1
|
Tants JN, Schlundt A. The role of structure in regulatory RNA elements. Biosci Rep 2024; 44:BSR20240139. [PMID: 39364891 PMCID: PMC11499389 DOI: 10.1042/bsr20240139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/05/2024] Open
Abstract
Regulatory RNA elements fulfill functions such as translational regulation, control of transcript levels, and regulation of viral genome replication. Trans-acting factors (i.e., RNA-binding proteins) bind the so-called cis elements and confer functionality to the complex. The specificity during protein-RNA complex (RNP) formation often exploits the structural plasticity of RNA. Functional integrity of cis-trans pairs depends on the availability of properly folded RNA elements, and RNA conformational transitions can cause diseases. Knowledge of RNA structure and the conformational space is needed for understanding complex formation and deducing functional effects. However, structure determination of RNAs under in vivo conditions remains challenging. This review provides an overview of structured eukaryotic and viral RNA cis elements and discusses the effect of RNA structural equilibria on RNP formation. We showcase implications of RNA structural changes for diseases, outline strategies for RNA structure-based drug targeting, and summarize the methodological toolbox for deciphering RNA structures.
Collapse
Affiliation(s)
- Jan-Niklas Tants
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 7-9, 60438 Frankfurt, Germany
- University of Greifswald, Institute of Biochemistry, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| |
Collapse
|
2
|
Mainan A, Kundu R, Singh RK, Roy S. Magnesium Regulates RNA Ring Dynamics and Folding in Subgenomic Flaviviral RNA. J Phys Chem B 2024; 128:9680-9691. [PMID: 39344128 DOI: 10.1021/acs.jpcb.4c03981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Mosquito-borne flaviviruses including dengue, Zika, yellow fever, and regional encephalitis produce a large amount of short subgenomic flaviviral RNAs during infection. A segment of these RNAs named as xrRNA1 features a multi-pseudoknot (PK)-associated structure, which resists the host cell enzyme (XRN1) from degrading the viral RNA. We investigate how this long-range RNA PK folds in the presence of counterions, specifically in a mix of monovalent (K+) and divalent (Mg2+) salts at physiological concentrations. In this study, we use extensive explicit solvent molecular dynamics (MD) simulations to characterize the RNA ion environment of the folded RNA conformation, as determined by the crystal structure. This allowed us to identify the precise locations of various coordinated RNA-Mg2+ interactions, including inner-sphere/chelated and outer-sphere coordinated Mg2+. Given that RNA folding involves large-scale conformational changes, making it challenging to explore through classical MD simulations, we investigate the folding mechanism of xrRNA1 using an all-atom structure-based RNA model with a hybrid implicit-explicit treatment of the ion environment via the dynamic counterion condensation model, both with and without physiological Mg2+ concentration. The study reveals potential folding pathways for this xrRNA1, which is consistent with the results obtained from optical tweezer experiments. The equilibrium and free energy simulations both capture a dynamic equilibrium between the ring-open and ring-close states of the RNA, driven by a long-range PK interaction. Free energy calculations reveal that with the addition of Mg2+ ions, the equilibrium shifts more toward the ring-close state. A detailed analysis of the free energy pathways and ion-mediated contact probability map highlights the critical role of Mg2+ in bridging G50 and A33. This Mg2+-mediated connection helps form the long-range PK which in turn controls the transition between the ring-open and ring-close states. The study underscores the critical role of Mg2+ in the RNA folding transition, highlighting specific locations of Mg2+ contributing to the stabilization of long-range PK connections likely to enhance the robustness of Xrn1 resistance of flaviviral xrRNAs.
Collapse
Affiliation(s)
- Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Rimi Kundu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Rishabh K Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
3
|
Huang YZ, Yang R, Zhang L, Chen ZN. Phosphorescent metallaknots of Au(I)-bis(acetylide) strands directed by Cu(I) π-coordination. Proc Natl Acad Sci U S A 2024; 121:e2403721121. [PMID: 39298486 PMCID: PMC11441568 DOI: 10.1073/pnas.2403721121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/25/2024] [Indexed: 09/21/2024] Open
Abstract
Knots containing metal atoms as part of their continuous strand backbone are termed as metallaknots. While several metallaknots have been synthesized through one-pot self-assembly, the designed synthesis of metallaknots by controlling the arrangement of entanglements and strands connectivity remains unexplored. Here, we report the synthesis of metallaknots composed with Au(I)-bis(acetylide) linkages and templated by Cu(I) ions. Varying the ratio of the building blocks results in the switchable formation of two trefoil knots with different stoichiometries and symmetries (C2 or D3) and an entangled metalla-complex. While the entangled complex formed serendipitously, the strand ends can be subsequently linked through coordinative closure to generate a 41 metallaknot in a highly designable fashion. The comparable structural characteristics of resulting metalla-complexes allow us to probe the correlations between their topologies and photophysical properties, showing the backbone rigidity of knots endows complexes with excellent phosphorescent properties. This strategy, in conjunction with the coordinative closure approach, provides a straightforward route for the formation of highly phosphorescent metallaknots that were previously challenging to access.
