1
|
Parashar S, Kaushik A, Ambasta RK, Kumar P. E2 conjugating enzymes: A silent but crucial player in ubiquitin biology. Ageing Res Rev 2025; 108:102740. [PMID: 40194666 DOI: 10.1016/j.arr.2025.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/09/2025]
Abstract
E2 conjugating enzymes serve as the linchpin of the Ubiquitin-Proteasome System (UPS), facilitating ubiquitin (Ub) transfer to substrate proteins and regulating diverse processes critical to cellular homeostasis. The interaction of E2s with E1 activating enzymes and E3 ligases singularly positions them as middlemen of the ubiquitin machinery that guides protein turnover. Structural determinants of E2 enzymes play a pivotal role in these interactions, enabling precise ubiquitin transfer and substrate specificity. Regulation of E2 enzymes is tightly controlled through mechanisms such as post-translational modifications (PTMs), allosteric control, and gene expression modulation. Specific residues that undergo PTMs highlight their impact on E2 function and their role in ubiquitin dynamics. E2 enzymes also cooperate with deubiquitinases (DUBs) to maintain proteostasis. Design of small molecule inhibitors to modulate E2 activity is emerging as promising avenue to restrict ubiquitination as a potential therapeutic intervention. Additionally, E2 enzymes have been implicated in the pathogenesis and progression of neurodegenerative disorders (NDDs), where their dysfunction contributes to disease mechanisms. In summary, examining E2 enzymes from structural and functional perspectives offers potential to advance our understanding of cellular processes and assist in discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Somya Parashar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Aastha Kaushik
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
2
|
Ye P, Zhang W, Liao Y, Hu T, Jiang CL. Unlocking the brain's code: The crucial role of post-translational modifications in neurodevelopment and neurological function. Phys Life Rev 2025; 53:187-214. [PMID: 40120399 DOI: 10.1016/j.plrev.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025]
Abstract
Post-translational modifications (PTMs) represent a crucial regulatory mechanism in the brain, influencing various processes, including neurodevelopment and neurological function. This review discusses the effects of PTMs, such as phosphorylation, ubiquitination, acetylation, and glycosylation, on neurodevelopment and central nervous system functionality. Although neurodevelopmental processes linked to PTMs are complex, proteins frequently converge within shared pathways. These pathways encompass neurodevelopmental processes, signaling mechanisms, neuronal migration, and synaptic connection formation, where PTMs act as dynamic regulators, ensuring the precise execution of brain functions. A detailed investigation of the fundamental mechanisms governing these pathways will contribute to a deeper understanding of nervous system functions and facilitate the identification of potential therapeutic targets. A thorough examination of the PTM landscape holds significant potential, not only in advancing knowledge but also in developing treatments for various neurological disorders.
Collapse
Affiliation(s)
- Peng Ye
- Department of Ear-Nose-Throat, Eastern Theater Naval Hospital, No. 98, Wen Hua Road, ZheJiang 316000, China.
| | - Wangzheqi Zhang
- School of Anesthesiology, Changhai Hospital, Naval Medical University, No. 168, Changhai Road, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Yan Liao
- School of Anesthesiology, Changhai Hospital, Naval Medical University, No. 168, Changhai Road, Shanghai 200433, China; School of Anesthesiology, Naval Medical University, 168 Changhai Road, Shanghai 200433, China.
| | - Ting Hu
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, No. 800, Xiangyin Road, Shanghai 200433, China.
| | - Chun-Lei Jiang
- Department of Stress Medicine, Faculty of Psychology, Naval Medical University, No. 800, Xiangyin Road, Shanghai 200433, China.
| |
Collapse
|
3
|
Vriend J, Glogowska A. Transcription of Clock Genes in Medulloblastoma. Cancers (Basel) 2025; 17:575. [PMID: 40002179 PMCID: PMC11852889 DOI: 10.3390/cancers17040575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/25/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
We investigated the transcription of circadian clock genes in publicly available datasets of gene expression in medulloblastoma (MB) tissues using the R2 Genomics Analysis and Visualization Platform. Differential expression of the core clock genes among the four consensus subgroups of MB (defined in 2012 as Group 3, Group 4, the SHH group, and the WNT group) included the core clock genes (CLOCK, NPAS2, PER1, PER2, CRY1, CRY2, BMAL1, BMAL2, NR1D1, and TIMELESS) and genes which encode proteins that regulate the transcription of clock genes (CIPC, FBXL21, and USP2). The over-expression of several clock genes, including CIPC, was found in individuals with the isochromosome 17q chromosomal aberration in MB Group 3 and Group 4. The most significant biological pathways associated with clock gene expression were ribosome subunits, phototransduction, GABAergic synapse, WNT signaling pathway, and the Fanconi anemia pathway. Survival analysis of clock genes was examined using the Kaplan-Meier method and the Cox proportional hazards regression model through the R2 Genomics Platform. Two clock genes most significantly related to survival were CRY1 and USP2. The data suggest that several clock proteins, including CRY1 and USP2, be investigated as potential therapeutic targets in MB.
Collapse
Affiliation(s)
- Jerry Vriend
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | | |
Collapse
|
4
|
Kochańczyk T, Fishman M, Lima CD. Chemical Tools for Probing the Ub/Ubl Conjugation Cascades. Chembiochem 2025; 26:e202400659. [PMID: 39313481 PMCID: PMC11727022 DOI: 10.1002/cbic.202400659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Conjugation of ubiquitin (Ub) and structurally related ubiquitin-like proteins (Ubls), essential for many cellular processes, employs multi-step reactions orchestrated by specific E1, E2 and E3 enzymes. The E1 enzyme activates the Ub/Ubl C-terminus in an ATP-dependent process that results in the formation of a thioester linkage with the E1 active site cysteine. The thioester-activated Ub/Ubl is transferred to the active site of an E2 enzyme which then interacts with an E3 enzyme to promote conjugation to the target substrate. The E1-E2-E3 enzymatic cascades utilize labile intermediates, extensive conformational changes, and vast combinatorial diversity of short-lived protein-protein complexes to conjugate Ub/Ubl to various substrates in a regulated manner. In this review, we discuss various chemical tools and methods used to study the consecutive steps of Ub/Ubl activation and conjugation, which are often too elusive for direct studies. We focus on methods developed to probe enzymatic activities and capture and characterize stable mimics of the transient intermediates and transition states, thereby providing insights into fundamental mechanisms in the Ub/Ubl conjugation pathways.
Collapse
Affiliation(s)
- Tomasz Kochańczyk
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Michael Fishman
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
| | - Christopher D. Lima
- Structural Biology ProgramSloan Kettering Institute1275 York AvenueNew York, New York10065USA
- Howard Hughes Medical Institute1275 York AvenueNew York, New York10065USA
| |
Collapse
|
5
|
Oldham KEA, Mabbitt PD. Ubiquitin E3 ligases in the plant Arg/N-degron pathway. Biochem J 2024; 481:1949-1965. [PMID: 39670824 DOI: 10.1042/bcj20240132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/14/2024]
Abstract
Regulation of protein longevity via the ubiquitin (Ub) - proteasome pathway is fundamental to eukaryotic biology. Ubiquitin E3 ligases (E3s) interact with substrate proteins and provide specificity to the pathway. A small subset of E3s bind to specific exposed N-termini (N-degrons) and promote the ubiquitination of the bound protein. Collectively these E3s, and other N-degron binding proteins, are known as N-recognins. There is considerable functional divergence between fungi, animal, and plant N-recognins. In plants, at least three proteins (PRT1, PRT6, and BIG) participate in the Arg/N-degron pathway. PRT1 has demonstrated E3 ligase activity, whereas PRT6 and BIG are candidate E3s. The Arg/N-degron pathway plays a central role in plant development, germination, and submersion tolerance. The pathway has been manipulated both to improve crop performance and for conditional protein degradation. A more detailed structural and biochemical understanding of the Arg/N-recognins and their substrates is required to fully realise the biotechnological potential of the pathway. This perspective focuses on the structural and molecular details of substrate recognition and ubiquitination in the plant Arg/N-degron pathway. While PRT1 appears to be plant specific, the PRT6 and BIG proteins are similar to UBR1 and UBR4, respectively. Analysis of the cryo-EM structures of Saccharomyces UBR1 suggests that the mode of ubiquitin conjugating enzyme (E2) and substrate recruitment is conserved in PRT6, but regulation of the two N-recognins may be significantly different. The structurally characterised domains from human UBR4 are also likely to be conserved in BIG, however, there are sizeable gaps in our understanding of both proteins.
Collapse
Affiliation(s)
- Keely E A Oldham
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Peter D Mabbitt
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| |
Collapse
|
6
|
Swarnkar A, Leidner F, Rout AK, Ainatzi S, Schmidt CC, Becker S, Urlaub H, Griesinger C, Grubmüller H, Stein A. Determinants of chemoselectivity in ubiquitination by the J2 family of ubiquitin-conjugating enzymes. EMBO J 2024; 43:6705-6739. [PMID: 39533056 PMCID: PMC11649903 DOI: 10.1038/s44318-024-00301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
Ubiquitin-conjugating enzymes (E2) play a crucial role in the attachment of ubiquitin to proteins. Together with ubiquitin ligases (E3), they catalyze the transfer of ubiquitin (Ub) onto lysines with high chemoselectivity. A subfamily of E2s, including yeast Ubc6 and human Ube2J2, also mediates noncanonical modification of serines, but the structural determinants for this chemical versatility remain unknown. Using a combination of X-ray crystallography, molecular dynamics (MD) simulations, and reconstitution approaches, we have uncovered a two-layered mechanism that underlies this unique reactivity. A rearrangement of the Ubc6/Ube2J2 active site enhances the reactivity of the E2-Ub thioester, facilitating attack by weaker nucleophiles. Moreover, a conserved histidine in Ubc6/Ube2J2 activates a substrate serine by general base catalysis. Binding of RING-type E3 ligases further increases the serine selectivity inherent to Ubc6/Ube2J2, via an allosteric mechanism that requires specific positioning of the ubiquitin tail at the E2 active site. Our results elucidate how subtle structural modifications to the highly conserved E2 fold yield distinct enzymatic activity.
