1
|
Wang T, Huang W, Xu K, Sun Y, Zhang QC, Yan C, Li Z, Yan N. CryoSeek II: Cryo-EM analysis of glycofibrils from freshwater reveals well-structured glycans coating linear tetrapeptide repeats. Proc Natl Acad Sci U S A 2025; 122:e2423943122. [PMID: 39739783 PMCID: PMC11725842 DOI: 10.1073/pnas.2423943122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 01/02/2025] Open
Abstract
Despite the recent breakthrough in structure determination and prediction of proteins, the structural investigation of carbohydrates remains a challenge. Here, we report the cryo-EM analysis of a glycofibril found in the freshwater in the Tsinghua Lotus Pond. The fibril, which we name TLP-4, is made of a linear chain of tetrapeptide repeats coated with >4 nm thick glycans. In each repeat, two glycans are O-linked to a 3,4-dihydroxyproline and another glycan attaches to the adjacent Ser or Thr. The fibril structure is entirely maintained through glycan packing. Bioinformatic analysis confirms the conservation of the TLP-4 repeats across species, suggesting the existence of a large number of glycofibrils to be discovered. Our findings not only provide valuable insights into the structural roles of glycans in bio-assemblies but also demonstrate the potential of our recently formulated research strategy of CryoSeek to find bioentities and establish prototypes for structural studies of carbohydrates.
Collapse
Affiliation(s)
- Tongtong Wang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Wenze Huang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Kui Xu
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Yitong Sun
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Qiangfeng Cliff Zhang
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Zhangqiang Li
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Nieng Yan
- Beijing Frontier Research Center for Biological Structures, State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing100084, China
- Institute of Bio-Architecture and Bio-Interactions, Shenzhen Medical Academy of Research and Translation, Shenzhen518107, Guangdong, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen518132, Guangdong, China
| |
Collapse
|
2
|
Okholm K, Nooteboom SW, Vinther JN, Lamberti V, Dey S, Andersen ES, Zijlstra P, Sutherland DS. Single-Molecule Multivalent Interactions Revealed by Plasmon-Enhanced Fluorescence. ACS NANO 2024; 18:35429-35442. [PMID: 39686530 PMCID: PMC11698027 DOI: 10.1021/acsnano.4c12600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Multivalency as an interaction principle is widely utilized in nature. It enables specific and strong binding by multiple weak interactions through enhanced avidity and is a core process in immune recognition and cellular signaling, which is also a current concept in drug design. Here, we use the high signals from plasmon-enhanced fluorescence of nanoparticles to extract binding kinetics and dynamics of multivalent interactions on the single-molecule level and in real time. We study mono-, bi-, and trivalent binding interactions using a DNA Holliday Junction as a model construct with programmable valency and introduce a step-binding model for binding kinetics relevant for structured macromolecules by including an experimentally extractable binding restriction term ω to quantify the effects from conformation, steric effects, and rigidity. We used this approach to explore how length and flexibility of the DNA ligands affect binding restriction and binding strength, where the overall binding strength decreased with spacer length. For trivalent systems, increasing spacer length additionally activated binding in the trivalent state, giving insight into the design of multivalent drug or targeting moieties. By systematically changing the receptor density, we explored the binding super selectivity of the multivalent HJ at the single-molecule level. We find a polynomial behavior of the trivalent binding strength that clearly shows receptor-density-dependent selective binding. Interestingly, we could exploit the rapidly decaying near fields of the plasmon that induce a strong dependence of the signal on the position of the dye to observe binding dynamics during single multivalent binding events.
