1
|
Seufert F, Pérez-Hernández G, Pándy-Szekeres G, Guixà-González R, Langenhan T, Gloriam DE, Hildebrand PW. Generic residue numbering of the GAIN domain of adhesion GPCRs. Nat Commun 2025; 16:246. [PMID: 39747076 PMCID: PMC11697300 DOI: 10.1038/s41467-024-55466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
The GPCR autoproteolysis inducing (GAIN) domain is an ancient protein fold ubiquitous in adhesion G protein-coupled receptors (aGPCR). It contains a tethered agonist necessary and sufficient for receptor activation. The GAIN domain is a hotspot for pathological mutations. However, the low primary sequence conservation of GAIN domains has thus far hindered the knowledge transfer across different GAIN domains in human receptors as well as species orthologs. Here, we present a scheme for generic residue numbering of GAIN domains, based on structural alignments of over 14,000 modeled GAIN domain structures. This scheme is implemented in the GPCR database (GPCRdb) and elucidates the domain topology across different aGPCRs and their homologs in a large panel of species. We identify conservation hotspots and statistically cancer-enriched positions in human aGPCRs and show the transferability of positional and structural information between GAIN domain homologs. The GAIN-GRN scheme provides a robust strategy to allocate structural homologies at the primary and secondary levels also to GAIN domains of polycystic kidney disease 1/PKD1-like proteins, which now renders positions in both GAIN domain types comparable to one another. In summary, our work enables researchers to generate hypothesis and rationalize experiments related to GAIN domain function and pathology.
Collapse
Affiliation(s)
- Florian Seufert
- Institute for Medical Physics and Biophysics, Leipzig University, Medical Faculty, Leipzig, Germany
| | - Guillermo Pérez-Hernández
- Institute for Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
- Medicinal Chemistry Research Group, HUN-REN Research Center for Natural Sciences, Magyar Tudósok körútja 2., Budapest, Hungary
| | - Ramon Guixà-González
- Institute for Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
- Comprehensive Cancer Center Central Germany (CCCG), Leipzig, Germany
- Institute of Biology, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark.
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Leipzig University, Medical Faculty, Leipzig, Germany.
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig, Germany.
| |
Collapse
|
2
|
Liessmann F, von Bredow L, Meiler J, Liebscher I. Targeting adhesion G protein-coupled receptors. Current status and future perspectives. Structure 2024; 32:2188-2205. [PMID: 39520987 DOI: 10.1016/j.str.2024.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/29/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
G protein-coupled receptors (GPCRs) orchestrate many physiological functions and are a crucial target in drug discovery. Adhesion GPCRs (aGPCRs), the second largest family within this superfamily, are promising yet underexplored targets for treating various diseases, including obesity, psychiatric disorders, and cancer. However, the receptors' unique and complex structure and miscellaneous interactions complicate comprehensive pharmacological studies. Despite recent progress in determining structures and elucidation of the activation mechanism, the function of many receptors remains to be determined. This review consolidates current knowledge on aGPCR ligands, focusing on small molecule orthosteric ligands and allosteric modulators identified for the ADGRGs subfamily (subfamily VIII), (GPR56/ADGRG1, GPR64/ADGRG2, GPR97/ADGRG3, GPR114/ADGRG5, GPR126/ADGRG6, and GPR128/ADGRG7). We discuss challenges in hit identification, target validation, and drug discovery, highlighting molecular compositions and recent structural breakthroughs. ADGRG ligands can offer new insights into aGPCR modulation and have significant potential for novel therapeutic interventions targeting various diseases.