Collapse
Affiliation(s)
- Anuruti Swarnkar
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Florian Leidner
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Ashok K Rout
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- Institut für Chemie und Metabolomics, Universität zu Lübeck, 23562, Lübeck, Germany
| | - Sofia Ainatzi
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Claudia C Schmidt
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
- ETH Zürich, Otto-Stern-Weg 3, 8093, Zürich, Switzerland
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Henning Urlaub
- Research Group Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany
| | - Alexander Stein
- Research Group Membrane Protein Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
7
|
Zhao S, Zhao R, Wang C, Ma C, Gao Z, Li B, Qi Y, Qiu W, Pan Z, Wang S, Guo Q, Qiu J, Fan Y, Guo X, Xue H, Deng L, Li G. HDAC7 drives glioblastoma to a mesenchymal-like state via LGALS3-mediated crosstalk between cancer cells and macrophages. Theranostics 2024; 14:7072-7087. [PMID: 39629136 PMCID: PMC11610139 DOI: 10.7150/thno.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/04/2024] [Indexed: 12/06/2024] Open
Abstract
Background: Glioblastoma multiforme (GBM) is an aggressive brain tumour for which current traditional treatment approaches have been unsuccessful, owing to the high genetic heterogeneity and immunosuppressive tumour microenvironment. Methods: Single-cell and spatial transcriptomic data revealed the niche-specific enrichment of mesenchymal-like (MES-like) GBM cells and monocyte-derived macrophages (MDMs); Gain- and loss-of-function assays of HDAC7 was confirmed both in vitro and in vivo assays. Mechanistically, mass spectrum, RNA immunoprecipitation (RIP), and co-immunoprecipitation assays were conducted. Results: We found that HDAC7, which upregulated by TRIM28-mediated sumoylation at the protein levels, inhibited SOX8 expression by mediating H3K27 deacetylation. And the down-regulated SOX8 facilitated the transcriptional activity of JUN, to induce LGALS3 secretion, which then bind to the membrane protein ITGB1 on GSC and MDMs in the autocrine and paracrine manners to facilitate the transformation of the mesenchymal phenotype of GBM and the M2 polarization of MDMs, respectively. In turn, LGALS3 could also secreted by M2 MDMs to promote MES transition of GBM in a paracrine manner, creating a positive feedback loop. In translational medicine, we found that blocking LGALS3 improved the therapeutic sensitivity of HDAC inhibitors. Conclusions: Our findings revealed the role of the novel HDAC7-H3K27ac-SOX8/JUN-LGALS3-ITGB1 axis in maintaining the crosstalk between MES GBM and M2 MDM, highlighting that HDAC7 and LGALS3 may serve as potential prognostic biomarkers and therapeutic targets in GBM.
Collapse
Affiliation(s)
- Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
- Department of Neurosurgery, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Chuanzheng Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Caizhi Ma
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Zijie Gao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Qindong Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Jiawei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Yang Fan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, China
| | - Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
- Department of Neurology, Loma Linda University Health, Loma Linda 92350, California, USA
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Lin Deng
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan 250012, China
- Shandong Key Laboratory of Brain Health and Function Remodeling, Jinan 250012, China
| |
Collapse
|
8
|
Fang L, Liu C, Jiang ZZ, Wang M, Geng K, Xu Y, Zhu Y, Fu Y, Xue J, Shan W, Zhang Q, Chen J, Chen J, Zhao M, Guo Y, Siu KWM, Chen YE, Xu Y, Liu D, Zheng L. Annexin A1 binds PDZ and LIM domain 7 to inhibit adipogenesis and prevent obesity. Signal Transduct Target Ther 2024; 9:218. [PMID: 39174522 PMCID: PMC11341699 DOI: 10.1038/s41392-024-01930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/29/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024] Open
Abstract
Obesity is a global issue that warrants the identification of more effective therapeutic targets and a better understanding of the pivotal molecular pathogenesis. Annexin A1 (ANXA1) is known to inhibit phospholipase A2, exhibiting anti-inflammatory activity. However, the specific effects of ANXA1 in obesity and the underlying mechanisms of action remain unclear. Our study reveals that ANXA1 levels are elevated in the adipose tissue of individuals with obesity. Whole-body or adipocyte-specific ANXA1 deletion aggravates obesity and metabolic disorders. ANXA1 levels are higher in stromal vascular fractions (SVFs) than in mature adipocytes. Further investigation into the role of ANXA1 in SVFs reveals that ANXA1 overexpression induces lower numbers of mature adipocytes, while ANXA1-knockout SVFs exhibit the opposite effect. This suggests that ANXA1 plays an important role in adipogenesis. Mechanistically, ANXA1 competes with MYC binding protein 2 (MYCBP2) for interaction with PDZ and LIM domain 7 (PDLIM7). This exposes the MYCBP2-binding site, allowing it to bind more readily to the SMAD family member 4 (SMAD4) and promoting its ubiquitination and degradation. SMAD4 degradation downregulates peroxisome proliferator-activated receptor gamma (PPARγ) transcription and reduces adipogenesis. Treatment with Ac2-26, an active peptide derived from ANXA1, inhibits both adipogenesis and obesity through the mechanism. In conclusion, the molecular mechanism of ANXA1 inhibiting adipogenesis was first uncovered in our study, which is a potential target for obesity prevention and treatment.
Collapse
Affiliation(s)
- Lu Fang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Changjie Liu
- Department of Blood Transfusion, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, Guangdong, China
| | - Zong-Zhe Jiang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Mengxiao Wang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Kang Geng
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Department of plastic and burns surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China
| | - Yangkai Xu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Yujie Zhu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Yiwen Fu
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Jing Xue
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, 100050, Beijing, China
| | - Wenxin Shan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Qi Zhang
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Jie Chen
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Jiahong Chen
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - Mingming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Beijing Key Laboratory of Cardiovascular Receptors Research; Research Unit of Medical Science Research Management/Basic and Clinical Research of Metabolic Cardiovascular Diseases, Chinese Academy of Medical Sciences, 100191, Beijing, China
| | - Yuxuan Guo
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China
| | - K W Michael Siu
- Center for Mass Spectrometry Research and Clinical Application, Shandong Public Health Clinical Center Affiliated to Shandong University, Lishan Campus, 46 Lishan Road, Jinan, Shandong, China
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON, N9B 3P4, Canada
| | - Y Eugene Chen
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, PR China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| | - Donghui Liu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510000, China.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing Key Laboratory of Cardiovascular Receptors Research, Health Science Center, Peking University, 100191, Beijing, China.
- Beijing Tiantan Hospital, China National Clinical Research Center for Neurological Diseases, Advanced Innovation Center for Human Brain Protection, Capital Medical University, 6 Tiantan Xili, Chongwen District, 100050, Beijing, China.
| |
Collapse
|
9
|
Delos Reyes AV, Lux MC, Hann ZS, Ji C, Kochańczyk T, DiBello M, Lima CD, Tan DS. Design and Semisynthesis of Biselectrophile-Functionalized Ubiquitin Probes To Investigate Transthioesterification Reactions. Org Lett 2024; 26:4594-4599. [PMID: 38781175 PMCID: PMC11165569 DOI: 10.1021/acs.orglett.4c01102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Ubiquitin (Ub) regulates a wide array of cellular processes through post-translational modification of protein substrates. Ub is conjugated at its C-terminus to target proteins via an enzymatic cascade in which covalently bound Ub thioesters are transferred from E1 activating enzymes to E2 conjugating enzymes, and then to certain E3 protein ligases. These transthioesterification reactions proceed via transient tetrahedral intermediates. A variety of chemical strategies have been used to capture E1-Ub-E2 and E2-Ub-E3 mimics, but these introduce modifications that disrupt atomic spacing at the linkage point relative to the native tetrahedral intermediate. We have developed a biselectrophilic PSAN warhead that can be installed in place of the conserved C-terminal glycine in Ub and used to form ternary protein complexes linked via cyanomethyldithioacetals that closely mimic the native tetrahedral intermediates. Investigation of the reactivity of the warhead and substituted analogues led to an effective semisynthetic route to Ub-1-PSAN, which was used to form a ternary E1-Ub*-E2 complex as a mimic of the transthioesterification intermediate.