Collapse
Affiliation(s)
- Kasper
R. Okholm
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
- The
Centre for Cellular Signal Patterns (CELLPAT), Gustav Wieds Vej 14, Aarhus
C 8000, Denmark
| | - Sjoerd W. Nooteboom
- Department
of Applied Physics and Science Education and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, Eindhoven 5600 MB, the Netherlands
| | - Johan Nygaard Vinther
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
- Bioinformatics
Research Centre, Aarhus University, Aarhus C 8000, Denmark
| | - Vincenzo Lamberti
- Department
of Applied Physics and Science Education and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, Eindhoven 5600 MB, the Netherlands
| | - Swayandipta Dey
- Department
of Applied Physics and Science Education and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, Eindhoven 5600 MB, the Netherlands
| | - Ebbe Sloth Andersen
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
- Department
of Molecular Biology and Genetics, Aarhus
University, Aarhus C 8000, Denmark
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, Eindhoven 5600 MB, the Netherlands
| | - Duncan S. Sutherland
- Interdisciplinary
Nanoscience Center, Aarhus University, Gustav Wieds Vej 14, Aarhus C 8000, Denmark
- The
Centre for Cellular Signal Patterns (CELLPAT), Gustav Wieds Vej 14, Aarhus
C 8000, Denmark
| |
Collapse
|
3
|
Izquierdo-Lozano C, van Noort N, van Veen S, Tholen MME, Grisoni F, Albertazzi L. nanoFeatures: a cross-platform application to characterize nanoparticles from super-resolution microscopy images. NANOSCALE 2024; 16:20885-20892. [PMID: 39473388 DOI: 10.1039/d4nr02573c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Super-resolution microscopy and Single-Molecule Localization Microscopy (SMLM) are powerful tools to characterize synthetic nanomaterials used for many applications such as drug delivery. In the last decade, imaging techniques like STORM, PALM, and PAINT have been used to study nanoparticle size, structure, and composition. While imaging has progressed significantly, image analysis has often not advanced accordingly and many studies remain limited to qualitative and semi-quantitative analyses. Therefore, it is imperative to have a robust and accurate method to analyze SMLM images of nanoparticles and extract quantitative features from them. Here, we introduce nanoFeatures, a cross-platform Matlab-based app for the automatic and quantitative analysis of super-resolution images. nanoFeatures makes use of clustering algorithms to identify nanoparticles from the raw data (localization list) and extract quantitative information about size, shape, and molecular abundance at the single-particle and single-molecule levels. Moreover, it applies a series of quality controls, increasing data quality and avoiding artifacts. nanoFeatures, thanks to its intuitive interface, is also accessible to non-experts and will facilitate analysis of super-resolution microscopy for materials scientists and nanotechnologies. This easy accessibility to expansive feature characterization at the single particle level will bring us one step closer to understanding the relationship between nanostructure features and their efficiency (https://github.com/n4nlab/nanoFeatures).
Collapse
Affiliation(s)
- Cristina Izquierdo-Lozano
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands.
| | - Niels van Noort
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands.
| | - Stijn van Veen
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands.
| | - Marrit M E Tholen
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands.
| | - Francesca Grisoni
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands.
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands.
| |
Collapse
|
4
|
Nooteboom SW, Okholm KR, Lamberti V, Oomen B, Sutherland DS, Zijlstra P. Rate-Engineered Plasmon-Enhanced Fluorescence for Real-Time Microsecond Dynamics of Single Biomolecules. NANO LETTERS 2024; 24:11641-11647. [PMID: 39248371 PMCID: PMC11421078 DOI: 10.1021/acs.nanolett.4c03220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Single-molecule fluorescence has revealed a wealth of biochemical processes but does not give access to submillisecond dynamics involved in transient interactions and molecular dynamics. Here we overcome this bottleneck and demonstrate record-high photon count rates of >107 photons/s from single plasmon-enhanced fluorophores. This is achieved by combining two conceptual novelties: first, we balance the excitation and decay rate enhancements by the antenna's volume, resulting in maximum fluorescence intensity. Second, we enhance the triplet decay rate using a multicomponent surface chemistry that minimizes microsecond blinking. We demonstrate applications to two exemplary molecular processes: we first reveal transient encounters and hybridization of DNA with a 1 μs temporal resolution. Second, we exploit the field gradient around the nanoparticle as a molecular ruler to reveal microsecond intramolecular dynamics of multivalent complexes. Our results pave the way toward real-time microsecond studies of biochemical processes using an implementation compatible with existing single-molecule fluorescence methods.
Collapse
Affiliation(s)
- Sjoerd W Nooteboom
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Kasper R Okholm
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- The Centre for Cellular Signal Patterns (CELLPAT), 8000 Aarhus C, Denmark
| | - Vincenzo Lamberti
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Bas Oomen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- The Centre for Cellular Signal Patterns (CELLPAT), 8000 Aarhus C, Denmark
| | - Peter Zijlstra
- Department of Applied Physics and Science Education, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Ma H, Wang Y, Li YX, Xie BK, Hu ZL, Yu RJ, Long YT, Ying YL. Label-Free Mapping of Multivalent Binding Pathways with Ligand-Receptor-Anchored Nanopores. J Am Chem Soc 2024. [PMID: 39180483 DOI: 10.1021/jacs.4c04934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Understanding single-molecule multivalent ligand-receptor interactions is crucial for comprehending molecular recognition at biological interfaces. However, label-free identifications of these transient interactions during multistep binding processes remains challenging. Herein, we introduce a ligand-receptor-anchored nanopore that allows the protein to maintain structural flexibility and favorable orientations in native states, mapping dynamic multivalent interactions. Using a four-state Markov chain model, we clarify two concentration-dependent binding pathways for the Omicron spike protein (Omicron S) and soluble angiotensin-converting enzyme 2 (sACE2): sequential and concurrent. Real-time kinetic analysis at the single-monomeric subunit level reveals that three S1 monomers of Omicron S exhibit a consistent and robust binding affinity toward sACE2 (-13.1 ± 0.2 kcal/mol). These results highlight the enhanced infectivity of Omicron S compared to other homologous spike proteins (WT S and Delta S). Notably, the preceding binding of sACE2 to Omicron S facilitates the subsequent binding steps, which was previously obscured in bulk measurements. Our single-molecule studies resolve the controversy over the disparity between the measured spike protein binding affinity with sACE2 and the viral infectivity, offering valuable insights for drug design and therapies.