Collapse
Affiliation(s)
- Fabian Liessmann
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany
| | - Lukas von Bredow
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany
| | - Jens Meiler
- Institute for Drug Discovery, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany; Center for Scalable Data Analytics and Artificial Intelligence, Leipzig University, 04105 Leipzig, Saxony, Germany; Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, Leipzig University, 04103 Leipzig, Saxony, Germany.
| |
Collapse
|
3
|
Lin H, Ma C, Zhuang X, Liu S, Liu D, Zhang M, Lu Y, Zhou G, Zhang C, Wang T, Zhang Z, Lv L, Zhang D, Ruan XZ, Xu Y, Chai R, Yu X, Sun JP, Chu B. Sensing steroid hormone 17α-hydroxypregnenolone by GPR56 enables protection from ferroptosis-induced liver injury. Cell Metab 2024; 36:2402-2418.e10. [PMID: 39389061 DOI: 10.1016/j.cmet.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
G protein-coupled receptors (GPCRs) mediate most cellular responses to hormones, neurotransmitters, and environmental stimulants. However, whether GPCRs participate in tissue homeostasis through ferroptosis remains unclear. Here we identify that GPR56/ADGRG1 renders cells resistant to ferroptosis and deficiency of GPR56 exacerbates ferroptosis-mediated liver injury induced by doxorubicin (DOX) or ischemia-reperfusion (IR). Mechanistically, GPR56 decreases the abundance of phospholipids containing free polyunsaturated fatty acids (PUFAs) by promoting endocytosis-lysosomal degradation of CD36. By screening a panel of steroid hormones, we identified that 17α-hydroxypregnenolone (17-OH PREG) acts as an agonist of GPR56 to antagonize ferroptosis and efficiently attenuates liver injury before or after insult. Moreover, disease-associated GPR56 mutants were unresponsive to 17-OH PREG activation and insufficient to defend against ferroptosis. Together, our findings uncover that 17-OH PREG-GPR56 axis-mediated signal transduction works as a new anti-ferroptotic pathway to maintain liver homeostasis, providing novel insights into the potential therapy for liver injury.
Collapse
Affiliation(s)
- Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China; Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration, Jinan 250012, China
| | - Chuanshun Ma
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiao Zhuang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shuo Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dong Liu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Mingxiang Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Yan Lu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Guangjian Zhou
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Tengwei Wang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Zihao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Lin Lv
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China
| | - Daolai Zhang
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiong-Zhong Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yunfei Xu
- Department of General Surgery, Qilu Hospital, Gheeloo College of Medicine, Shandong University, Jinan 250012, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 210096, China; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China; Department of Otolaryngology Head and Neck Surgery, Sichuan, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610000, China.
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan 250012, China; Shandong Key Laboratory of Mental Disorders and Intelligent Control, Shandong University, Jinan 250012, China.
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, and New Cornerstone Science Laboratory, Shandong University, Jinan 250012, China; NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
4
|
Suvarna K, Jayabal P, Ma X, Wang H, Chen Y, Weintraub ST, Han X, Houghton PJ, Shiio Y. Ceramide-induced cleavage of GPR64 intracellular domain drives Ewing sarcoma. Cell Rep 2024; 43:114497. [PMID: 39024100 PMCID: PMC11416865 DOI: 10.1016/j.celrep.2024.114497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Ewing sarcoma is a cancer of bone and soft tissue in children and young adults primarily driven by the EWS-FLI1 fusion oncoprotein, which has been undruggable. Here, we report that Ewing sarcoma depends on secreted sphingomyelin phosphodiesterase 1 (SMPD1), a ceramide-generating enzyme, and ceramide. We find that G-protein-coupled receptor 64 (GPR64)/adhesion G-protein-coupled receptor G2 (ADGRG2) responds to ceramide and mediates critical growth signaling in Ewing sarcoma. We show that ceramide induces the cleavage of the C-terminal intracellular domain of GPR64, which translocates to the nucleus and restrains the protein levels of RIF1 in a manner dependent on SPOP, a substrate adaptor of the Cullin3-RING E3 ubiquitin ligase. We demonstrate that both SMPD1 and GPR64 are transcriptional targets of EWS-FLI1, indicating that SMPD1 and GPR64 are EWS-FLI1-induced cytokine-receptor dependencies. These results reveal the SMPD1-ceramide-GPR64 pathway, which drives Ewing sarcoma growth and is amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Kruthi Suvarna
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Panneerselvam Jayabal