Collapse
Affiliation(s)
- Ya-Zi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing100039, P. R. China
| | - Raorao Yang
- Frontiers Science Center of Molecular Intelligent Synthesis, East China Normal University, Shanghai200062, P. R. China
| | - Liang Zhang
- Frontiers Science Center of Molecular Intelligent Synthesis, East China Normal University, Shanghai200062, P. R. China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
- Fujian College, University of Chinese Academy of Sciences, Beijing100039, P. R. China
| |
Collapse
|
4
|
Marinus T, Foster TL, Tych KM. The application of single-molecule optical tweezers to study disease-related structural dynamics in RNA. Biochem Soc Trans 2024; 52:899-909. [PMID: 38533854 PMCID: PMC11088911 DOI: 10.1042/bst20231232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024]
Abstract
RNA, a dynamic and flexible molecule with intricate three-dimensional structures, has myriad functions in disease development. Traditional methods, such as X-ray crystallography and nuclear magnetic resonance, face limitations in capturing real-time, single-molecule dynamics crucial for understanding RNA function. This review explores the transformative potential of single-molecule force spectroscopy using optical tweezers, showcasing its capability to directly probe time-dependent structural rearrangements of individual RNA molecules. Optical tweezers offer versatility in exploring diverse conditions, with the potential to provide insights into how environmental changes, ligands and RNA-binding proteins impact RNA behaviour. By enabling real-time observations of large-scale structural dynamics, optical tweezers emerge as an invaluable tool for advancing our comprehension of RNA structure and function. Here, we showcase their application in elucidating the dynamics of RNA elements in virology, such as the pseudoknot governing ribosomal frameshifting in SARS-CoV-2.
Collapse
Affiliation(s)
- Tycho Marinus
- Chemical Biology 1, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Toshana L. Foster
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, LE12 5RD Loughborough, U.K
| | - Katarzyna M. Tych
- Chemical Biology 1, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
5
|
Sarkar R, Mainan A, Roy S. Influence of ion and hydration atmospheres on RNA structure and dynamics: insights from advanced theoretical and computational methods. Chem Commun (Camb) 2024. [PMID: 38501190 DOI: 10.1039/d3cc06105a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
RNA, a highly charged biopolymer composed of negatively charged phosphate groups, defies electrostatic repulsion to adopt well-defined, compact structures. Hence, the presence of positively charged metal ions is crucial not only for RNA's charge neutralization, but they also coherently decorate the ion atmosphere of RNA to stabilize its compact fold. This feature article elucidates various modes of close RNA-ion interactions, with a special emphasis on Mg2+ as an outer-sphere and inner-sphere ion. Through examples, we highlight how inner-sphere chelated Mg2+ stabilizes RNA pseudoknots, while outer-sphere ions can also exert long-range electrostatic interactions, inducing groove narrowing, coaxial helical stacking, and RNA ring formation. In addition to investigating the RNA's ion environment, we note that the RNA's hydration environment is relatively underexplored. Our study delves into its profound interplay with the structural dynamics of RNA, employing state-of-the-art atomistic simulation techniques. Through examples, we illustrate how specific ions and water molecules are associated with RNA functions, leveraging atomistic simulations to identify preferential ion binding and hydration sites. However, understanding their impact(s) on the RNA structure remains challenging due to the involvement of large length and long time scales associated with RNA's dynamic nature. Nevertheless, our contributions and recent advances in coarse-grained simulation techniques offer insights into large-scale structural changes dynamically linked to the RNA ion atmosphere. In this connection, we also review how different cutting-edge computational simulation methods provide a microscopic lens into the influence of ions and hydration on RNA structure and dynamics, elucidating distinct ion atmospheric components and specific hydration layers and their individual and collective impacts.