Collapse
Affiliation(s)
- Hui Ma
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yongyong Wang
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ya-Xue Li
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Bao-Kang Xie
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Zheng-Li Hu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Ru-Jia Yu
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Lun Ying
- Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
6
|
Archontakis E, Dhiman S, Zhang M, Vleugels MEJ, Meijer EW, Palmans ARA, Zijlstra P, Albertazzi L. Visualizing the Heterogeneity in Homogeneous Supramolecular Polymers. J Am Chem Soc 2024; 146:19974-19985. [PMID: 38986035 PMCID: PMC11273342 DOI: 10.1021/jacs.4c03562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
The dynamic properties of supramolecular polymers enable new functionality beyond the limitations of conventional polymers. The mechanism of the monomer exchange between different supramolecular polymers is proposed to be closely associated with local disordered domains within the supramolecular polymers. However, a direct detection of such heterogeneity has never been experimentally probed. Here, we present the direct visualization of the local disordered domains in the backbone of supramolecular polymers by a super-resolution microscopy technique: Nile Red-based spectrally resolved point accumulation for imaging in nanoscale topography (NR-sPAINT). We investigate the local disordered domains in trisamide-based supramolecular polymers comprising a (co)assembly of benzene-1,3,5-tricarboxamide (BTA) and a variant with one of the amide bonds inverted (iBTA). The NR-sPAINT allows us to simultaneously map the spatial distribution and polarity of the local disordered domains along the polymers with a spatial precision down to ∼20 nm. Quantitative autocorrelation and cross-correlation analysis show subtle differences in the spatial distribution of the disordered domains between polymers composed of different variants of BTA monomers. Further, statistical analysis unraveled high heterogeneity in monomer packing at both intra- and interpolymer levels. The results reported here demonstrate the necessity of investigating the structures in soft materials at nanoscale to fully understand their intricacy.
Collapse
Affiliation(s)
- Emmanouil Archontakis
- Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Shikha Dhiman
- Laboratory
of Macromolecular and Organic Chemistry, and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Miao Zhang
- Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Marle E. J. Vleugels
- Laboratory
of Macromolecular and Organic Chemistry, and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Laboratory
of Macromolecular and Organic Chemistry, and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- School
of Chemistry and RNA Institute, The University
of New South Wales, Sydney, New South Wales 2052, Australia
| | - Anja R. A. Palmans
- Laboratory
of Macromolecular and Organic Chemistry, and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education, and Institute for Complex
Molecular Systems, Eindhoven University
of Technology, 5600MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Department
of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
7
|
Fiore A, Yu G, Northey JJ, Patel R, Ravenscroft TA, Ikegami R, Kolkman W, Kumar P, Grimm JB, Dilan TL, Ruetten VM, Ahrens MB, Shroff H, Lavis LD, Wang S, Weaver VM, Pedram K. Imaging the extracellular matrix in live tissues and organisms with a glycan-binding fluorophore. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.09.593460. [PMID: 38766047 PMCID: PMC11100790 DOI: 10.1101/2024.05.09.593460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.