Collapse
Affiliation(s)
- Avelyn
Mae V. Delos Reyes
- Pharmacology
Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Chemical
Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Michaelyn C. Lux
- Chemical
Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical BiologyMemorial
Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Zachary S. Hann
- Tri-Institutional
PhD Program in Chemical BiologyMemorial
Sloan Kettering Cancer Center, New York, New York 10065, United States
- Structural
Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Cheng Ji
- Chemical
Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Tomasz Kochańczyk
- Structural
Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Mikaela DiBello
- Chemical
Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Gerstner
Sloan Kettering Summer Undergraduate Research Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Christopher D. Lima
- Tri-Institutional
PhD Program in Chemical BiologyMemorial
Sloan Kettering Cancer Center, New York, New York 10065, United States
- Structural
Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Howard
Hughes
Medical Institute, 1275
York Avenue, New York, New
York 10065, United States
| | - Derek S. Tan
- Pharmacology
Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Chemical
Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical BiologyMemorial
Sloan Kettering Cancer Center, New York, New York 10065, United States
- Tri-Institutional
Research Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| |
Collapse
|
10
|
Burge RJ, Jameson KH, Geoghegan V, Dowle AA, Mottram JC, Wilkinson AJ. Formation of functional E3 ligase complexes with UBC2 and UEV1 of Leishmania mexicana. Mol Biochem Parasitol 2024; 258:111619. [PMID: 38556171 DOI: 10.1016/j.molbiopara.2024.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
In eukaryotic cells, molecular fate and cellular responses are shaped by multicomponent enzyme systems which reversibly attach ubiquitin and ubiquitin-like modifiers to target proteins. The extent of the ubiquitin proteasome system in Leishmania mexicana and its importance for parasite survival has recently been established through deletion mutagenesis and life-cycle phenotyping studies. The ubiquitin conjugating E2 enzyme UBC2, and the E2 enzyme variant UEV1, with which it forms a stable complex in vitro, were shown to be essential for the differentiation of promastigote parasites to the infectious amastigote form. To investigate further, we used immunoprecipitation of Myc-UBC2 or Myc-UEV1 to identify interacting proteins in L. mexicana promastigotes. The interactome of UBC2 comprises multiple ubiquitin-proteasome components including UEV1 and four RING E3 ligases, as well as potential substrates predicted to have roles in carbohydrate metabolism and intracellular trafficking. The smaller UEV1 interactome comprises six proteins, including UBC2 and shared components of the UBC2 interactome consistent with the presence of intracellular UBC2-UEV1 complexes. Recombinant RING1, RING2 and RING4 E3 ligases were shown to support ubiquitin transfer reactions involving the E1, UBA1a, and UBC2 to available substrate proteins or to unanchored ubiquitin chains. These studies define additional components of a UBC2-dependent ubiquitination pathway shown previously to be essential for promastigote to amastigote differentiation.
Collapse
Affiliation(s)
- Rebecca J Burge
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Katie H Jameson
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Vincent Geoghegan
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK
| | - Adam A Dowle
- Bioscience Technology Facility, Department of Biology, University of York, York YO10 5DD, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York YO10 5DD, UK.
| | - Anthony J Wilkinson
- York Structural Biology Laboratory and York Biomedical Research Institute, Department of Chemistry, University of York, York YO10 5DD, UK.
| |
Collapse
|
11
|
Akizuki Y, Kaypee S, Ohtake F, Ikeda F. The emerging roles of non-canonical ubiquitination in proteostasis and beyond. J Cell Biol 2024; 223:e202311171. [PMID: 38517379 PMCID: PMC10959754 DOI: 10.1083/jcb.202311171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024] Open
Abstract
Ubiquitin regulates various cellular functions by posttranslationally modifying substrates with diverse ubiquitin codes. Recent discoveries of new ubiquitin chain topologies, types of bonds, and non-protein substrates have substantially expanded the complexity of the ubiquitin code. Here, we describe the ubiquitin system covering the basic principles and recent discoveries related to mechanisms, technologies, and biological importance.
Collapse
Affiliation(s)
- Yoshino Akizuki
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Stephanie Kaypee
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Fumiaki Ohtake
- Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Fumiyo Ikeda
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| |
Collapse
|
12
|
Sheng X, Xia Z, Yang H, Hu R. The ubiquitin codes in cellular stress responses. Protein Cell 2024; 15:157-190. [PMID: 37470788 PMCID: PMC10903993 DOI: 10.1093/procel/pwad045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Ubiquitination/ubiquitylation, one of the most fundamental post-translational modifications, regulates almost every critical cellular process in eukaryotes. Emerging evidence has shown that essential components of numerous biological processes undergo ubiquitination in mammalian cells upon exposure to diverse stresses, from exogenous factors to cellular reactions, causing a dazzling variety of functional consequences. Various forms of ubiquitin signals generated by ubiquitylation events in specific milieus, known as ubiquitin codes, constitute an intrinsic part of myriad cellular stress responses. These ubiquitination events, leading to proteolytic turnover of the substrates or just switch in functionality, initiate, regulate, or supervise multiple cellular stress-associated responses, supporting adaptation, homeostasis recovery, and survival of the stressed cells. In this review, we attempted to summarize the crucial roles of ubiquitination in response to different environmental and intracellular stresses, while discussing how stresses modulate the ubiquitin system. This review also updates the most recent advances in understanding ubiquitination machinery as well as different stress responses and discusses some important questions that may warrant future investigation.
Collapse
Affiliation(s)
- Xiangpeng Sheng
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Animal Disease Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Zhixiong Xia
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hanting Yang
- Department of Neurology, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ronggui Hu
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
13
|
van Overbeek NK, Aguirre T, van der Heden van Noort GJ, Blagoev B, Vertegaal ACO. Deciphering non-canonical ubiquitin signaling: biology and methodology. Front Mol Biosci 2024; 10:1332872. [PMID: 38414868 PMCID: PMC10897730 DOI: 10.3389/fmolb.2023.1332872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 02/29/2024] Open
Abstract
Ubiquitination is a dynamic post-translational modification that regulates virtually all cellular processes by modulating function, localization, interactions and turnover of thousands of substrates. Canonical ubiquitination involves the enzymatic cascade of E1, E2 and E3 enzymes that conjugate ubiquitin to lysine residues giving rise to monomeric ubiquitination and polymeric ubiquitination. Emerging research has established expansion of the ubiquitin code by non-canonical ubiquitination of N-termini and cysteine, serine and threonine residues. Generic methods for identifying ubiquitin substrates using mass spectrometry based proteomics often overlook non-canonical ubiquitinated substrates, suggesting that numerous undiscovered substrates of this modification exist. Moreover, there is a knowledge gap between in vitro studies and comprehensive understanding of the functional consequence of non-canonical ubiquitination in vivo. Here, we discuss the current knowledge about non-lysine ubiquitination, strategies to map the ubiquitinome and their applicability for studying non-canonical ubiquitination substrates and sites. Furthermore, we elucidate the available chemical biology toolbox and elaborate on missing links required to further unravel this less explored subsection of the ubiquitin system.
Collapse
Affiliation(s)
- Nila K. van Overbeek
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Tim Aguirre
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Alfred C. O. Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
14
|
Barnsby-Greer L, Mabbitt PD, Dery MA, Squair DR, Wood NT, Lamoliatte F, Lange SM, Virdee S. UBE2A and UBE2B are recruited by an atypical E3 ligase module in UBR4. Nat Struct Mol Biol 2024; 31:351-363. [PMID: 38182926 PMCID: PMC10873205 DOI: 10.1038/s41594-023-01192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024]
Abstract
UBR4 is a 574 kDa E3 ligase (E3) of the N-degron pathway with roles in neurodevelopment, age-associated muscular atrophy and cancer. The catalytic module that carries out ubiquitin (Ub) transfer remains unknown. Here we identify and characterize a distinct E3 module within human UBR4 consisting of a 'hemiRING' zinc finger, a helical-rich UBR zinc-finger interacting (UZI) subdomain, and an N-terminal region that can serve as an affinity factor for the E2 conjugating enzyme (E2). The structure of an E2-E3 complex provides atomic-level insight into the specificity determinants of the hemiRING toward the cognate E2s UBE2A/UBE2B. Via an allosteric mechanism, the UZI subdomain modestly activates the Ub-loaded E2 (E2∼Ub). We propose attenuated activation is complemented by the intrinsically high lysine reactivity of UBE2A, and their cooperation imparts a reactivity profile important for substrate specificity and optimal degradation kinetics. These findings reveal the mechanistic underpinnings of a neuronal N-degron E3, its specific recruitment of UBE2A, and highlight the underappreciated architectural diversity of cross-brace domains with Ub E3 activity.
Collapse
Affiliation(s)
- Lucy Barnsby-Greer
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Peter D Mabbitt
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
- Scion, Rotorua, New Zealand
| | - Marc-Andre Dery
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Daniel R Squair
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Nicola T Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Sven M Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK.
| |
Collapse
|
15
|
Franklin TG, Brzovic PS, Pruneda JN. Bacterial ligases reveal fundamental principles of polyubiquitin specificity. Mol Cell 2023; 83:4538-4554.e4. [PMID: 38091999 PMCID: PMC10872931 DOI: 10.1016/j.molcel.2023.11.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
Homologous to E6AP C terminus (HECT) E3 ubiquitin (Ub) ligases direct substrates toward distinct cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal attached. How polyUb specificity is achieved has been a long-standing mystery, despite extensive study in various hosts, ranging from yeast to human. The bacterial pathogens enterohemorrhagic Escherichia coli and Salmonella Typhimurium encode outlying examples of "HECT-like" (bHECT) E3 ligases, but commonalities to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. We expanded the bHECT family with examples in human and plant pathogens. Three bHECT structures in primed, Ub-loaded states resolved key details of the entire Ub ligation process. One structure provided a rare glimpse into the act of ligating polyUb, yielding a means to rewire polyUb specificity of both bHECT and eHECT ligases. Studying this evolutionarily distinct bHECT family has revealed insight into the function of key bacterial virulence factors as well as fundamental principles underlying HECT-type Ub ligation.