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yidong Chen
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Population Health Sciences, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Susan T Weintraub
- Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Medicine, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Molecular Medicine, The University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Yuzuru Shiio
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX 78229, USA; Department of Biochemistry and Structural Biology, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
5
|
Zhou T, Cheng J, He S, Zhang C, Gao MX, Zhang LJ, Sun JP, Zhu Y, Ai D. The sphingosine-1-phosphate receptor 1 mediates the atheroprotective effect of eicosapentaenoic acid. Nat Metab 2024; 6:1566-1583. [PMID: 38907081 DOI: 10.1038/s42255-024-01070-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/23/2024] [Indexed: 06/23/2024]
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) have been associated with potential cardiovascular benefits, partly attributed to their bioactive metabolites. However, the underlying mechanisms responsible for these advantages are not fully understood. We previously reported that metabolites of the cytochrome P450 pathway derived from eicosapentaenoic acid (EPA) mediated the atheroprotective effect of ω-3 PUFAs. Here, we show that 17,18-epoxyeicosatetraenoic acid (17,18-EEQ) and its receptor, sphingosine-1-phosphate receptor 1 (S1PR1), in endothelial cells (ECs) can inhibit oscillatory shear stress- or tumor necrosis factor-α-induced endothelial activation in cultured human ECs. Notably, the atheroprotective effect of 17,18-EEQ and purified EPA is circumvented in male mice with endothelial S1PR1 deficiency. Mechanistically, the anti-inflammatory effect of 17,18-EEQ relies on calcium release-mediated endothelial nitric oxide synthase (eNOS) activation, which is abolished upon inhibition of S1PR1 or Gq signaling. Furthermore, 17,18-EEQ allosterically regulates the conformation of S1PR1 through a polar interaction with Lys34Nter. Finally, we show that Vascepa, a prescription drug containing highly purified and stable EPA ethyl ester, exerts its cardiovascular protective effect through the 17,18-EEQ-S1PR1 pathway in male and female mice. Collectively, our findings indicate that the anti-inflammatory effect of 17,18-EEQ involves the activation of the S1PR1-Gq-Ca2+-eNOS axis in ECs, offering a potential therapeutic target against atherosclerosis.
Collapse
Affiliation(s)
- Ting Zhou
- State Key Laboratory of Experimental Hematology, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Jie Cheng
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Shuo He
- State Key Laboratory of Experimental Hematology, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Chao Zhang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Ming-Xin Gao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Li-Jun Zhang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China
| | - Jin-Peng Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and New Cornerstone Science Laboratory, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing, China.
| | - Yi Zhu
- State Key Laboratory of Experimental Hematology, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
| | - Ding Ai
- State Key Laboratory of Experimental Hematology, Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
6
|
Kuhn CK, Stenzel U, Berndt S, Liebscher I, Schöneberg T, Horn S. The repertoire and structure of adhesion GPCR transcript variants assembled from publicly available deep-sequenced human samples. Nucleic Acids Res 2024; 52:3823-3836. [PMID: 38421639 DOI: 10.1093/nar/gkae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/24/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Alternative splicing and multiple transcription start and termination sites can produce a diverse repertoire of mRNA transcript variants from a given gene. While the full picture of the human transcriptome is still incomplete, publicly available RNA datasets have enabled the assembly of transcripts. Using publicly available deep sequencing data from 927 human samples across 48 tissues, we quantified known and new transcript variants, provide an interactive, browser-based application Splice-O-Mat and demonstrate its relevance using adhesion G protein-coupled receptors (aGPCRs) as an example. On average, 24 different transcript variants were detected for each of the 33 human aGPCR genes, and several dominant transcript variants were not yet annotated. Variable transcription starts and complex exon-intron structures encode a flexible protein domain architecture of the N- and C termini and the seven-transmembrane helix domain (7TMD). Notably, we discovered the first GPCR (ADGRG7/GPR128) with eight transmembrane helices. Both the N- and C terminus of this aGPCR were intracellularly oriented, anchoring the N terminus in the plasma membrane. Moreover, the assessment of tissue-specific transcript variants, also for other gene classes, in our application may change the evaluation of disease-causing mutations, as their position in different transcript variants may explain tissue-specific phenotypes.