Collapse
Affiliation(s)
- Raju Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India.
| | - Avijit Mainan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India.
| | - Susmita Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, West Bengal 741246, India.
| |
Collapse
|
6
|
Niemyska W, Mukherjee S, Gren BA, Niewieczerzal S, Bujnicki JM, Sulkowska JI. Discovery of a trefoil knot in the RydC RNA: Challenging previous notions of RNA topology. J Mol Biol 2024; 436:168455. [PMID: 38272438 DOI: 10.1016/j.jmb.2024.168455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
Knots are very common in polymers, including DNA and protein molecules. Yet, no genuine knot has been identified in natural RNA molecules to date. Upon re-examining experimentally determined RNA 3D structures, we discovered a trefoil knot 31, the most basic non-trivial knot, in the RydC RNA. This knotted RNA is a member of a small family of short bacterial RNAs, whose secondary structure is characterized by an H-type pseudoknot. Molecular dynamics simulations suggest a folding pathway of the RydC RNA that starts with a native twisted loop. Based on sequence analyses and computational RNA 3D structure predictions, we postulate that this trefoil knot is a conserved feature of all RydC-related RNAs. The first discovery of a knot in a natural RNA molecule introduces a novel perspective on RNA 3D structure formation and on fundamental research on the relationship between function and spatial structure of biopolymers.
Collapse
Affiliation(s)
- Wanda Niemyska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland; Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland.
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland
| | - Bartosz A Gren
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Szymon Niewieczerzal
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland.
| | - Joanna I Sulkowska
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland.
| |
Collapse
|
7
|
Jablunovsky A, Jose J. The Dynamic Landscape of Capsid Proteins and Viral RNA Interactions in Flavivirus Genome Packaging and Virus Assembly. Pathogens 2024; 13:120. [PMID: 38392858 PMCID: PMC10893219 DOI: 10.3390/pathogens13020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The Flavivirus genus of the Flaviviridae family of enveloped single-stranded RNA viruses encompasses more than 70 members, many of which cause significant disease in humans and livestock. Packaging and assembly of the flavivirus RNA genome is essential for the formation of virions, which requires intricate coordination of genomic RNA, viral structural, and nonstructural proteins in association with virus-induced, modified endoplasmic reticulum (ER) membrane structures. The capsid (C) protein, a small but versatile RNA-binding protein, and the positive single-stranded RNA genome are at the heart of the elusive flavivirus assembly process. The nucleocapsid core, consisting of the genomic RNA encapsidated by C proteins, buds through the ER membrane, which contains viral glycoproteins prM and E organized as trimeric spikes into the lumen, forming an immature virus. During the maturation process, which involves the low pH-mediated structural rearrangement of prM and E and furin cleavage of prM in the secretory pathway, the spiky immature virus with a partially ordered nucleocapsid core becomes a smooth, mature virus with no discernible nucleocapsid. This review focuses on the mechanisms of genome packaging and assembly by examining the structural and functional aspects of C protein and viral RNA. We review the current lexicon of critical C protein features and evaluate interactions between C and genomic RNA in the context of assembly and throughout the life cycle.
Collapse
Affiliation(s)
- Anastazia Jablunovsky
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Joyce Jose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA;
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
8
|
Li Z, Zhang J, Li G, Puddephatt RJ. Self-assembly of the smallest and tightest molecular trefoil knot. Nat Commun 2024; 15:154. [PMID: 38168068 PMCID: PMC10762025 DOI: 10.1038/s41467-023-44302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Molecular knots, whose synthesis presents many challenges, can play important roles in protein structure and function as well as in useful molecular materials, whose properties depend on the size of the knotted structure. Here we report the synthesis by self-assembly of molecular trefoil metallaknot with formula [Au6{1,2-C6H4(OCH2CC)2}3{Ph2P(CH2)4PPh2}3], Au6, from three units of each of the components 1,2-C6H4(OCH2CCAu)2 and Ph2P(CH2)4PPh2. Structure determination by X-ray diffraction revealed that the chiral trefoil knot contains only 54 atoms in the backbone, so that Au6 is the smallest and tightest molecular trefoil knot known to date.
Collapse
Affiliation(s)
- Zhiwen Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Richard J Puddephatt
- Department of Chemistry, University of Western Ontario, London, N6A 5B7, Canada.
| |
Collapse
|
9
|
Bello AJ, Popoola A, Okpuzor J, Ihekwaba-Ndibe AE, Olorunniji FJ. A Genetic Circuit Design for Targeted Viral RNA Degradation. Bioengineering (Basel) 2023; 11:22. [PMID: 38247899 PMCID: PMC10813695 DOI: 10.3390/bioengineering11010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Advances in synthetic biology have led to the design of biological parts that can be assembled in different ways to perform specific functions. For example, genetic circuits can be designed to execute specific therapeutic functions, including gene therapy or targeted detection and the destruction of invading viruses. Viral infections are difficult to manage through drug treatment. Due to their high mutation rates and their ability to hijack the host's ribosomes to make viral proteins, very few therapeutic options are available. One approach to addressing this problem is to disrupt the process of converting viral RNA into proteins, thereby disrupting the mechanism for assembling new viral particles that could infect other cells. This can be done by ensuring precise control over the abundance of viral RNA (vRNA) inside host cells by designing biological circuits to target vRNA for degradation. RNA-binding proteins (RBPs) have become important biological devices in regulating RNA processing. Incorporating naturally upregulated RBPs into a gene circuit could be advantageous because such a circuit could mimic the natural pathway for RNA degradation. This review highlights the process of viral RNA degradation and different approaches to designing genetic circuits. We also provide a customizable template for designing genetic circuits that utilize RBPs as transcription activators for viral RNA degradation, with the overall goal of taking advantage of the natural functions of RBPs in host cells to activate targeted viral RNA degradation.