Collapse
Affiliation(s)
- Tyler G Franklin
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
16
|
Jiang Q, Zhu Z, Mao X. Ubiquitination is a major modulator for the activation of inflammasomes and pyroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194955. [PMID: 37331650 DOI: 10.1016/j.bbagrm.2023.194955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhigang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|
17
|
Fletcher AJ, Mabbitt PD. Editorial: Reviews in ubiquitin signaling: 2022. Front Mol Biosci 2023; 10:1275393. [PMID: 37681016 PMCID: PMC10482330 DOI: 10.3389/fmolb.2023.1275393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Affiliation(s)
- Adam J. Fletcher
- MRC-University of Glasgow Centre for Virus Research, School of Infection and Immunity, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
18
|
Mueller S, Bialas J, Ryu S, Catone N, Aichem A. The ubiquitin-like modifier FAT10 covalently modifies HUWE1 and strengthens the interaction of AMBRA1 and HUWE1. PLoS One 2023; 18:e0290002. [PMID: 37578983 PMCID: PMC10424871 DOI: 10.1371/journal.pone.0290002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023] Open
Abstract
The ubiquitin-like modifier FAT10 is highly upregulated under inflammatory conditions and targets its conjugation substrates to the degradation by the 26S proteasome. This process termed FAT10ylation is mediated by an enzymatic cascade and includes the E1 activating enzyme ubiquitin-like modifier activating enzyme 6 (UBA6), the E2 conjugating enzyme UBA6-specific E2 enzyme 1 (USE1) and E3 ligases, such as Parkin. In this study, the function of the HECT-type ubiquitin E3 ligase HUWE1 was investigated as a putative E3 ligase and/or conjugation substrate of FAT10. Our data provide strong evidence that HUWE1 is FAT10ylated in a UBA6 and FAT10 diglycine-dependent manner in vitro and in cellulo and that the HUWE1-FAT10 conjugate is targeted to proteasomal degradation. Since the mutation of all relevant cysteine residues within the HUWE1 HECT domain did not abolish FAT10 conjugation, a role of HUWE1 as E3 ligase for FAT10ylation is rather unlikely. Moreover, we have identified the autophagy-related protein AMBRA1 as a new FAT10 interaction partner. We show that the HUWE1-FAT10 conjugate formation is diminished in presence of AMBRA1, while the interaction between AMBRA1 and HUWE1 is strengthened in presence of FAT10. This implies a putative interplay of all three proteins in cellular processes such as mitophagy.
Collapse
Affiliation(s)
- Stefanie Mueller
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Kontstanz, Germany
| | - Johanna Bialas
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Kontstanz, Germany
| | - Stella Ryu
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Kontstanz, Germany
| | - Nicola Catone
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | - Annette Aichem
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- Division of Immunology, Department of Biology, University of Konstanz, Kontstanz, Germany
| |
Collapse
|
19
|
Navarro-Martínez A, Vicente-García C, Carvajal JJ. NMJ-related diseases beyond the congenital myasthenic syndromes. Front Cell Dev Biol 2023; 11:1216726. [PMID: 37601107 PMCID: PMC10436495 DOI: 10.3389/fcell.2023.1216726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Neuromuscular junctions (NMJs) are a special type of chemical synapse that transmits electrical stimuli from motor neurons (MNs) to their innervating skeletal muscle to induce a motor response. They are an ideal model for the study of synapses, given their manageable size and easy accessibility. Alterations in their morphology or function lead to neuromuscular disorders, such as the congenital myasthenic syndromes, which are caused by mutations in proteins located in the NMJ. In this review, we highlight novel potential candidate genes that may cause or modify NMJs-related pathologies in humans by exploring the phenotypes of hundreds of mouse models available in the literature. We also underscore the fact that NMJs may differ between species, muscles or even sexes. Hence the importance of choosing a good model organism for the study of NMJ-related diseases: only taking into account the specific features of the mammalian NMJ, experimental results would be efficiently translated to the clinic.
Collapse
Affiliation(s)
| | - Cristina Vicente-García
- Centro Andaluz de Biología del Desarrollo, CSIC-UPO-JA, Universidad Pablo de Olavide, Sevilla, Spain
| | | |
Collapse
|
20
|
Franklin TG, Brzovic PS, Pruneda JN. Bacterial mimicry of eukaryotic HECT ubiquitin ligation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.05.543783. [PMID: 37333152 PMCID: PMC10274628 DOI: 10.1101/2023.06.05.543783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
HECT E3 ubiquitin (Ub) ligases direct their modified substrates toward a range of cellular fates dictated by the specific form of monomeric or polymeric Ub (polyUb) signal that is attached. How polyUb specificity is achieved has been a longstanding mystery, despite extensive study ranging from yeast to human. Two outlying examples of bacterial "HECT-like" (bHECT) E3 ligases have been reported in the human pathogens Enterohemorrhagic Escherichia coli and Salmonella Typhimurium, but what parallels can be drawn to eukaryotic HECT (eHECT) mechanism and specificity had not been explored. Here, we expanded the bHECT family and identified catalytically active, bona fide examples in both human and plant pathogens. By determining structures for three bHECT complexes in their primed, Ub-loaded states, we resolved key details of the full bHECT Ub ligation mechanism. One structure provided the first glimpse of a HECT E3 ligase in the act of ligating polyUb, yielding a means to rewire the polyUb specificity of both bHECT and eHECT ligases. Through studying this evolutionarily distinct bHECT family, we have not only gained insight into the function of key bacterial virulence factors but also revealed fundamental principles underlying HECT-type Ub ligation.
Collapse
Affiliation(s)
- Tyler G. Franklin
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Peter S. Brzovic
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
21
|
De Cesare V. MALDI-TOF Mass Spectrometry for interrogating ubiquitin enzymes. Front Mol Biosci 2023; 10:1184934. [PMID: 37234921 PMCID: PMC10206504 DOI: 10.3389/fmolb.2023.1184934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/13/2023] [Indexed: 05/28/2023] Open
Abstract
The attachment of ubiquitin to a substrate (ubiquitination or ubiquitylation) impacts its lifetime and regulates its function within the cell. Several classes of enzymes oversee the attachment of ubiquitin to the substrate: an E1 activating enzyme that makes ubiquitin chemically susceptible prior to the following stages of conjugation and ligation, respectively mediated by E2 conjugating enzymes (E2s) and E3 ligases (E3s). Around 40 E2s and more than 600 E3s are encoded in the human genome, and their combinatorial and cooperative behaviour dictate the tight specificity necessary for the regulation of thousands of substrates. The removal of ubiquitin is orchestrated by a network of about 100 deubiquitylating enzymes (DUBs). Many cellular processes are tightly controlled by ubiquitylation, which is essential in maintaining cellular homeostasis. Because of the fundamental role(s) of ubiquitylation, there is an interest in better understanding the function and specificity of the ubiquitin machinery. Since 2014, an expanding array of Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) Mass Spectrometry (MS) assays have been developed to systematically characterise the activity of a variety of ubiquitin enzymes in vitro. Here we recapitulate how MALDI-TOF MS aided the in vitro characterization of ubiquitin enzymes and the discovery of new and unexpected of E2s and DUBs functions. Given the versatility of the MALDI-TOF MS approach, we foreseen the use of this technology to further expand our understanding of ubiquitin and ubiquitin-like enzymes.
Collapse
Affiliation(s)
- Virginia De Cesare
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
22
|
AlAbdi L, Desbois M, Rusnac DV, Sulaiman RA, Rosenfeld JA, Lalani S, Murdock DR, Burrage LC, Billie Au PY, Towner S, Wilson WG, Wong L, Brunet T, Strobl-Wildemann G, Burton JE, Hoganson G, McWalter K, Begtrup A, Zarate YA, Christensen EL, Opperman KJ, Giles AC, Helaby R, Kania A, Zheng N, Grill B, Alkuraya FS. Loss-of-function variants in MYCBP2 cause neurobehavioural phenotypes and corpus callosum defects. Brain 2023; 146:1373-1387. [PMID: 36200388 PMCID: PMC10319777 DOI: 10.1093/brain/awac364] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 08/11/2022] [Accepted: 08/22/2022] [Indexed: 11/14/2022] Open
Abstract
The corpus callosum is a bundle of axon fibres that connects the two hemispheres of the brain. Neurodevelopmental disorders that feature dysgenesis of the corpus callosum as a core phenotype offer a valuable window into pathology derived from abnormal axon development. Here, we describe a cohort of eight patients with a neurodevelopmental disorder characterized by a range of deficits including corpus callosum abnormalities, developmental delay, intellectual disability, epilepsy and autistic features. Each patient harboured a distinct de novo variant in MYCBP2, a gene encoding an atypical really interesting new gene (RING) ubiquitin ligase and signalling hub with evolutionarily conserved functions in axon development. We used CRISPR/Cas9 gene editing to introduce disease-associated variants into conserved residues in the Caenorhabditis elegans MYCBP2 orthologue, RPM-1, and evaluated functional outcomes in vivo. Consistent with variable phenotypes in patients with MYCBP2 variants, C. elegans carrying the corresponding human mutations in rpm-1 displayed axonal and behavioural abnormalities including altered habituation. Furthermore, abnormal axonal accumulation of the autophagy marker LGG-1/LC3 occurred in variants that affect RPM-1 ubiquitin ligase activity. Functional genetic outcomes from anatomical, cell biological and behavioural readouts indicate that MYCBP2 variants are likely to result in loss of function. Collectively, our results from multiple human patients and CRISPR gene editing with an in vivo animal model support a direct link between MYCBP2 and a human neurodevelopmental spectrum disorder that we term, MYCBP2-related developmental delay with corpus callosum defects (MDCD).