Collapse
Affiliation(s)
- Antonio Fiore
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Guoqiang Yu
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jason J. Northey
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | | | - Richard Ikegami
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Wiert Kolkman
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Pratik Kumar
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Tanya L. Dilan
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | | | - Misha B. Ahrens
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Hari Shroff
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Kayvon Pedram
- Janelia Research Campus, Howard Hughes Medical Institute (HHMI), Ashburn, VA, USA
| |
Collapse
|
8
|
Tiwari ON, Bobby MN, Kondi V, Halder G, Kargarzadeh H, Ikbal AMA, Bhunia B, Thomas S, Efferth T, Chattopadhyay D, Palit P. Comprehensive review on recent trends and perspectives of natural exo-polysaccharides: Pioneering nano-biotechnological tools. Int J Biol Macromol 2024; 265:130747. [PMID: 38479657 DOI: 10.1016/j.ijbiomac.2024.130747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/22/2024] [Accepted: 03/07/2024] [Indexed: 04/18/2024]
Abstract
Exopolysaccharides (EPSs), originating from various microbes, and mushrooms, excel in their conventional role in bioremediation to showcase diverse applications emphasizing nanobiotechnology including nano-drug carriers, nano-excipients, medication and/or cell encapsulation, gene delivery, tissue engineering, diagnostics, and associated treatments. Acknowledged for contributions to adsorption, nutrition, and biomedicine, EPSs are emerging as appealing alternatives to traditional polymers, for biodegradability and biocompatibility. This article shifts away from the conventional utility to delve deeply into the expansive landscape of EPS applications, particularly highlighting their integration into cutting-edge nanobiotechnological methods. Exploring EPS synthesis, extraction, composition, and properties, the discussion emphasizes their structural diversity with molecular weight and heteropolymer compositions. Their role as raw materials for value-added products takes center stage, with critical insights into recent applications in nanobiotechnology. The multifaceted potential, biological relevance, and commercial applicability of EPSs in contemporary research and industry align with the nanotechnological advancements coupled with biotechnological nano-cleansing agents are highlighted. EPS-based nanostructures for biological applications have a bright future ahead of them. Providing crucial information for present and future practices, this review sheds light on how eco-friendly EPSs derived from microbial biomass of terrestrial and aquatic environments can be used to better understand contemporary nanobiotechnology for the benefit of society.
Collapse
Affiliation(s)
- Onkar Nath Tiwari
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Md Nazneen Bobby
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research, Vadlamudi, Andhra Pradesh 522213, India
| | - Vanitha Kondi
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Medak 502313, Telangana, India
| | - Gopinath Halder
- Department of Chemical Engineering, National Institute of Technology Durgapur, West Bengal 713209, India
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Seinkiewicza 112, 90-363 Lodz, Poland
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India
| | - Biswanath Bhunia
- Department of Bio Engineering, National Institute of Technology Agartala, Jirania 799046, India
| | - Sabu Thomas
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Priyadarshini Hills, Athirampuzha, Kerala, 686560, India; Department of Chemical Sciences, University of Johannesburg, P.O. Box, 17011, Doornfontein, 2028, Johannesburg, South Africa
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Staudinger Weg 5, 55128 Mainz, Germany
| | - Debprasad Chattopadhyay
- ICMR-National Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, India; School of Life Sciences, Swami Vivekananda University, Barrackpore, Kolkata 700102, India
| | - Partha Palit
- Department of Pharmaceutical Sciences, Drug Discovery Research Laboratory, Assam University, Silchar 788011, India.
| |
Collapse
|
9
|
Ortiz-Perez A, Zhang M, Fitzpatrick LW, Izquierdo-Lozano C, Albertazzi L. Advanced optical imaging for the rational design of nanomedicines. Adv Drug Deliv Rev 2024; 204:115138. [PMID: 37980951 DOI: 10.1016/j.addr.2023.115138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Despite the enormous potential of nanomedicines to shape the future of medicine, their clinical translation remains suboptimal. Translational challenges are present in every step of the development pipeline, from a lack of understanding of patient heterogeneity to insufficient insights on nanoparticle properties and their impact on material-cell interactions. Here, we discuss how the adoption of advanced optical microscopy techniques, such as super-resolution optical microscopies, correlative techniques, and high-content modalities, could aid the rational design of nanocarriers, by characterizing the cell, the nanomaterial, and their interaction with unprecedented spatial and/or temporal detail. In this nanomedicine arena, we will discuss how the implementation of these techniques, with their versatility and specificity, can yield high volumes of multi-parametric data; and how machine learning can aid the rapid advances in microscopy: from image acquisition to data interpretation.
Collapse
Affiliation(s)
- Ana Ortiz-Perez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Miao Zhang
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Laurence W Fitzpatrick
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Cristina Izquierdo-Lozano
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, the Netherlands.
| |
Collapse
|
10
|
Albertazzi L, Heilemann M. When Weak Is Strong: A Plea for Low-Affinity Binders for Optical Microscopy. Angew Chem Int Ed Engl 2023; 62:e202303390. [PMID: 37158582 DOI: 10.1002/anie.202303390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/10/2023]
Abstract
The exploitation of low-affinity molecular interactions in protein labeling is an emerging topic in optical microscopy. Such non-covalent and low-affinity interactions can be realized with various concepts from chemistry and for different molecule classes, and lead to a constant renewal of fluorescence signals at target sites. Further benefits are a versatile use across microscopy methods, in 3D, live and many-target applications. In recent years, several classes of low-affinity labels were developed and a variety of powerful applications demonstrated. Still, this research field is underdeveloped, while the potential is huge.