Collapse
Affiliation(s)
- Adebayo J. Bello
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Biological Sciences, Redeemer’s University, Ede 232101, Osun State, Nigeria
| | - Abdulgafar Popoola
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
- Department of Medical Laboratory Science, Kwara State University, Malete, Ilorin 241102, Kwara State, Nigeria
| | - Joy Okpuzor
- Department of Cell Biology & Genetics, University of Lagos, Akoka, Lagos 101017, Lagos State, Nigeria;
| | | | - Femi J. Olorunniji
- School of Pharmacy & Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK; (A.J.B.); (A.P.)
| |
Collapse
|
10
|
Dilweg IW, Peer J, Olsthoorn RCL. Xrn1-resistant RNA motifs are disseminated throughout the RNA virome and are able to block scanning ribosomes. Sci Rep 2023; 13:15987. [PMID: 37749116 PMCID: PMC10520033 DOI: 10.1038/s41598-023-43001-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
RNAs that are able to prevent degradation by the 5'-3' exoribonuclease Xrn1 have emerged as crucial structures during infection by an increasing number of RNA viruses. Several plant viruses employ the so-called coremin motif, an Xrn1-resistant RNA that is usually located in 3' untranslated regions. Investigation of its structural and sequence requirements has led to its identification in plant virus families beyond those in which the coremin motif was initially discovered. In this study, we identified coremin-like motifs that deviate from the original in the number of nucleotides present in the loop region of the 5' proximal hairpin. They are present in a number of viral families that previously did not have an Xrn1-resistant RNA identified yet, including the double-stranded RNA virus families Hypoviridae and Chrysoviridae. Through systematic mutational analysis, we demonstrated that a coremin motif carrying a 6-nucleotide loop in the 5' proximal hairpin generally requires a YGNNAD consensus for stalling Xrn1, similar to the previously determined YGAD consensus required for Xrn1 resistance of the original coremin motif. Furthermore, we determined the minimal requirements for the 3' proximal hairpin. Since some putative coremin motifs were found in intergenic regions or coding sequences, we demonstrated their capacity for inhibiting translation through an in vitro ribosomal scanning inhibition assay. Consequently, this study provides a further expansion on the number of viral families with known Xrn1-resistant elements, while adding a novel, potentially regulatory function for this structure.
Collapse
Affiliation(s)
- Ivar W Dilweg
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - Jasper Peer
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands
| | - René C L Olsthoorn
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden, The Netherlands.
| |
Collapse
|
11
|
Zheng B, Xiao Y, Tong B, Mao Y, Ge R, Tian F, Dong X, Zheng P. S373P Mutation Stabilizes the Receptor-Binding Domain of the Spike Protein in Omicron and Promotes Binding. JACS AU 2023; 3:1902-1910. [PMID: 37502147 PMCID: PMC10369413 DOI: 10.1021/jacsau.3c00142] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023]
Abstract
A cluster of several newly occurring mutations on Omicron is found at the β-core region of the spike protein's receptor-binding domain (RBD), where mutation rarely happened before. Notably, the binding of SARS-CoV-2 to human receptor ACE2 via RBD happens in a dynamic airway environment, where mechanical force caused by coughing or sneezing occurs. Thus, we used atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) to measure the stability of RBDs and found that the mechanical stability of Omicron RBD increased by ∼20% compared with the wild type. Molecular dynamics (MD) simulations revealed that Omicron RBD showed more hydrogen bonds in the β-core region due to the closing of the α-helical motif caused primarily by the S373P mutation. In addition to a higher unfolding force, we showed a higher dissociation force between Omicron RBD and ACE2. This work reveals the mechanically stabilizing effect of the conserved mutation S373P for Omicron and the possible evolution trend of the β-core region of RBD.