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Domniţa-Valeria Rusnac
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Raashda A Sulaiman
- Department of Medical Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David R Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Shelley Towner
- Pediatric Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - William G Wilson
- Pediatric Genetics, University of Virginia, Charlottesville, VA 22903, USA
| | - Lawrence Wong
- Department of Genetics, Northern California Kaiser Permanente, Oakland, CA 94611, USA
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics (ING), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Jennifer E Burton
- Department of Genetics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - George Hoganson
- Department of Genetics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Kirsty McWalter
- Genedx, Inc., 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Amber Begtrup
- Genedx, Inc., 207 Perry Parkway, Gaithersburg, MD 20877, USA
| | - Yuri A Zarate
- Section of Genetics and Metabolism, Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | - Elyse L Christensen
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Karla J Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
| | - Andrew C Giles
- Division of Medical Sciences, University of Northern British Columbia, Prince George, BC V2N 4Z9, Canada
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Artur Kania
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, QC H3A 2B4, Canada
- Division of Experimental Medicine, McGill University, Montréal, QC H3A 2B2, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Ning Zheng
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA 98101, USA
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| |
Collapse
|
23
|
Abstract
Our understanding of the ubiquitin code has greatly evolved from conventional E1, E2 and E3 enzymes that modify Lys residues on specific substrates with a single type of ubiquitin chain to more complex processes that regulate and mediate ubiquitylation. In this Review, we discuss recently discovered endogenous mechanisms and unprecedented pathways by which pathogens rewrite the ubiquitin code to promote infection. These processes include unconventional ubiquitin modifications involving ester linkages with proteins, lipids and sugars, or ubiquitylation through a phosphoribosyl bridge involving Arg42 of ubiquitin. We also introduce the enzymatic pathways that write and reverse these modifications, such as the papain-like proteases of severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. Furthermore, structural studies have revealed that the ultimate functions of ubiquitin are mediated not simply by straightforward recognition by ubiquitin-binding domains. Instead, elaborate multivalent interactions between ubiquitylated targets or ubiquitin chains and their readers (for example, the proteasome, the MLL1 complex or DOT1L) can elicit conformational changes that regulate protein degradation or transcription. The newly discovered mechanisms provide opportunities for innovative therapeutic interventions for diseases such as cancer and infectious diseases.
Collapse
Affiliation(s)
- Ivan Dikic
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt, Germany.
- Buchmann Institute for Molecular Life Sciences, Goethe University, Frankfurt, Germany.
| | | |
Collapse
|
24
|
Luo H, Todi SV, Paulson HL, Costa MDC. Regional and age-dependent changes in ubiquitination in cellular and mouse models of Spinocerebellar ataxia type 3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526671. [PMID: 36891289 PMCID: PMC9993976 DOI: 10.1101/2023.02.01.526671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machadoâ€"Joseph disease, is the most common dominantly inherited ataxia. SCA3 is caused by a CAG repeat expansion in the ATXN3 gene that encodes an expanded tract of polyglutamine (polyQ) in the disease protein ataxin-3 (ATXN3). As a deubiquitinating enzyme, ATXN3 regulates numerous cellular processes including proteasome- and autophagy-mediated protein degradation. In SCA3 disease brain, polyQ-expanded ATXN3 accumulates with other cellular constituents, including ubiquitin (Ub)-modified proteins, in select areas like the cerebellum and the brainstem, but whether pathogenic ATXN3 affects the abundance of ubiquitinated species is unknown. Here, in mouse and cellular models of SCA3, we investigated whether elimination of murine Atxn3 or expression of wild-type or polyQ-expanded human ATXN3 alters soluble levels of overall ubiquitination, as well as K48-linked (K48-Ub) and K63-linked (K63-Ub) chains. Levels of ubiquitination were assessed in the cerebellum and brainstem of 7- and 47-week-old Atxn3 knockout and SCA3 transgenic mice, and also in relevant mouse and human cell lines. In older mice, we observed that wild-type ATXN3 impacts the cerebellar levels of K48-Ub proteins. In contrast, pathogenic ATXN3 leads to decreased brainstem abundance of K48-Ub species in younger mice and changes in both cerebellar and brainstem K63-Ub levels in an age-dependent manner: younger SCA3 mice have higher levels of K63-Ub while older mice have lower levels of K63-Ub compared to controls. Human SCA3 neuronal progenitor cells also show a relative increase in K63-Ub proteins upon autophagy inhibition. We conclude that wild-type and mutant ATXN3 differentially impact K48-Ub- and K63-Ub-modified proteins in the brain in a region- and age-dependent manner.
Collapse
|
25
|
A bifunctional molecule-assisted synthesis of mimics for use in probing the ubiquitination system. Nat Protoc 2023; 18:530-554. [PMID: 36323865 DOI: 10.1038/s41596-022-00761-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 07/08/2022] [Indexed: 02/11/2023]
Abstract
Ubiquitination regulates almost every life process of eukaryotes. The study of the ubiquitin (Ub) coupling or decoupling process and the interaction study of Ub-Ub binding protein have always been the central focus. However, such studies are challenging, owing to the transient nature of Ub-coupling enzymes and deubiquitinases in the reactions, as well as the difficulty in preparing large quantities of polyubiquitinated samples. Here we describe a recently developed strategy for the efficient preparation of analogs of Ub chains and analogs for Ub coupling and uncoupling intermediates, which facilitate the study of the ubiquitination process. The strategy includes mainly the following steps: (i) the bifunctional molecule conjugation on the only cysteine (Cys) residue of a target protein (usually a Ub or Ub-conjugating enzyme), exposing an orthogonal reactive site for native chemical ligation; (ii) covalent ligation with a Ub-derived thioester, exposing a free sulfhydryl; and (iii) (optional) a disulfide bond formation with a substrate protein (mainly with only one Cys protein) through nonactivity-based cross-linking or with a deubiquitinase (mainly with several Cys residues) through activity-based cross-linking. When the bifunctional molecule and target proteins are obtained, the final products can be prepared in milligram quantities within 2 weeks.
Collapse
|
26
|
Synthetic E2-Ub-nucleosome conjugates for studying nucleosome ubiquitination. Chem 2023. [DOI: 10.1016/j.chempr.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
27
|
Abstract
The traditional textbook describes ubiquitylation as the conjugation of ubiquitin to a target by forming a covalent bond connecting ubiquitin's carboxy-terminal glycine residue with an acceptor amino acid like lysine or amino-terminal methionine in the substrate protein. While this adequately depicts a significant fraction of cellular ubiquitylation processes, a growing number of ubiquitin modifications do not follow this rule. Recent data demonstrate that ubiquitin can also be efficiently attached to other amino acids, such as cysteine, serine, and threonine, via ester bonding. Initially observed for a virus-encoded ubiquitin ligase, which targets a cysteine residue in a host protein to initiate its degradation, ester-linked ubiquitylation is now shown to also drive regular cellular processes. These ubiquitylation events expand the complexity and diversity of ubiquitin signaling and broaden the capability of cellular messages in the so-called ubiquitin code. Still, questions on the prevalence, relevance, and involvement in physiological and cellular functions await clearing. In this review, we aim to summarize our knowledge on ester-linked ubiquitylation and introduce experimental strategies to circumvent technical issues that complicate analysis of this uncommon posttranslational modification.
Collapse
Affiliation(s)
- Alba Ferri-Blazquez
- Max-Delbrück-Center for Molecular Medicine in the Helmholz Association, Berlin Buch, Germany.
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Ernst Jarosch
- Max-Delbrück-Center for Molecular Medicine in the Helmholz Association, Berlin Buch, Germany
| | - Thomas Sommer
- Max-Delbrück-Center for Molecular Medicine in the Helmholz Association, Berlin Buch, Germany
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
28
|
Luo H, Todi SV, Paulson HL, Costa MDC. Regional and age-dependent changes in ubiquitination in cellular and mouse models of spinocerebellar ataxia type 3. Front Mol Neurosci 2023; 16:1154203. [PMID: 37122622 PMCID: PMC10140444 DOI: 10.3389/fnmol.2023.1154203] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 05/02/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease, is the most common dominantly inherited ataxia. SCA3 is caused by a CAG repeat expansion in the ATXN3 gene that encodes an expanded tract of polyglutamine in the disease protein ataxin-3 (ATXN3). As a deubiquitinating enzyme, ATXN3 regulates numerous cellular processes including proteasome- and autophagy-mediated protein degradation. In SCA3 disease brain, polyQ-expanded ATXN3 accumulates with other cellular constituents, including ubiquitin (Ub)-modified proteins, in select areas like the cerebellum and the brainstem, but whether pathogenic ATXN3 affects the abundance of ubiquitinated species is unknown. Here, in mouse and cellular models of SCA3, we investigated whether elimination of murine Atxn3 or expression of wild-type or polyQ-expanded human ATXN3 alters soluble levels of overall ubiquitination, as well as K48-linked (K48-Ub) and K63-linked (K63-Ub) chains. Levels of ubiquitination were assessed in the cerebellum and brainstem of 7- and 47-week-old Atxn3 knockout and SCA3 transgenic mice, and also in relevant mouse and human cell lines. In older mice, we observed that wild-type ATXN3 impacts the cerebellar levels of K48-Ub proteins. In contrast, pathogenic ATXN3 leads to decreased brainstem abundance of K48-Ub species in younger mice and changes in both cerebellar and brainstem K63-Ub levels in an age-dependent manner: younger SCA3 mice have higher levels of K63-Ub while older mice have lower levels of K63-Ub compared to controls. Human SCA3 neuronal progenitor cells also show a relative increase in K63-Ub proteins upon autophagy inhibition. We conclude that wild-type and mutant ATXN3 differentially impact K48-Ub- and K63-Ub-modified proteins in the brain in a region- and age-dependent manner.