Collapse
Affiliation(s)
- Christina Katharina Kuhn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Udo Stenzel
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Sandra Berndt
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Department of Biochemistry, School of Medicine, University of Global Health Equity (UGHE), PO Box 6955 Kigali, Rwanda
| | - Susanne Horn
- Rudolf Schönheimer Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
- Institute of Translational Genomics, Helmholtz Zentrum München - German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
7
|
Yang Z, Wang JY, Yang F, Zhu KK, Wang GP, Guan Y, Ning SL, Lu Y, Li Y, Zhang C, Zheng Y, Zhou SH, Wang XW, Wang MW, Xiao P, Yi F, Zhang C, Zhang PJ, Xu F, Liu BH, Zhang H, Yu X, Gao N, Sun JP. Structure of GPR101-Gs enables identification of ligands with rejuvenating potential. Nat Chem Biol 2024; 20:484-492. [PMID: 37945893 DOI: 10.1038/s41589-023-01456-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
GPR101 is an orphan G protein-coupled receptor actively participating in energy homeostasis. Here we report the cryo-electron microscopy structure of GPR101 constitutively coupled to Gs heterotrimer, which reveals unique features of GPR101, including the interaction of extracellular loop 2 within the 7TM bundle, a hydrophobic chain packing-mediated activation mechanism and the structural basis of disease-related mutants. Importantly, a side pocket is identified in GPR101 that facilitates in silico screening to identify four small-molecule agonists, including AA-14. The structure of AA-14-GPR101-Gs provides direct evidence of the AA-14 binding at the side pocket. Functionally, AA-14 partially restores the functions of GH/IGF-1 axis and exhibits several rejuvenating effects in wild-type mice, which are abrogated in Gpr101-deficient mice. In summary, we provide a structural basis for the constitutive activity of GPR101. The structure-facilitated identification of GPR101 agonists and functional analysis suggest that targeting this orphan receptor has rejuvenating potential.
Collapse
Affiliation(s)
- Zhao Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun-Yan Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
| | - Fan Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kong-Kai Zhu
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Guo-Peng Wang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Ying Guan
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shang-Lei Ning
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Lu
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yu Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Chao Zhang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Zheng
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Shu-Hua Zhou
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin-Wen Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ming-Wei Wang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Peng Xiao
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fan Yi
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Pharmacology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Cheng Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Peng-Ju Zhang
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Bao-Hua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SKL-SAI), School of Basic Medical Sciences, Shenzhen University, Shenzhen, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| | - Jin-Peng Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu Hospital of Shandong University, and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, China.
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China.
| |
Collapse
|
8
|
Mao C, Zhao RJ, Dong YJ, Gao M, Chen LN, Zhang C, Xiao P, Guo J, Qin J, Shen DD, Ji SY, Zang SK, Zhang H, Wang WW, Shen Q, Sun JP, Zhang Y. Conformational transitions and activation of the adhesion receptor CD97. Mol Cell 2024; 84:570-583.e7. [PMID: 38215752 DOI: 10.1016/j.molcel.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/23/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) are evolutionarily ancient receptors involved in a variety of physiological and pathophysiological processes. Modulators of aGPCR, particularly antagonists, hold therapeutic promise for diseases like cancer and immune and neurological disorders. Hindered by the inactive state structural information, our understanding of antagonist development and aGPCR activation faces challenges. Here, we report the cryo-electron microscopy structures of human CD97, a prototypical aGPCR that plays crucial roles in immune system, in its inactive apo and G13-bound fully active states. Compared with other family GPCRs, CD97 adopts a compact inactive conformation with a constrained ligand pocket. Activation induces significant conformational changes for both extracellular and intracellular sides, creating larger cavities for Stachel sequence binding and G13 engagement. Integrated with functional and metadynamics analyses, our study provides significant mechanistic insights into the activation and signaling of aGPCRs, paving the way for future drug discovery efforts.