Collapse
Affiliation(s)
- Bin Zheng
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuelong Xiao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Bei Tong
- Institute
of Botany, Jiangsu Province and Chinese
Academy of Sciences, Nanjing, Jiangsu 210014, China
| | - Yutong Mao
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Rui Ge
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Fang Tian
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xianchi Dong
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
- Engineering
Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, Jiangsu 210023, China
| | - Peng Zheng
- State
Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine
Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
12
|
Booth BJ, Nourreddine S, Katrekar D, Savva Y, Bose D, Long TJ, Huss DJ, Mali P. RNA editing: Expanding the potential of RNA therapeutics. Mol Ther 2023; 31:1533-1549. [PMID: 36620962 PMCID: PMC9824937 DOI: 10.1016/j.ymthe.2023.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
RNA therapeutics have had a tremendous impact on medicine, recently exemplified by the rapid development and deployment of mRNA vaccines to combat the COVID-19 pandemic. In addition, RNA-targeting drugs have been developed for diseases with significant unmet medical needs through selective mRNA knockdown or modulation of pre-mRNA splicing. Recently, RNA editing, particularly antisense RNA-guided adenosine deaminase acting on RNA (ADAR)-based programmable A-to-I editing, has emerged as a powerful tool to manipulate RNA to enable correction of disease-causing mutations and modulate gene expression and protein function. Beyond correcting pathogenic mutations, the technology is particularly well suited for therapeutic applications that require a transient pharmacodynamic effect, such as the treatment of acute pain, obesity, viral infection, and inflammation, where it would be undesirable to introduce permanent alterations to the genome. Furthermore, transient modulation of protein function, such as altering the active sites of enzymes or the interface of protein-protein interactions, opens the door to therapeutic avenues ranging from regenerative medicine to oncology. These emerging RNA-editing-based toolsets are poised to broadly impact biotechnology and therapeutic applications. Here, we review the emerging field of therapeutic RNA editing, highlight recent laboratory advancements, and discuss the key challenges on the path to clinical development.
Collapse
Affiliation(s)
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
13
|
Sekar RV, Oliva PJ, Woodside MT. Modelling the structures of frameshift-stimulatory pseudoknots from representative bat coronaviruses. PLoS Comput Biol 2023; 19:e1011124. [PMID: 37205708 DOI: 10.1371/journal.pcbi.1011124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/24/2023] [Indexed: 05/21/2023] Open
Abstract
Coronaviruses (CoVs) use -1 programmed ribosomal frameshifting stimulated by RNA pseudoknots in the viral genome to control expression of enzymes essential for replication, making CoV pseudoknots a promising target for anti-coronaviral drugs. Bats represent one of the largest reservoirs of CoVs and are the ultimate source of most CoVs infecting humans, including those causing SARS, MERS, and COVID-19. However, the structures of bat-CoV frameshift-stimulatory pseudoknots remain largely unexplored. Here we use a combination of blind structure prediction followed by all-atom molecular dynamics simulations to model the structures of eight pseudoknots that, together with the SARS-CoV-2 pseudoknot, are representative of the range of pseudoknot sequences in bat CoVs. We find that they all share some key qualitative features with the pseudoknot from SARS-CoV-2, notably the presence of conformers with two distinct fold topologies differing in whether or not the 5' end of the RNA is threaded through a junction, and similar conformations for stem 1. However, they differed in the number of helices present, with half sharing the 3-helix architecture of the SARS-CoV-2 pseudoknot but two containing 4 helices and two others only 2. These structure models should be helpful for future work studying bat-CoV pseudoknots as potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| |
Collapse
|
14
|
Wagner P, Rominger F, Gross JH, Mastalerz M. Solvent-Controlled Quadruple Catenation of Giant Chiral [8+12] Salicylimine Cubes Driven by Weak Hydrogen Bonding. Angew Chem Int Ed Engl 2023; 62:e202217251. [PMID: 36695113 DOI: 10.1002/anie.202217251] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Mechanically interlocked structures are fascinating synthetic targets and the topological complexity achieved through catenation offers numerous possibilities for the construction of new molecules with exciting properties. In the structural space of catenated organic cage molecules, only few examples have been realized so far, and control over the catenation process in solution is still barely achieved. Herein, we describe the formation of a quadruply interlocked catenane of giant chiral [8+12] salicylimine cubes. The formation could be controlled by the choice of solvent used in the reaction. The interlocked structure was unambiguously characterized by single crystal X-ray diffraction and weak hydrogen bonding was identified as a central driving force for the catenation. Furthermore, scrambling experiments using partially deuterated cages were performed, revealing that the catenane formation occurs through mechanical interlocking of preformed single cages.