Collapse
|
11
|
Tholen MME, Tas RP, Wang Y, Albertazzi L. Beyond DNA: new probes for PAINT super-resolution microscopy. Chem Commun (Camb) 2023; 59:8332-8342. [PMID: 37306078 PMCID: PMC10318573 DOI: 10.1039/d3cc00757j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/26/2023] [Indexed: 06/13/2023]
Abstract
In the last decade, point accumulation for imaging in nanoscale topography (PAINT) has emerged as a versatile tool for single-molecule localization microscopy (SMLM). Currently, DNA-PAINT is the most widely used, in which a transient stochastically binding DNA docking-imaging pair is used to reconstruct specific characteristics of biological or synthetic materials on a single-molecule level. Slowly, the need for PAINT probes that are not dependent on DNA has emerged. These probes can be based on (i) endogenous interactions, (ii) engineered binders, (iii) fusion proteins, or (iv) synthetic molecules and provide complementary applications for SMLM. Therefore, researchers have been expanding the PAINT toolbox with new probes. In this review, we provide an overview of the currently existing probes that go beyond DNA and their applications and challenges.
Collapse
Affiliation(s)
- Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Roderick P Tas
- Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing Soft Matter, Eindhoven University of Technology, Eindhoven, 5612 AP, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
12
|
Banerjee A, Anand M, Ganji M. Labeling approaches for DNA-PAINT super-resolution imaging. NANOSCALE 2023; 15:6563-6580. [PMID: 36942769 DOI: 10.1039/d2nr06541j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Super-resolution imaging is becoming a commonly employed tool to visualize biological targets in unprecedented detail. DNA-PAINT is one of the single-molecule localization microscopy-based super-resolution imaging modalities allowing the ultra-high-resolution imaging with superior multiplexing capabilities. We discuss the importance of patterned DNA nanostructures in demonstrating the capabilities of DNA-PAINT and the design of various combinations of imager-docking strand pairs for imaging. Central to the implementation of DNA-PAINT imaging in a biological context is the generation of docking strand-conjugated binders against the target molecules. Several researchers have developed a variety of labelling probes for improving resolution while also providing multiplexing capabilities for the broader application of DNA-PAINT. This review provides a comprehensive summary of the repertoire of labelling probes used for DNA-PAINT in cells and the strategies implemented to chemically modify them with a docking strand.
Collapse
Affiliation(s)
- Abhinav Banerjee
- Department of Biochemistry, Indian Institute of Science, Malleshwaram, Bengaluru 560012, India.
| | - Micky Anand
- Department of Biochemistry, Indian Institute of Science, Malleshwaram, Bengaluru 560012, India.
| | - Mahipal Ganji
- Department of Biochemistry, Indian Institute of Science, Malleshwaram, Bengaluru 560012, India.
| |
Collapse
|
13
|
East AK, Lee MC, Jiang C, Sikander Q, Chan J. Biomimetic Approach to Promote Cellular Uptake and Enhance Photoacoustic Properties of Tumor-Seeking Dyes. J Am Chem Soc 2023; 145:7313-7322. [PMID: 36973171 PMCID: PMC10120057 DOI: 10.1021/jacs.2c13489] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The attachment of glucose to drugs and imaging agents enables cancer cell targeting via interactions with GLUT1 overexpressed on the cell surface. While an added benefit of this modification is the solubilizing effect of carbohydrates, in the context of imaging agents, aqueous solubility does not guarantee decreased π-stacking or aggregation. The resulting broadening of the absorbance spectrum is a detriment to photoacoustic (PA) imaging since the signal intensity, accuracy, and image quality all rely on reliable spectral unmixing. To address this major limitation and further enhance the tumor-targeting ability of imaging agents, we have taken a biomimetic approach to design a multivalent glucose moiety (mvGlu). We showcase the utility of this new group by developing aza-BODIPY-based contrast agents boasting a significant PA signal enhancement greater than 11-fold after spectral unmixing. Moreover, when applied to targeting cancer cells, effective staining could be achieved with ultra-low dye concentrations (50 nM) and compared to a non-targeted analogue, the signal intensity was >1000-fold higher. Lastly, we employed the mvGlu technology to develop a logic-gated acoustogenic probe to detect intratumoral copper (i.e., Cu(I)), which is an emerging cancer biomarker, in a murine model of breast cancer. This exciting application was not possible using other acoustogenic probes previously developed for copper sensing.