Collapse
Affiliation(s)
- Chunyou Mao
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Ru-Jia Zhao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ying-Jun Dong
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mingxin Gao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Li-Nan Chen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Chao Zhang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Jia Guo
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jiao Qin
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Dan-Dan Shen
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Su-Yu Ji
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shao-Kun Zang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Huibing Zhang
- Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Wei-Wei Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Qingya Shen
- Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China
| | - Jin-Peng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Yan Zhang
- Center for Structural Pharmacology and Therapeutics Development, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; Department of Biophysics and Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
9
|
Cheng L, Xia F, Li Z, Shen C, Yang Z, Hou H, Sun S, Feng Y, Yong X, Tian X, Qin H, Yan W, Shao Z. Structure, function and drug discovery of GPCR signaling. MOLECULAR BIOMEDICINE 2023; 4:46. [PMID: 38047990 PMCID: PMC10695916 DOI: 10.1186/s43556-023-00156-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/05/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are versatile and vital proteins involved in a wide array of physiological processes and responses, such as sensory perception (e.g., vision, taste, and smell), immune response, hormone regulation, and neurotransmission. Their diverse and essential roles in the body make them a significant focus for pharmaceutical research and drug development. Currently, approximately 35% of marketed drugs directly target GPCRs, underscoring their prominence as therapeutic targets. Recent advances in structural biology have substantially deepened our understanding of GPCR activation mechanisms and interactions with G-protein and arrestin signaling pathways. This review offers an in-depth exploration of both traditional and recent methods in GPCR structure analysis. It presents structure-based insights into ligand recognition and receptor activation mechanisms and delves deeper into the mechanisms of canonical and noncanonical signaling pathways downstream of GPCRs. Furthermore, it highlights recent advancements in GPCR-related drug discovery and development. Particular emphasis is placed on GPCR selective drugs, allosteric and biased signaling, polyphamarcology, and antibody drugs. Our goal is to provide researchers with a thorough and updated understanding of GPCR structure determination, signaling pathway investigation, and drug development. This foundation aims to propel forward-thinking therapeutic approaches that target GPCRs, drawing upon the latest insights into GPCR ligand selectivity, activation, and biased signaling mechanisms.
Collapse
Affiliation(s)
- Lin Cheng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000, China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyan Li
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chenglong Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hanlin Hou
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Suyue Sun
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuying Feng
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xihao Yong
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaowen Tian
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongxi Qin
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Zhenhua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu, 610212, China.
| |
Collapse
|
10
|
Kleinau G, Ali AH, Wiechert F, Szczepek M, Schmidt A, Spahn CMT, Liebscher I, Schöneberg T, Scheerer P. Intramolecular activity regulation of adhesion GPCRs in light of recent structural and evolutionary information. Pharmacol Res 2023; 197:106971. [PMID: 38032292 DOI: 10.1016/j.phrs.2023.106971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
The class B2 of GPCRs known as adhesion G protein-coupled receptors (aGPCRs) has come under increasing academic and nonacademic research focus over the past decade due to their physiological importance as mechano-sensors in cell-cell and cell-matrix contexts. A major advance in understanding signal transduction of aGPCRs was achieved by the identification of the so-called Stachel sequence, which acts as an intramolecular agonist at the interface between the N terminus (Nt) and the seven-transmembrane helix domain (7TMD). Distinct extracellular signals received by the Nt are integrated at the Stachel into structural changes of the 7TMD towards an active state conformation. Until recently, little information was available on how the activation process of aGPCRs is realized at the molecular level. In the past three years several structures of the 7TMD plus the Stachel in complex with G proteins have been determined, which provide new insights into the architecture and molecular function of this receptor class. Herein, we review this structural information to extract common and distinct aGPCR features with particular focus on the Stachel binding site within the 7TMD. Our analysis extends the current view of aGPCR activation and exposes similarities and differences not only between diverse aGPCR members, but also compared to other GPCR classes.