Collapse
Affiliation(s)
- Philippe Wagner
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jürgen H Gross
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
15
|
Wang Z, Wang M, Zhao Z, Zheng P. Quantification of carboxylate-bridged di-zinc site stability in protein due ferri by single-molecule force spectroscopy. Protein Sci 2023; 32:e4583. [PMID: 36718829 PMCID: PMC9926469 DOI: 10.1002/pro.4583] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/01/2023]
Abstract
Carboxylate-bridged diiron proteins belong to a protein family involved in different physiological processes. These proteins share the conservative EXXH motif, which provides the carboxylate bridge and is critical for metal binding. Here, we choose de novo-designed single-chain due ferri protein (DFsc), a four-helical protein with two EXXH motifs as a model protein, to study the stability of the carboxylate-bridged di-metal binding site. The mechanical and kinetic properties of the di-Zn site in DFsc were obtained by atomic force microscopy-based single-molecule force spectroscopy. Zn-DFsc showed a considerable rupture force of ~200 pN, while the apo-protein is mechanically labile. In addition, multiple rupture pathways were observed with different probabilities, indicating the importance of the EXXH-based carboxylate-bridged metal site. These results demonstrate carboxylate-bridged di-metal site is mechanically stable and improve our understanding of this important type of metalloprotein.
Collapse
Affiliation(s)
- Zhiyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Mengdie Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Zhongxin Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical EngineeringNanjing UniversityNanjingPeople's Republic of China
| |
Collapse
|
16
|
|
17
|
Halma MTJ, Tuszynski JA, Wuite GJL. Optical tweezers for drug discovery. Drug Discov Today 2023; 28:103443. [PMID: 36396117 DOI: 10.1016/j.drudis.2022.103443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022]
Abstract
The time taken and the cost of producing novel therapeutic drugs presents a significant burden - a typical target-based drug discovery process involves computational screening of drug libraries, compound assays and expensive clinical trials. This review summarises the value of dynamic conformational information obtained by optical tweezers and how this information can target 'undruggable' proteins. Optical tweezers provide insights into the link between biological mechanisms and structural conformations, which can be used in drug discovery. Developing workflows including software and sample preparation will improve throughput, enabling adoption of optical tweezers in biopharma. As a complementary tool, optical tweezers increase the number of drug candidates, improve the understanding of a target's complex structural dynamics and elucidate interactions between compounds and their targets.
Collapse
Affiliation(s)
- Matthew T J Halma
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands; LUMICKS B.V, Paalbergweg 3, 1105 AG Amsterdam, The Netherlands
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, 116 St 85 Ave, Edmonton, Alberta T6G 2R3, Canada
| | - Gijs J L Wuite
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.
| |
Collapse
|
18
|
Ding X, Wang Z, Zheng B, Shi S, Deng Y, Yu H, Zheng P. One-step asparaginyl endopeptidase ( OaAEP1)-based protein immobilization for single-molecule force spectroscopy. RSC Chem Biol 2022; 3:1276-1281. [PMID: 36320890 PMCID: PMC9533667 DOI: 10.1039/d2cb00135g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Enzymatic protein ligation has become the most powerful and widely used method for high-precision atomic force microscopy single-molecule force spectroscopy (AFM-SMFS) study of protein mechanics. However, this methodology typically requires the functionalization of the glass surface with a corresponding peptide sequence/tag for enzymatic recognition and multiple steps are needed. Thus, it is time-consuming and a high level of experience is needed for reliable results. To solve this problem, we simplified the procedure using two strategies both based on asparaginyl endopeptidase (AEP). First, we designed a heterobifunctional peptide-based crosslinker, GL-peptide-propargylglycine, which links to an N 3-functionalized surface via the click reaction. Then, the target protein with a C-terminal NGL sequence can be immobilized via the AEP-mediated ligation. Furthermore, we took advantage of the direct ligation between primary amino in a small molecule and protein with C-terminal NGL by AEP. Thus, the target protein can be immobilized on an amino-functionalized surface via AEP in one step. Both approaches were successfully applied to the AFM-SMFS study of eGFP, showing consistent single-molecule results.