Collapse
Affiliation(s)
- Amanda K East
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Michael C Lee
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Chang Jiang
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Qasim Sikander
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
14
|
Ruiz-Franco J, Tauber J, van der Gucht J. Cross-linker Mobility Governs Fracture Behavior of Catch-Bonded Networks. PHYSICAL REVIEW LETTERS 2023; 130:118203. [PMID: 37001087 DOI: 10.1103/physrevlett.130.118203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/24/2023] [Indexed: 06/19/2023]
Abstract
While most chemical bonds weaken under the action of mechanical force (called slip bond behavior), nature has developed bonds that do the opposite: their lifetime increases as force is applied. While such catch bonds have been studied quite extensively at the single molecule level and in adhesive contacts, recent work has shown that they are also abundantly present as crosslinkers in the actin cytoskeleton. However, their role and the mechanism by which they operate in these networks have remained unclear. Here, we present computer simulations that show how polymer networks crosslinked with either slip or catch bonds respond to mechanical stress. Our results reveal that catch bonding may be required to protect dynamic networks against fracture, in particular for mobile linkers that can diffuse freely after unbinding. While mobile slip bonds lead to networks that are very weak at high stresses, mobile catch bonds accumulate in high stress regions and thereby stabilize cracks, leading to a more ductile fracture behavior. This allows cells to combine structural adaptivity at low stresses with mechanical stability at high stresses.
Collapse
Affiliation(s)
- José Ruiz-Franco
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, Netherlands
| | - Justin Tauber
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708WE Wageningen, Netherlands
| |
Collapse
|
15
|
de Moliner F, Konieczna Z, Mendive‐Tapia L, Saleeb RS, Morris K, Gonzalez‐Vera JA, Kaizuka T, Grant SGN, Horrocks MH, Vendrell M. Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging. Angew Chem Int Ed Engl 2023; 62:e202216231. [PMID: 36412996 PMCID: PMC10108274 DOI: 10.1002/anie.202216231] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/23/2022]
Abstract
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.
Collapse
Affiliation(s)
| | | | | | | | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | | | - Takeshi Kaizuka
- Centre for Clinical Brain SciencesThe University of EdinburghUK
| | | | | | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
16
|
de Moliner F, Konieczna Z, Mendive‐Tapia L, Saleeb RS, Morris K, Gonzalez‐Vera JA, Kaizuka T, Grant SGN, Horrocks MH, Vendrell M. Small Fluorogenic Amino Acids for Peptide-Guided Background-Free Imaging. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202216231. [PMID: 38515539 PMCID: PMC10952862 DOI: 10.1002/ange.202216231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 11/23/2022]
Abstract
The multiple applications of super-resolution microscopy have prompted the need for minimally invasive labeling strategies for peptide-guided fluorescence imaging. Many fluorescent reporters display limitations (e.g., large and charged scaffolds, non-specific binding) as building blocks for the construction of fluorogenic peptides. Herein we have built a library of benzodiazole amino acids and systematically examined them as reporters for background-free fluorescence microscopy. We have identified amine-derivatized benzoselenadiazoles as scalable and photostable amino acids for the straightforward solid-phase synthesis of fluorescent peptides. Benzodiazole amino acids retain the binding capabilities of bioactive peptides and display excellent signal-to-background ratios. Furthermore, we have demonstrated their application in peptide-PAINT imaging of postsynaptic density protein-95 nanoclusters in the synaptosomes from mouse brain tissues.
Collapse
Affiliation(s)
| | | | | | | | - Katie Morris
- EaStCHEM School of ChemistryThe University of EdinburghUK
| | | | - Takeshi Kaizuka
- Centre for Clinical Brain SciencesThe University of EdinburghUK
| | | | | | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghUK
| |
Collapse
|
17
|
Archontakis E, Deng L, Zijlstra P, Palmans ARA, Albertazzi L. Spectrally PAINTing a Single Chain Polymeric Nanoparticle at Super-Resolution. J Am Chem Soc 2022; 144:23698-23707. [PMID: 36516974 PMCID: PMC9801428 DOI: 10.1021/jacs.2c11940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Folding a polymer chain into a well-defined single-chain polymeric nanoparticle (SCPN) is a fascinating approach to obtaining structured and functional nanoparticles. Like all polymeric materials, SCPNs are heterogeneous in their nature due to the polydispersity of their synthesis: the stochastic synthesis of polymer backbone length and stochastic functionalization with hydrophobic and hydrophilic pendant groups make structural diversity inevitable. Therefore, in a single batch of SCPNs, nanoparticles with different physicochemical properties are present, posing a great challenge to their characterization at a single-particle level. The development of techniques that can elucidate differences between SCPNs at a single-particle level is imperative to capture their potential applications in different fields such as catalysis and drug delivery. Here, a Nile Red based spectral point accumulation for imaging in nanoscale topography (NR-sPAINT) super-resolution fluorescence technique was implemented for the study of SCPNs at a single-particle level. This innovative method allowed us to (i) map the small-molecule binding rates on individual SCPNs and (ii) map the polarity of individual SCPNs for the first time. The SCPN designs used here have the same polymeric backbone but differ in the number of hydrophobic groups. The experimental results show notable interparticle differences in the binding rates within the same polymer design. Moreover, a marked polarity shift between the different designs is observed. Interestingly, interparticle polarity heterogeneity was unveiled, as well as an intraparticle diversity, information which has thus far remained hidden by ensemble techniques. The results indicate that the addition of hydrophobic pendant groups is vital to determine binding properties and induces single-particle polarity diversity. Overall, NR-sPAINT represents a powerful approach to quantifying the single-particle polarity of SCPNs and paves the way to relate the structural heterogeneity to functionality at the single-particle level. This provides an important step toward the aim of rationally designing SCPNs for the desired application.
