet 2020; 54:237-264. [PMID: 32870728 DOI: 10.1146/annurev-genet-112618-043822] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells utilize transcriptional and posttranscriptional mechanisms to alter gene expression in response to environmental cues. Gene-specific controls, including changing the translation of specific messenger RNAs (mRNAs), provide a rapid means to respond precisely to different conditions. Upstream open reading frames (uORFs) are known to control the translation of mRNAs. Recent studies in bacteria and eukaryotes have revealed the functions of evolutionarily conserved uORF-encoded peptides. Some of these uORF-encoded nascent peptides enable responses to specific metabolites to modulate the translation of their mRNAs by stalling ribosomes and through ribosome stalling may also modulate the level of their mRNAs. In this review, we highlight several examples of conserved uORF nascent peptides that stall ribosomes to regulate gene expression in response to specific metabolites in bacteria, fungi, mammals, and plants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Ivaylo P Ivanov
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA; ,
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA;
| |
Collapse
|