Collapse
Affiliation(s)
- Xuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Shengchao Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Yibing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Hanyang Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University 163 Xianlin Road Nanjing Jiangsu 210023 P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
| |
Collapse
|
19
|
Ashbridge Z, Fielden SDP, Leigh DA, Pirvu L, Schaufelberger F, Zhang L. Knotting matters: orderly molecular entanglements. Chem Soc Rev 2022; 51:7779-7809. [PMID: 35979715 PMCID: PMC9486172 DOI: 10.1039/d2cs00323f] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Indexed: 11/29/2022]
Abstract
Entangling strands in a well-ordered manner can produce useful effects, from shoelaces and fishing nets to brown paper packages tied up with strings. At the nanoscale, non-crystalline polymer chains of sufficient length and flexibility randomly form tangled mixtures containing open knots of different sizes, shapes and complexity. However, discrete molecular knots of precise topology can also be obtained by controlling the number, sequence and stereochemistry of strand crossings: orderly molecular entanglements. During the last decade, substantial progress in the nascent field of molecular nanotopology has been made, with general synthetic strategies and new knotting motifs introduced, along with insights into the properties and functions of ordered tangle sequences. Conformational restrictions imparted by knotting can induce allostery, strong and selective anion binding, catalytic activity, lead to effective chiral expression across length scales, binding modes in conformations efficacious for drug delivery, and facilitate mechanical function at the molecular level. As complex molecular topologies become increasingly synthetically accessible they have the potential to play a significant role in molecular and materials design strategies. We highlight particular examples of molecular knots to illustrate why these are a few of our favourite things.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - David A Leigh
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| | - Lucian Pirvu
- Department of Chemistry, The University of Manchester, Manchester, UK
| | | | - Liang Zhang
- Department of Chemistry, The University of Manchester, Manchester, UK
- School of Chemistry and Molecular Engineering, East China Normal University, 3663 N Zhongshan Road, Shanghai, China
| |
Collapse
|
20
|
Interdomain Linker Effect on the Mechanical Stability of Ig Domains in Titin. Int J Mol Sci 2022; 23:ijms23179836. [PMID: 36077234 PMCID: PMC9456048 DOI: 10.3390/ijms23179836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
Titin is the largest protein in humans, composed of more than one hundred immunoglobulin (Ig) domains, and plays a critical role in muscle’s passive elasticity. Thus, the molecular design of this giant polyprotein is responsible for its mechanical function. Interestingly, most of these Ig domains are connected directly with very few interdomain residues/linker, which suggests such a design is necessary for its mechanical stability. To understand this design, we chose six representative Ig domains in titin and added nine glycine residues (9G) as an artificial interdomain linker between these Ig domains. We measured their mechanical stabilities using atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS) and compared them to the natural sequence. The AFM results showed that the linker affected the mechanical stability of Ig domains. The linker mostly reduces its mechanical stability to a moderate extent, but the opposite situation can happen. Thus, this effect is very complex and may depend on each particular domain’s property.
Collapse
|
21
|
Luwanski K, Hlushchenko V, Popenda M, Zok T, Sarzynska J, Martsich D, Szachniuk M, Antczak M. RNAspider: a webserver to analyze entanglements in RNA 3D structures. Nucleic Acids Res 2022; 50:W663-W669. [PMID: 35349710 PMCID: PMC9252836 DOI: 10.1093/nar/gkac218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Advances in experimental and computational techniques enable the exploration of large and complex RNA 3D structures. These, in turn, reveal previously unstudied properties and motifs not characteristic for small molecules with simple architectures. Examples include entanglements of structural elements in RNA molecules and knot-like folds discovered, among others, in the genomes of RNA viruses. Recently, we presented the first classification of entanglements, determined by their topology and the type of entangled structural elements. Here, we introduce RNAspider - a web server to automatically identify, classify, and visualize primary and higher-order entanglements in RNA tertiary structures. The program applies to evaluate RNA 3D models obtained experimentally or by computational prediction. It supports the analysis of uncommon topologies in the pseudoknotted RNA structures. RNAspider is implemented as a publicly available tool with a user-friendly interface and can be freely accessed at https://rnaspider.cs.put.poznan.pl/.
Collapse
Affiliation(s)
- Kamil Luwanski
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Vladyslav Hlushchenko
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Tomasz Zok
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Daniil Martsich
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
| | - Marta Szachniuk
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Maciej Antczak
- Institute of Computing Science and European Centre for Bioinformatics and Genomics, Poznan University of Technology, Piotrowo 2, 60-965 Poznan, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
22
|
Nie JY, Song GB, Deng YB, Zheng P. Single-Molecule Force Spectroscopy Reveals Stability of mitoNEET and its [2Fe2Se] Cluster in Weakly Acidic and Basic Solutions. Chemistry 2022; 11:e202200056. [PMID: 35608094 PMCID: PMC9127745 DOI: 10.1002/open.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Indexed: 11/05/2022]
Abstract
The outer mitochondrial membrane protein mitoNEET (mNT) is a recently identified iron-sulfur protein containing a unique Fe2 S2 (His)1 (Cys)3 metal cluster with a single Fe-N(His87) coordinating bond. This labile Fe-N bond led to multiple unfolding/rupture pathways of mNT and its cluster by atomic force microscopy-based single-molecule force spectroscopy (AFM-SMFS), one of most common tools for characterizing the molecular mechanics. Although previous ensemble studies showed that this labile Fe-N(His) bond is essential for protein function, they also indicated that the protein and its [2Fe2S] cluster are stable under acidic conditions. Thus, we applied AFM-SMFS to measure the stability of mNT and its cluster at pH values of 6, 7, and 8. Indeed, all previous multiple unfolding pathways of mNT were still observed. Moreover, single-molecule measurements revealed that the stabilities of the protein and the [2Fe2S] cluster are consistent at these pH values with only ≈20 pN force differences. Thus, we found that the behavior of the protein is consistent in both weakly acidic and basic solutions despite a labile Fe-N bond.