Collapse
Affiliation(s)
- Haiyang Luo
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, United States
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Henry L. Paulson
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Henry L. Paulson, ; Maria do Carmo Costa,
| | - Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Henry L. Paulson, ; Maria do Carmo Costa,
| |
Collapse
|
29
|
Visintin R, Ray SK. Intersections of Ubiquitin-Proteosome System and Autophagy in Promoting Growth of Glioblastoma Multiforme: Challenges and Opportunities. Cells 2022; 11:cells11244063. [PMID: 36552827 PMCID: PMC9776575 DOI: 10.3390/cells11244063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a brain tumor notorious for its propensity to recur after the standard treatments of surgical resection, ionizing radiation (IR), and temozolomide (TMZ). Combined with the acquired resistance to standard treatments and recurrence, GBM is an especially deadly malignancy with hardly any worthwhile treatment options. The treatment resistance of GBM is influenced, in large part, by the contributions from two main degradative pathways in eukaryotic cells: ubiquitin-proteasome system (UPS) and autophagy. These two systems influence GBM cell survival by removing and recycling cellular components that have been damaged by treatments, as well as by modulating metabolism and selective degradation of components of cell survival or cell death pathways. There has recently been a large amount of interest in potential cancer therapies involving modulation of UPS or autophagy pathways. There is significant crosstalk between the two systems that pose therapeutic challenges, including utilization of ubiquitin signaling, the degradation of components of one system by the other, and compensatory activation of autophagy in the case of proteasome inhibition for GBM cell survival and proliferation. There are several important regulatory nodes which have functions affecting both systems. There are various molecular components at the intersections of UPS and autophagy pathways that pose challenges but also show some new therapeutic opportunities for GBM. This review article aims to provide an overview of the recent advancements in research regarding the intersections of UPS and autophagy with relevance to finding novel GBM treatment opportunities, especially for combating GBM treatment resistance.
Collapse
Affiliation(s)
- Rhett Visintin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
- Correspondence: ; Tel.: +1-803-216-3420; Fax: +1-803-216-3428
| |
Collapse
|
30
|
Virdee S. An atypical ubiquitin ligase at the heart of neural development and programmed axon degeneration. Neural Regen Res 2022; 17:2347-2350. [PMID: 35535869 PMCID: PMC9120709 DOI: 10.4103/1673-5374.338992] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The degeneration of nerve fibres following injury was first described by Augustus Waller over 170 years ago. Initially assumed to be a passive process, it is now evident that axons respond to insult via regulated cellular signaling events resulting in their programmed degeneration. Pro-survival and pro-degenerative factors have been identified and their regulatory mechanisms are beginning to emerge. The ubiquitin system has been implicated in the pro-degenerative process and a key component is the ubiquitin E3 ligase MYCBP2 (also known as PHR1). Ubiquitin E3 ligases are tasked with the transfer of the small protein modifier ubiquitin to substrates and consist of hundreds of members. They can be classified as single subunit systems or as multi-subunit complexes. Their catalytic domains can also be assigned to three general architectures. Hints that MYCBP2 might not conform to these established formats came to light and it is now clear from biochemical and structural studies that MYCBP2 is indeed an outlier in terms of its modus operandi. Furthermore, the unconventional way in which MYCBP2 transfers ubiquitin to substrates has been linked to neurodevelopmental and pro-degenerative function. Herein, we will summarize these research developments relating to the unusual features of MYCBP2 and postulate therapeutic strategies that prevent Wallerian degeneration. These have exciting potential for providing relief from pathological neuropathies and neurodegenerative diseases.
Collapse
Affiliation(s)
- Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
- Correspondence to: Satpal Virdee, .
| |
Collapse
|
31
|
Exosomes from human umbilical cord mesenchymal stem cells protect aortas in Db/db mice characterized by combination of metabolomics and proteomics. Arch Biochem Biophys 2022; 731:109430. [DOI: 10.1016/j.abb.2022.109430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022]
|
32
|
Zhu K, Suskiewicz MJ, Hloušek-Kasun A, Meudal H, Mikoč A, Aucagne V, Ahel D, Ahel I. DELTEX E3 ligases ubiquitylate ADP-ribosyl modification on protein substrates. SCIENCE ADVANCES 2022; 8:eadd4253. [PMID: 36197986 PMCID: PMC7615817 DOI: 10.1126/sciadv.add4253] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ubiquitylation had been considered limited to protein lysine residues, but other substrates have recently emerged. Here, we show that DELTEX E3 ligases specifically target the 3' hydroxyl of the adenosine diphosphate (ADP)-ribosyl moiety that can be linked to a protein, thus generating a hybrid ADP-ribosyl-ubiquitin modification. Unlike other known hydroxyl-specific E3s, which proceed via a covalent E3~ubiqutin intermediate, DELTEX enzymes are RING E3s that stimulate a direct ubiquitin transfer from E2~ubiquitin onto a substrate. However, DELTEXes follow a previously unidentified paradigm for RING E3s, whereby the ligase not only forms a scaffold but also provides catalytic residues to activate the acceptor. Comparative analysis of known hydroxyl-ubiquitylating active sites points to the recurring use of a catalytic histidine residue, which, in DELTEX E3s, is potentiated by a glutamate in a catalytic triad-like manner. In addition, we determined the hydrolase specificity profile of this modification, identifying human and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enzymes that could reverse it in cells.
Collapse
Affiliation(s)
- Kang Zhu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Marcin J. Suskiewicz
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | | | - Hervé Meudal
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Vincent Aucagne
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Orléans, France
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Kelsall IR. Non-lysine ubiquitylation: Doing things differently. Front Mol Biosci 2022; 9:1008175. [PMID: 36200073 PMCID: PMC9527308 DOI: 10.3389/fmolb.2022.1008175] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
The post-translational modification of proteins with ubiquitin plays a central role in nearly all aspects of eukaryotic biology. Historically, studies have focused on the conjugation of ubiquitin to lysine residues in substrates, but it is now clear that ubiquitylation can also occur on cysteine, serine, and threonine residues, as well as on the N-terminal amino group of proteins. Paradigm-shifting reports of non-proteinaceous substrates have further extended the reach of ubiquitylation beyond the proteome to include intracellular lipids and sugars. Additionally, results from bacteria have revealed novel ways to ubiquitylate (and deubiquitylate) substrates without the need for any of the enzymatic components of the canonical ubiquitylation cascade. Focusing mainly upon recent findings, this review aims to outline the current understanding of non-lysine ubiquitylation and speculate upon the molecular mechanisms and physiological importance of this non-canonical modification.
Collapse
|
34
|
Squair DR, Virdee S. A new dawn beyond lysine ubiquitination. Nat Chem Biol 2022; 18:802-811. [PMID: 35896829 DOI: 10.1038/s41589-022-01088-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/21/2022] [Indexed: 01/18/2023]
Abstract
The ubiquitin system has become synonymous with the modification of lysine residues. However, the substrate scope and diversity of the conjugation machinery have been underappreciated, bringing us to an epoch in ubiquitin system research. The striking discoveries of metazoan enzymes dedicated toward serine and threonine ubiquitination have revealed the important role of nonlysine ubiquitination in endoplasmic reticulum-associated degradation, immune signaling and neuronal processes, while reports of nonproteinaceous substrates have extended ubiquitination beyond the proteome. Bacterial effectors that bypass the canonical ubiquitination machinery and form unprecedented linkage chemistry further redefine long-standing dogma. While chemical biology approaches have advanced our understanding of the canonical ubiquitin system, further study of noncanonical ubiquitination has been hampered by a lack of suitable tools. This Perspective aims to consolidate and contextualize recent discoveries and to propose potential applications of chemical biology, which will be instrumental in unraveling this new frontier of ubiquitin research.