Collapse
Affiliation(s)
- Gunnar Kleinau
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Amal Hassan Ali
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Franziska Wiechert
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Michal Szczepek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Andrea Schmidt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany
| | - Christian M T Spahn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Berlin, Germany
| | - Ines Liebscher
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Johannisallee 30, 04103 Leipzig, Germany
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Johannisallee 30, 04103 Leipzig, Germany; School of Medicine, University of Global Health Equity (UGHE), Kigali, Rwanda.
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular Signaling, Charitéplatz 1, D-10117 Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
| |
Collapse
|
11
|
Fu C, Huang W, Tang Q, Niu M, Guo S, Langenhan T, Song G, Yan J. Unveiling Mechanical Activation: GAIN Domain Unfolding and Dissociation in Adhesion GPCRs. NANO LETTERS 2023; 23:9179-9186. [PMID: 37831892 PMCID: PMC10607210 DOI: 10.1021/acs.nanolett.3c01163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/04/2023] [Indexed: 10/15/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) have extracellular regions (ECRs) containing GPCR autoproteolysis-inducing (GAIN) domains. The GAIN domain enables the ECR to self-cleave into N- and C-terminal fragments. However, the impact of force on the GAIN domain's conformation, critical for mechanosensitive aGPCR activation, remains unclear. Our study investigated the mechanical stability of GAIN domains in three aGPCRs (B, G, and L subfamilies) at a loading rate of 1 pN/s. We discovered that forces of a few piconewtons can destabilize the GAIN domains. In autocleaved aGPCRs ADGRG1/GPR56 and ADGRL1/LPHN1, these forces cause the GAIN domain detachment from the membrane-proximal Stachel sequence, preceded by partial unfolding. In noncleavable aGPCR ADGRB3/BAI3 and cleavage-deficient mutant ADGRG1/GPR56-T383G, complex mechanical unfolding of the GAIN domain occurs. Additionally, GAIN domain detachment happens during cell migration. Our findings support the mechanical activation hypothesis of aGPCRs, emphasizing the sensitivity of the GAIN domain structure and detachment to physiological force ranges.
Collapse
Affiliation(s)
- Chaoyu Fu
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Wenmao Huang
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Qingnan Tang
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
| | - Minghui Niu
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shiwen Guo
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
| | - Tobias Langenhan
- Rudolf
Schönheimer Institute of Biochemistry, Division of General
Biochemistry, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Gaojie Song
- School
of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jie Yan
- Department
of Physics, National University of Singapore, Singapore 117551, Singapore
- Mechanobiology
Institute, National University of Singapore, Singapore 117411, Singapore
- Centre
for Bioimaging Sciences, National University
of Singapore, Singapore 117557, Singapore
- Joint
School of National University of Singapore and Tianjin University,
International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
12
|
Kiyozumi D, Ikawa M. Adhesion G protein-coupled receptor G2 is dispensable for lumicrine signaling regulating epididymal initial segment differentiation and gene expression†. Biol Reprod 2023; 109:474-481. [PMID: 37531264 PMCID: PMC10577274 DOI: 10.1093/biolre/ioad087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023] Open
Abstract
The mammalian epididymis is the organ for functional sperm maturation. In rodents, the initial segment, the most proximal region of the epididymis, plays a critical role in sperm maturation. The luminal epithelial differentiation and the following gene expression of the initial segment are regulated by the lumicrine signaling, a testis-epididymis transluminal secreted signaling. Adhesion G protein-coupled receptor G2 (ADGRG2) is expressed in the efferent duct and the initial segment epididymis. In the preceding study, Adgrg2 ablation decreased the expression of several genes expressed in the initial segment. Such downregulated genes include those known to be regulated by lumicrine signaling, suggesting the involvement of ADGRG2 in lumicrine signaling. The present study examined whether ADGRG2 is associated with the lumicrine signaling regulating epididymal initial