Collapse
Affiliation(s)
- Emmanouil Archontakis
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Linlin Deng
- Institute
for Complex Molecular Systems (ICMS), Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Peter Zijlstra
- Department
of Applied Physics, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems (ICMS), Laboratory of Macromolecular
and Organic Chemistry, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,
| | - Lorenzo Albertazzi
- Department
of Biomedical Engineering and Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,Nanoscopy
for Nanomedicine, Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain,
| |
Collapse
|
18
|
Mastrotto F, Pirazzini M, Negro S, Salama A, Martinez-Pomares L, Mantovani G. Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo. J Am Chem Soc 2022; 144:23134-23147. [PMID: 36472883 PMCID: PMC9782796 DOI: 10.1021/jacs.2c10757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 12/12/2022]
Abstract
The mannose receptor (CD206) is an endocytic receptor expressed by selected innate immune cells and nonvascular endothelium, which plays a critical role in both homeostasis and pathogen recognition. Although its involvement in the development of several diseases and viral infections is well established, molecular tools able to both provide insight on the chemistry of CD206-ligand interactions and, importantly, effectively modulate its activity are currently lacking. Using novel SO4-3-Gal-glycopolymers targeting its cysteine-rich lectin ectodomain, this study uncovers and elucidates a previously unknown mechanism of CD206 blockade involving the formation of stable intracellular SO4-3-Gal-glycopolymer-CD206 complexes that prevents receptor recycling to the cell membrane. Further, we show that SO4-3-Gal glycopolymers inhibit CD206 both in vitro and in vivo, revealing hitherto unknown receptor function and demonstrating their potential as CD206 modulators within future immunotherapies.
Collapse
Affiliation(s)
- Francesca Mastrotto
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- School
of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, Padova 35131, Italy
| | - Marco Pirazzini
- Department
of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department
of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Alan Salama
- Department
of Renal Medicine, University College London, London NW3 2PF, U.K.
| | | | | |
Collapse
|
19
|
Sanders EW, Carr AR, Bruggeman E, Körbel M, Benaissa SI, Donat RF, Santos AM, McColl J, O'Holleran K, Klenerman D, Davis SJ, Lee SF, Ponjavic A. resPAINT: Accelerating Volumetric Super-Resolution Localisation Microscopy by Active Control of Probe Emission. Angew Chem Int Ed Engl 2022; 61:e202206919. [PMID: 35876263 DOI: 10.1002/anie.202206919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 01/07/2023]
Abstract
Points for accumulation in nanoscale topography (PAINT) allows practically unlimited measurements in localisation microscopy but is limited by background fluorescence at high probe concentrations, especially in volumetric imaging. We present reservoir-PAINT (resPAINT), which combines PAINT and active control of probe photophysics. In resPAINT, an activatable probe "reservoir" accumulates on target, enabling a 50-fold increase in localisation rate versus conventional PAINT, without compromising contrast. By combining resPAINT with large depth-of-field microscopy, we demonstrate super-resolution imaging of entire cell surfaces. We generalise the approach by implementing various switching strategies and 3D imaging techniques. Finally, we use resPAINT with a Fab to image membrane proteins, extending the operating regime of PAINT to include a wider range of biological interactions.