Collapse
Affiliation(s)
- Jing-Yuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Guo-Bin Song
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yi-Bing Deng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
23
|
Enhancement of prime editing via xrRNA motif-joined pegRNA. Nat Commun 2022; 13:1856. [PMID: 35387980 PMCID: PMC8986804 DOI: 10.1038/s41467-022-29507-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/21/2022] [Indexed: 11/09/2022] Open
Abstract
The prime editors (PEs) have shown great promise for precise genome modification. However, their suboptimal efficiencies present a significant technical challenge. Here, by appending a viral exoribonuclease-resistant RNA motif (xrRNA) to the 3'-extended portion of pegRNAs for their increased resistance against degradation, we develop an upgraded PE platform (xrPE) with substantially enhanced editing efficiencies in multiple cell lines. A pan-target average enhancement of up to 3.1-, 4.5- and 2.5-fold in given cell types is observed for base conversions, small deletions, and small insertions, respectively. Additionally, xrPE exhibits comparable edit:indel ratios and similarly minimal off-target editing as the canonical PE3. Of note, parallel comparison of xrPE to the most recently developed epegRNA-based PE system shows their largely equivalent editing performances. Our study establishes a highly adaptable platform of improved PE that shall have broad implications.
Collapse
|
24
|
Ashbridge Z, Kreidt E, Pirvu L, Schaufelberger F, Stenlid JH, Abild-Pedersen F, Leigh DA. Vernier template synthesis of molecular knots. Science 2022; 375:1035-1041. [PMID: 35239374 DOI: 10.1126/science.abm9247] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Molecular knots are often prepared using metal helicates to cross the strands. We found that coordinatively mismatching oligodentate ligands and metal ions provides a more effective way to synthesize larger knots using Vernier templating. Strands composed of different numbers of tridentate 2,6-pyridinedicarboxamide groups fold around nine-coordinate lanthanide (III) ions to generate strand-entangled complexes with the lowest common multiple of coordination sites for the ligand strands and metal ions. Ring-closing olefin metathesis then completes the knots. A 3:2 (ditopic strand:metal) Vernier assembly produces +31#+31 and -31#-31 granny knots. Vernier complexes of 3:4 (tetratopic strand:metal) stoichiometry selectively form a 378-atom-long trefoil-of-trefoils triskelion knot with 12 alternating strand crossings or, by using opposing stereochemistry at the terminus of the strand, an inverted-core triskelion knot with six alternating and six nonalternating strand crossings.
Collapse
Affiliation(s)
- Zoe Ashbridge
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lucian Pirvu
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | | | - Joakim Halldin Stenlid
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank Abild-Pedersen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
25
|
Structural dynamics of single SARS-CoV-2 pseudoknot molecules reveal topologically distinct conformers. Nat Commun 2021; 12:4749. [PMID: 34362921 PMCID: PMC8346527 DOI: 10.1038/s41467-021-25085-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
The RNA pseudoknot that stimulates programmed ribosomal frameshifting in SARS-CoV-2 is a possible drug target. To understand how it responds to mechanical tension applied by ribosomes, thought to play a key role during frameshifting, we probe its structural dynamics using optical tweezers. We find that it forms multiple structures: two pseudoknotted conformers with different stability and barriers, and alternative stem-loop structures. The pseudoknotted conformers have distinct topologies, one threading the 5′ end through a 3-helix junction to create a knot-like fold, the other with unthreaded 5′ end, consistent with structures observed via cryo-EM and simulations. Refolding of the pseudoknotted conformers starts with stem 1, followed by stem 3 and lastly stem 2; Mg2+ ions are not required, but increase pseudoknot mechanical rigidity and favor formation of the knot-like conformer. These results resolve the SARS-CoV-2 frameshift signal folding mechanism and highlight its conformational heterogeneity, with important implications for structure-based drug-discovery efforts. The RNA pseudoknot of SARS-CoV-2 promotes -1 programmed ribosomal frameshifting. Here the authors use single molecule force spectroscopy to study the folding of this pseudoknot, showing that it forms at least two different pseudoknot conformers with distinct fold topologies.
Collapse
|
26
|
|