segment differentiation and gene expression. Adgrg2-null mice were generated by CRISPR/CAS9-mediated genome editing. The postnatal differentiation of the Adgrg2-null male epididymal initial segment was histologically comparable with that of control wild-type animals. The RNA-seq of Adgrg2-null mice was performed together with those of efferent duct-ligated and W/Wv mice in both of which lumicrine signaling is defective. The comparative transcriptome analyses clarified that the expressions of genes expressed in the initial segment and regulated by lumicrine signaling were decreased by Adgrg2 nullification. However, the extent of such downregulations observed in Adgrg2-null epididymis was not so prominent compared with those of lumicrine signaling deficient Nell2-/-, efferent duct-ligated, or W/Wv mice. Collectively, these findings indicate that ADGRG2 is dispensable for the lumicrine regulation of epididymal initial segment differentiation.
Collapse
Affiliation(s)
- Daiji Kiyozumi
- Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi
, Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
13
|
Guo L, Zhang Y, Fang G, Tie L, Zhuang Y, Xue C, Liu Q, Zhang M, Zhu K, You C, Xu P, Yuan Q, Zhang C, Liu L, Rong N, Peng S, Liu Y, Wang C, Luo X, Lv Z, Kang D, Yu X, Zhang C, Jiang Y, Dong X, Zhou J, Liu Z, Yang F, Eric Xu H, Sun JP. Ligand recognition and G protein coupling of the human itch receptor MRGPRX1. Nat Commun 2023; 14:5004. [PMID: 37591889 PMCID: PMC10435460 DOI: 10.1038/s41467-023-40705-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/08/2023] [Indexed: 08/19/2023] Open
Abstract
MRGPRX1, a Mas-related GPCR (MRGPR), is a key receptor for itch perception and targeting MRGPRX1 may have potential to treat both chronic itch and pain. Here we report cryo-EM structures of the MRGPRX1-Gi1 and MRGPRX1-Gq trimers in complex with two peptide ligands, BAM8-22 and CNF-Tx2. These structures reveal a shallow orthosteric pocket and its conformational plasticity for sensing multiple different peptidic itch allergens. Distinct from MRGPRX2, MRGPRX1 contains a unique pocket feature at the extracellular ends of TM3 and TM4 to accommodate the peptide C-terminal "RF/RY" motif, which could serve as key mechanisms for peptidic allergen recognition. Below the ligand binding pocket, the G6.48XP6.50F6.51G6.52X(2)F/W6.55 motif is essential for the inward tilting of the upper end of TM6 to induce receptor activation. Moreover, structural features inside the ligand pocket and on the cytoplasmic side of MRGPRX1 are identified as key elements for both Gi and Gq signaling. Collectively, our studies provide structural insights into understanding itch sensation, MRGPRX1 activation, and downstream G protein signaling.
Collapse
Affiliation(s)
- Lulu Guo
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Yumu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Guoxing Fang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Lu Tie
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China
| | - Yuming Zhuang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Chenyang Xue
- Department of Immunology and Microbiology, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qi Liu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minghui Zhang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Kongkai Zhu
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Chongzhao You
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peiyu Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qingning Yuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chao Zhang
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Lei Liu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Naikang Rong
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China
| | - Shengxuan Peng
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuan Liu
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chuanzheng Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Luo
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongyao Lv
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dongwei Kang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiuyao Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Zhongmin Liu
- Department of Immunology and Microbiology, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Fan Yang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| | - H Eric Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Jin-Peng Sun
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory of Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, Shandong University School of Medicine, Jinan, China.