Collapse
Affiliation(s)
- Daniel R Squair
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK.
| |
Collapse
|
35
|
Jing Y, Zuo C, Du YX, Mao J, Ding R, Zhang J, Liang LJ, Qu Q. Chemical tools for E3 ubiquitin ligase study. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
36
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
37
|
Xu H, Li Y, Jiang Y, Wang J, Sun H, Wu W, LV Y, Liu S, Zhai Y, Tian L, Li L, Zhao Z. A Novel Defined Super-Enhancer Associated Gene Signature to Predict Prognosis in Patients With Diffuse Large B-Cell Lymphoma. Front Genet 2022; 13:827840. [PMID: 35774514 PMCID: PMC9237400 DOI: 10.3389/fgene.2022.827840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Diffuse large B-cell lymphoma (DLBCL) is a genetically heterogeneous disease that can have profound differences in survival outcomes. A variety of powerful prognostic factors and models have been constructed; however, the development of more accurate prognosis prediction and targeted treatment for DLBCL still faces challenges. An explosion of research on super-enhancer (SE)–associated genes provide the possibility to use in prognostication for cancer patients. Here, we aimed to establish a novel effective prognostic model using SE-associated genes from DLBCL. Methods: A total of 1,105 DLBCL patients from the Gene Expression Omnibus database were included in this study and were divided into a training set and a validation set. A total of 11 SE-associated genes (BCL2, SPAG16, PXK, BTG1, LRRC37A2, EXT1, TGFBR2, ANKRD12, MYCBP2, PAX5, and MYC) were initially screened and identified by the least absolute shrinkage and selection operator (Lasso) penalized Cox regression, univariate and multivariate Cox regression analysis. Finally, a risk score model based on these 11 genes was constructed. Results: Kaplan–Meier (K–M) curves showed that the low-risk group appeared to have better clinical survival outcomes. The excellent performance of the model was determined via time-dependent receiver operating characteristic (ROC) curves. A nomogram based on the polygenic risk score was further established to promote reliable prognostic prediction. This study proposed that the SE-associated-gene risk signature can effectively predict the response to chemotherapy in DLBCL patients. Conclusion: A novel and reliable SE-associated-gene signature that can effectively classify DLBCL patients into high-risk and low-risk groups in terms of overall survival was developed, which may assist clinicians in the treatment of DLBCL.
Collapse
Affiliation(s)
- Hong Xu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuhang Li
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yanan Jiang
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jinhuan Wang
- Department of Oncology, Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Huimeng Sun
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenqi Wu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yangyang LV
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Su Liu
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yixin Zhai
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - LinYan Tian
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lanfang Li
- Departments of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
- *Correspondence: Lanfang Li, ; Zhigang Zhao,
| | - Zhigang Zhao
- Department of Hematology, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Lanfang Li, ; Zhigang Zhao,
| |
Collapse
|
38
|
Senatore E, Iannucci R, Chiuso F, Delle Donne R, Rinaldi L, Feliciello A. Pathophysiology of Primary Cilia: Signaling and Proteostasis Regulation. Front Cell Dev Biol 2022; 10:833086. [PMID: 35646931 PMCID: PMC9130585 DOI: 10.3389/fcell.2022.833086] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/21/2022] [Indexed: 01/29/2023] Open
Abstract
Primary cilia are microtubule-based, non-motile sensory organelles present in most types of growth-arrested eukaryotic cells. They are transduction hubs that receive and transmit external signals to the cells in order to control growth, differentiation and development. Mutations of genes involved in the formation, maintenance or disassembly of ciliary structures cause a wide array of developmental genetic disorders, also known as ciliopathies. The primary cilium is formed during G1 in the cell cycle and disassembles at the G2/M transition. Following the completion of the cell division, the cilium reassembles in G1. This cycle is finely regulated at multiple levels. The ubiquitin-proteasome system (UPS) and the autophagy machinery, two main protein degradative systems in cells, play a fundamental role in cilium dynamics. Evidence indicate that UPS, autophagy and signaling pathways may act in synergy to control the ciliary homeostasis. However, the mechanisms involved and the links between these regulatory systems and cilium biogenesis, dynamics and signaling are not well defined yet. Here, we discuss the reciprocal regulation of signaling pathways and proteolytic machineries in the control of the assembly and disassembly of the primary cilium, and the impact of the derangement of these regulatory networks in human ciliopathies.
Collapse
|
39
|
New classes of E3 ligases illuminated by chemical probes. Curr Opin Struct Biol 2022; 73:102341. [DOI: 10.1016/j.sbi.2022.102341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 11/23/2022]
|
40
|
Desbois M, Opperman KJ, Amezquita J, Gaglio G, Crawley O, Grill B. Ubiquitin ligase activity inhibits Cdk5 to control axon termination. PLoS Genet 2022; 18:e1010152. [PMID: 35421092 PMCID: PMC9041834 DOI: 10.1371/journal.pgen.1010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 04/26/2022] [Accepted: 03/17/2022] [Indexed: 01/29/2023] Open
Abstract
The Cdk5 kinase plays prominent roles in nervous system development, plasticity, behavior and disease. It also has important, non-neuronal functions in cancer, the immune system and insulin secretion. At present, we do not fully understand negative regulatory mechanisms that restrict Cdk5. Here, we use Caenorhabditis elegans to show that CDK-5 is inhibited by the RPM-1/FSN-1 ubiquitin ligase complex. This atypical RING ubiquitin ligase is conserved from C. elegans through mammals. Our finding originated from unbiased, in vivo affinity purification proteomics, which identified CDK-5 as a putative RPM-1 substrate. CRISPR-based, native biochemistry showed that CDK-5 interacts with the RPM-1/FSN-1 ubiquitin ligase complex. A CRISPR engineered RPM-1 substrate ‘trap’ enriched CDK-5 binding, which was mediated by the FSN-1 substrate recognition module. To test the functional genetic relationship between the RPM-1/FSN-1 ubiquitin ligase complex and CDK-5, we evaluated axon termination in mechanosensory neurons and motor neurons. Our results indicate that RPM-1/FSN-1 ubiquitin ligase activity restricts CDK-5 to control axon termination. Collectively, these proteomic, biochemical and genetic results increase our understanding of mechanisms that restrain Cdk5 in the nervous system. Cdk5 is an atypical cyclin dependent kinase and an important player in nervous system development, plasticity, and disease. Decades of research has focused on understanding how Cdk5 is activated. In contrast, we know much less about the genetic and molecular mechanisms that restrict Cdk5 activity. Here, we examined how Cdk5 is inhibited in the nervous system using the model organism C. elegans. Our results indicate that the RPM-1/FSN-1 E3 ubiquitin ligase complex inhibits Cdk5 to control termination of axon growth. Our finding that ubiquitin ligase activity restricts Cdk5 in the nervous system in vivo now opens up the interesting possibility that ubiquitin ligase activity might regulate Cdk5 in other cellular contexts and disease settings.
Collapse
Affiliation(s)
- Muriel Desbois
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Karla J. Opperman
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Jonathan Amezquita
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
| | - Gabriel Gaglio
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Oliver Crawley
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain
| | - Brock Grill
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Pharmacology, University of Washington M1-A303/305 Behnke Conference Room, Arnold building, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
41
|
Tsunoda T, Riku M, Yamada N, Tsuchiya H, Tomita T, Suzuki M, Kizuki M, Inoko A, Ito H, Murotani K, Murakami H, Saeki Y, Kasai K. ENTREP/FAM189A2 encodes a new ITCH ubiquitin ligase activator that is downregulated in breast cancer. EMBO Rep 2022; 23:e51182. [PMID: 34927784 PMCID: PMC8811627 DOI: 10.15252/embr.202051182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 11/13/2021] [Accepted: 11/29/2021] [Indexed: 11/09/2022] Open
Abstract
The HECT-type ubiquitin E3 ligases including ITCH regulate many aspects of cellular function through ubiquitinating various substrates. These ligases are known to be allosterically autoinhibited and to require an activator protein to fully achieve the ubiquitination of their substrates. Here we demonstrate that FAM189A2, a downregulated gene in breast cancer, encodes a new type of ITCH activator. FAM189A2 is a transmembrane protein harboring PPxY motifs, and the motifs mediate its association with and ubiquitination by ITCH. FAM189A2 also associates with Epsin and accumulates in early and late endosomes along with ITCH. Intriguingly, FAM189A2 facilitates the association of a chemokine receptor CXCR4 with ITCH and enhances ITCH-mediated ubiquitination of CXCR4. FAM189A2-knockout prohibits CXCL12-induced endocytosis of CXCR4, thereby enhancing the effects of CXCL12 on the chemotaxis and mammosphere formation of breast cancer cells. In comparison to other activators or adaptors known in the previous studies, FAM189A2 is a unique activator for ITCH to desensitize CXCR4 activity, and we here propose that FAM189A2 be renamed as ENdosomal TRansmembrane binding with EPsin (ENTREP).
Collapse
Affiliation(s)
- Takumi Tsunoda
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Miho Riku
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Norika Yamada
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Hikaru Tsuchiya
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Takuya Tomita
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Minako Suzuki
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Mari Kizuki
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Akihito Inoko
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
- Division of Cancer Epidemiology and PreventionAichi Cancer Center Research InstituteNagoyaJapan
| | - Hideaki Ito
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | | | - Hideki Murakami
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| | - Yasushi Saeki
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Kenji Kasai
- Department of PathologyAichi Medical University School of MedicineNagakuteJapan
| |
Collapse
|
42
|
Cruz Walma DA, Chen Z, Bullock AN, Yamada KM. Ubiquitin ligases: guardians of mammalian development. Nat Rev Mol Cell Biol 2022; 23:350-367. [PMID: 35079164 DOI: 10.1038/s41580-021-00448-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 12/17/2022]
|
43
|
Roberts JZ, Crawford N, Longley DB. The role of Ubiquitination in Apoptosis and Necroptosis. Cell Death Differ 2021; 29:272-284. [PMID: 34912054 PMCID: PMC8817035 DOI: 10.1038/s41418-021-00922-9] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Cell death pathways have evolved to maintain tissue homoeostasis and eliminate potentially harmful cells from within an organism, such as cells with damaged DNA that could lead to cancer. Apoptosis, known to eliminate cells in a predominantly non-inflammatory manner, is controlled by two main branches, the intrinsic and extrinsic apoptotic pathways. While the intrinsic pathway is regulated by the Bcl-2 family members, the extrinsic pathway is controlled by the Death receptors, members of the tumour necrosis factor (TNF) receptor superfamily. Death receptors can also activate a pro-inflammatory type of cell death, necroptosis, when Caspase-8 is inhibited. Apoptotic pathways are known to be tightly regulated by post-translational modifications, especially by ubiquitination. This review discusses research on ubiquitination-mediated regulation of apoptotic signalling. Additionally, the emerging importance of ubiquitination in regulating necroptosis is discussed.