Collapse
Affiliation(s)
- Edward W Sanders
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alexander R Carr
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Ezra Bruggeman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Markus Körbel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Sarah I Benaissa
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Robert F Donat
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana M Santos
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - James McColl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin O'Holleran
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, CB2 3DY, UK
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Simon J Davis
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Steven F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Aleks Ponjavic
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- School of Physics and Astronomy, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
- School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds, LS2 9JT, UK
| |
Collapse
|
20
|
Sanders EW, Carr AR, Bruggeman E, Körbel M, Benaissa SI, Donat RF, Santos AM, McColl J, O'Holleran K, Klenerman D, Davis SJ, Lee SF, Ponjavic A. resPAINT: Accelerating Volumetric Super-Resolution Localisation Microscopy by Active Control of Probe Emission. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202206919. [PMID: 38505515 PMCID: PMC10946633 DOI: 10.1002/ange.202206919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Indexed: 03/21/2024]
Abstract
Points for accumulation in nanoscale topography (PAINT) allows practically unlimited measurements in localisation microscopy but is limited by background fluorescence at high probe concentrations, especially in volumetric imaging. We present reservoir-PAINT (resPAINT), which combines PAINT and active control of probe photophysics. In resPAINT, an activatable probe "reservoir" accumulates on target, enabling a 50-fold increase in localisation rate versus conventional PAINT, without compromising contrast. By combining resPAINT with large depth-of-field microscopy, we demonstrate super-resolution imaging of entire cell surfaces. We generalise the approach by implementing various switching strategies and 3D imaging techniques. Finally, we use resPAINT with a Fab to image membrane proteins, extending the operating regime of PAINT to include a wider range of biological interactions.
Collapse
Affiliation(s)
- Edward W. Sanders
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Alexander R. Carr
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Ezra Bruggeman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Markus Körbel
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Sarah I. Benaissa
- Cambridge Advanced Imaging CentreUniversity of CambridgeCambridgeCB2 3DYUK
| | - Robert F. Donat
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - Ana M. Santos
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - James McColl
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Kevin O'Holleran
- Cambridge Advanced Imaging CentreUniversity of CambridgeCambridgeCB2 3DYUK
| | - David Klenerman
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Simon J. Davis
- Radcliffe Department of Medicine and United Kingdom Medical Research Council Human Immunology UnitJohn Radcliffe HospitalUniversity of OxfordOxfordOX3 9DSUK
| | - Steven F. Lee
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
| | - Aleks Ponjavic
- Yusuf Hamied Department of ChemistryUniversity of CambridgeCambridgeCB2 1EWUK
- School of Physics and AstronomyUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
- School of Food Science and NutritionUniversity of LeedsWoodhouse LaneLeedsLS2 9JTUK
| |
Collapse
|
21
|
Doelman W, van Kasteren SI. Synthesis of glycopeptides and glycopeptide conjugates. Org Biomol Chem 2022; 20:6487-6507. [PMID: 35903971 PMCID: PMC9400947 DOI: 10.1039/d2ob00829g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/07/2022] [Indexed: 12/16/2022]
Abstract
Protein glycosylation is a key post-translational modification important to many facets of biology. Glycosylation can have critical effects on protein conformation, uptake and intracellular routing. In immunology, glycosylation of antigens has been shown to play a role in self/non-self distinction and the effective uptake of antigens. Improperly glycosylated proteins and peptide fragments, for instance those produced by cancerous cells, are also prime candidates for vaccine design. To study these processes, access to peptides bearing well-defined glycans is of critical importance. In this review, the key approaches towards synthetic, well-defined glycopeptides, are described, with a focus on peptides useful for and used in immunological studies. Special attention is given to the glycoconjugation approaches that have been developed in recent years, as these enable rapid synthesis of various (unnatural) glycopeptides, enabling powerful carbohydrate structure/activity studies. These techniques, combined with more traditional total synthesis and chemoenzymatic methods for the production of glycopeptides, should help unravel some of the complexities of glycobiology in the near future.
Collapse
Affiliation(s)
- Ward Doelman
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | - Sander I van Kasteren
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| |
Collapse
|
22
|
Su L, Hendrikse SIS, Meijer EW. Supramolecular glycopolymers: How carbohydrates matter in structure, dynamics, and function. Curr Opin Chem Biol 2022; 69:102171. [PMID: 35749930 DOI: 10.1016/j.cbpa.2022.102171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022]
Abstract
Supramolecular glycopolymers exhibiting inherent dynamicity, tunability, and adaptivity allow us to arrive at a deeper understanding of multivalent carbohydrate-carbohydrate interactions and carbohydrate-protein interactions, both being essential to key biological events. The impacts of the carbohydrate segments in these supramolecular glycopolymers towards their structure, dynamics, and function as biomaterials are addressed in this minireview. Bottlenecks and challenges are discussed, and we speculate about possible future directions.
Collapse
Affiliation(s)
- Lu Su
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Simone I S Hendrikse
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - E W Meijer
- Institute for Complex Molecular Systems, Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven 5600 MB, the Netherlands; School of Chemistry and UNSW RNA Institute, The University of New South Wales Sydney, NSW 2052, Australia.
| |
Collapse
|