- Department of Pharmacology, School of Basic Medical Sciences, Peking University and Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing, China.
| |
Collapse
|
14
|
Seufert F, Chung YK, Hildebrand PW, Langenhan T. 7TM domain structures of adhesion GPCRs: what's new and what's missing? Trends Biochem Sci 2023; 48:726-739. [PMID: 37349240 DOI: 10.1016/j.tibs.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/05/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
Adhesion-type G protein-coupled receptors (aGPCRs) have long resisted approaches to resolve the structural details of their heptahelical transmembrane (7TM) domains. Single-particle cryogenic electron microscopy (cryo-EM) has recently produced aGPCR 7TM domain structures for ADGRD1, ADGRG1, ADGRG2, ADGRG3, ADGRG4, ADGRG5, ADGRF1, and ADGRL3. We review the unique properties, including the position and conformation of their activating tethered agonist (TA) and signaling motifs within the 7TM bundle, that the novel structures have helped to identify. We also discuss questions that the kaleidoscope of novel aGPCR 7TM domain structures have left unanswered. These concern the relative positions, orientations, and interactions of the 7TM and GPCR autoproteolysis-inducing (GAIN) domains with one another. Clarifying their interplay remains an important goal of future structural studies on aGPCRs.
Collapse
Affiliation(s)
- Florian Seufert
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Yin Kwan Chung
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany; Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
15
|
Sze JY. A gut feeling. Nat Chem Biol 2023; 19:125-126. [PMID: 36216994 DOI: 10.1038/s41589-022-01152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ji Y Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
16
|
Disarming the pathogen. Nat Chem Biol 2023; 19:5-6. [PMID: 36175660 DOI: 10.1038/s41589-022-01133-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Clark BJ, Klinge CM. Structure-function of DHEA binding proteins. VITAMINS AND HORMONES 2022; 123:587-617. [PMID: 37717999 DOI: 10.1016/bs.vh.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dehydroepiandrosterone (3β-hydroxy-5-androsten-17-one, DHEA) and its sulfated metabolite DHEA-S are the most abundant circulating steroids and are precursors for active sex steroid hormones, estradiol and testosterone. DHEA has a broad range of reported effects in the central nervous system (CNS), cardiovascular system, adipose tissue, kidney, liver, and in the reproductive system. The mechanisms by which DHEA and DHEA-S initiate their biological effects are diverse. DHEA and DHEA-S may directly bind to plasma membrane (PM) receptors, including a DHEA-specific, G-protein coupled receptor (GPCR) in endothelial cells; various neuroreceptors, e.g., aminobutyric-acid-type A (GABA(A)), N-methyl-d-aspartate (NMDA) and sigma-1 (S1R) receptors (NMDAR and SIG-1R). DHEA and DHEA-S directly bind the nuclear androgen and estrogen receptors (AR, ERα, or ERβ) although with significantly lower binding affinities compared to the steroid hormones, e.g., testosterone, dihydrotestosterone, and estradiol, which are the cognate ligands for AR and ERs. Thus, extra-gonadal metabolism of DHEA to the sex hormones must be considered for many of the biological benefits of DHEA. DHEA also actives GPER1 (G protein coupled estrogen receptor 1). DHEA activates constitutive androstane receptor CAR (CAR) and proliferator activated receptor (PPARα) by indirect dephosphorylation. DHEA affects voltage-gated sodium and calcium ion channels and DHEA-2 activates TRPM3 (Transient Receptor Potential Cation Channel Subfamily M Member 3). This chapter updates our previous 2018 review pertaining to the physiological, biochemical, and molecular mechanisms of DHEA and DHEA-S activity.
Collapse
Affiliation(s)
- Barbara J Clark
- Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States
| | - Carolyn M Klinge
- Department of Biochemistry & Molecular Genetics, Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville School of Medicine, Louisville, KY, United States.
| |
Collapse
|