Collapse
Affiliation(s)
- Jamie Z Roberts
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| | - Nyree Crawford
- Almac Discovery Laboratories, Health Sciences Building, Queen's University Belfast, Belfast, UK
| | - Daniel B Longley
- The Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
44
|
Pruneda JN, Damgaard RB. Ester-linked ubiquitination by HOIL-1 controls immune signalling by shaping the linear ubiquitin landscape. FEBS J 2021; 288:5903-5908. [PMID: 34322999 DOI: 10.1111/febs.16118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/08/2021] [Indexed: 11/29/2022]
Abstract
Ester-linked ubiquitination of serine or threonine residues - or even lipids - has emerged as a new regulatory earmark in cell signalling. Petrova et al. (2021) now reveal that ubiquitin esterification by the atypical ubiquitin ligase HOIL-1, a component of the LUBAC complex, is critical for proper formation of linear ubiquitin chains and control of immune signalling in T cells and macrophages. Surprisingly, ester-linked ubiquitination can either promote or inhibit linear ubiquitin conjugation and cytokine production depending on the receptor and immune cell engaged. Comment on: https://doi.org/10.1111/febs.15896.
Collapse
Affiliation(s)
- Jonathan N Pruneda
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
45
|
Henneberg LT, Schulman BA. Decoding the messaging of the ubiquitin system using chemical and protein probes. Cell Chem Biol 2021; 28:889-902. [PMID: 33831368 PMCID: PMC7611516 DOI: 10.1016/j.chembiol.2021.03.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 12/29/2022]
Abstract
Post-translational modification of proteins by ubiquitin is required for nearly all aspects of eukaryotic cell function. The numerous targets of ubiquitylation, and variety of ubiquitin modifications, are often likened to a code, where the ultimate messages are diverse responses to target ubiquitylation. E1, E2, and E3 multiprotein enzymatic assemblies modify specific targets and thus function as messengers. Recent advances in chemical and protein tools have revolutionized our ability to explore the ubiquitin system, through enabling new high-throughput screening methods, matching ubiquitylation enzymes with their cellular targets, revealing intricate allosteric mechanisms regulating ubiquitylating enzymes, facilitating structural revelation of transient assemblies determined by multivalent interactions, and providing new paradigms for inhibiting and redirecting ubiquitylation in vivo as new therapeutics. Here we discuss the development of methods that control, disrupt, and extract the flow of information across the ubiquitin system and have enabled elucidation of the underlying molecular and cellular biology.
Collapse
Affiliation(s)
- Lukas T Henneberg
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
46
|
Hopkins EL, Gu W, Kobe B, Coleman MP. A Novel NAD Signaling Mechanism in Axon Degeneration and its Relationship to Innate Immunity. Front Mol Biosci 2021; 8:703532. [PMID: 34307460 PMCID: PMC8295901 DOI: 10.3389/fmolb.2021.703532] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022] Open
Abstract
Axon degeneration represents a pathological feature of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease where axons die before the neuronal soma, and axonopathies, such as Charcot-Marie-Tooth disease and hereditary spastic paraplegia. Over the last two decades, it has slowly emerged that a central signaling pathway forms the basis of this process in many circumstances. This is an axonal NAD-related signaling mechanism mainly regulated by the two key proteins with opposing roles: the NAD-synthesizing enzyme NMNAT2, and SARM1, a protein with NADase and related activities. The crosstalk between the axon survival factor NMNAT2 and pro-degenerative factor SARM1 has been extensively characterized and plays an essential role in maintaining the axon integrity. This pathway can be activated in necroptosis and in genetic, toxic or metabolic disorders, physical injury and neuroinflammation, all leading to axon pathology. SARM1 is also known to be involved in regulating innate immunity, potentially linking axon degeneration to the response to pathogens and intercellular signaling. Understanding this NAD-related signaling mechanism enhances our understanding of the process of axon degeneration and enables a path to the development of drugs for a wide range of neurodegenerative diseases.
Collapse
Affiliation(s)
- Eleanor L. Hopkins
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Weixi Gu
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - Michael P. Coleman
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Historical perspective and progress on protein ubiquitination at glutamatergic synapses. Neuropharmacology 2021; 196:108690. [PMID: 34197891 DOI: 10.1016/j.neuropharm.2021.108690] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022]
Abstract
Transcription-translation coupling leads to the production of proteins that are key for controlling essential neuronal processes that include neuronal development and changes in synaptic strength. Although these events have been a prevailing theme in neuroscience, the regulation of proteins via posttranslational signaling pathways are equally relevant for these neuronal processes. Ubiquitin is one type of posttranslational modification that covalently attaches to its targets/substrates. Ubiquitination of proteins play a key role in multiple signaling pathways, the predominant being removal of its substrates by a large molecular machine called the proteasome. Here, I review 40 years of progress on ubiquitination in the nervous system at glutamatergic synapses focusing on axon pathfinding, synapse formation, presynaptic release, dendritic spine formation, and regulation of postsynaptic glutamate receptors. Finally, I elucidate emerging themes in ubiquitin biology that may challenge our current understanding of ubiquitin signaling in the nervous system.
Collapse
|
48
|
Liang L, Chu G, Qu Q, Zuo C, Mao J, Zheng Q, Chen J, Meng X, Jing Y, Deng H, Li Y, Liu L. Chemical Synthesis of Activity‐Based E2‐Ubiquitin Probes for the Structural Analysis of E3 Ligase‐Catalyzed Transthiolation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lu‐Jun Liang
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Guo‐Chao Chu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Junxiong Mao
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jingnan Chen
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Yangwode Jing
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics School of Life Sciences Tsinghua University Beijing 100084 China
| | - Yi‐Ming Li
- School of Food and Biological Engineering Engineering Research Center of Bio-process Ministry of Education Hefei University of Technology Hefei 230009 China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Center for Synthetic and Systems Biology Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
49
|
Liang LJ, Chu GC, Qu Q, Zuo C, Mao J, Zheng Q, Chen J, Meng X, Jing Y, Deng H, Li YM, Liu L. Chemical Synthesis of Activity-Based E2-Ubiquitin Probes for the Structural Analysis of E3 Ligase-Catalyzed Transthiolation. Angew Chem Int Ed Engl 2021; 60:17171-17177. [PMID: 34021957 DOI: 10.1002/anie.202105870] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 12/17/2022]
Abstract
Activity-based E2 conjugating enzyme (E2)-ubiquitin (Ub) probes have recently emerged as effective tools for studying the molecular mechanism of E3 ligase (E3)-catalyzed ubiquitination. However, the preparation of existing activity-based E2-Ub probes depends on recombination technology and bioconjugation chemistry, limiting their structural diversity. Herein we describe an expedient total chemical synthesis of an E2 enzyme variant through a hydrazide-based native chemical ligation, which enabled the construction of a structurally new activity-based E2-Ub probe to covalently capture the catalytic site of Cys-dependent E3s. Chemical cross-linking coupled with mass spectrometry (CXMS) demonstrated the utility of this new probe in structural analysis of the intermediates formed during Nedd4 and Parkin-mediated transthiolation. This study exemplifies the utility of chemical protein synthesis for the development of protein probes for biological studies.
Collapse
Affiliation(s)
- Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Guo-Chao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Qian Qu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chong Zuo
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junxiong Mao
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jingnan Chen
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Xianbin Meng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yangwode Jing
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yi-Ming Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, 230009, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
50
|
Fauser J, Itzen A, Gulen B. Current Advances in Covalent Stabilization of Macromolecular Complexes for Structural Biology. Bioconjug Chem 2021; 32:879-890. [PMID: 33861574 DOI: 10.1021/acs.bioconjchem.1c00118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Structural characterization of macromolecular assemblies is often limited by the transient nature of the interactions. The development of specific chemical tools to covalently tether interacting proteins to each other has played a major role in various fundamental discoveries in recent years. To this end, protein engineering techniques such as mutagenesis, incorporation of unnatural amino acids, and methods using synthetic substrate/cosubstrate derivatives were employed. In this review, we give an overview of both commonly used and recently developed biochemical methodologies for covalent stabilization of macromolecular complexes enabling structural investigation via crystallography, nuclear magnetic resonance, and cryo-electron microscopy. We divided the strategies into nonenzymatic- and enzymatic-driven cross-linking and further categorized them in either naturally occurring or engineered covalent linkage. This review offers a compilation of recent advances in diverse scientific fields where the structural characterization of macromolecular complexes was achieved by the aid of intermolecular covalent linkage.
Collapse
Affiliation(s)
- Joel Fauser
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| | - Burak Gulen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technical University of Munich, 85747 Garching, Germany
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|