1
|
Manna S, Agrawal R, Yadav T, Kumar TA, Kumari P, Dalai A, Kanade S, Balasubramanian N, Singh A, Chakrapani H. Orthogonal Persulfide Generation through Precision Tools Provides Insights into Mitochondrial Sulfane Sulfur. Angew Chem Int Ed Engl 2024; 63:e202411133. [PMID: 39091222 DOI: 10.1002/anie.202411133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
The sulfane sulfur pool, comprised of persulfide (RS-SH) and polysulfide (RS-SnH) derived from hydrogen sulfide (H2S), has emerged as a major player in redox biochemistry. Mitochondria, besides energy generation, serve as significant cellular redox hubs, mediate stress response and cellular health. However, the effects of endogenous mitochondrial sulfane sulfur (MSS) remain largely uncharacterized as compared with their cytosolic counterparts, cytosolic sulfane sulfur (CSS). To investigate this, we designed a novel artificial substrate for mitochondrial 3-mercaptopyruvate sulfurtransferase (3-MST), a key enzyme involved in MSS biosynthesis. Using cells expressing a mitochondrion-localized persulfide biosensor, we demonstrate this tool's ability to selectively enhance MSS. While H2S was previously known to suppress human immunodeficiency virus (HIV-1), we found that MSS profoundly affected the HIV-1 life cycle, mediating viral reactivation from latency. Additionally, we provide evidence for the role of the host's mitochondrial redox state, membrane potential, apoptosis, and respiration rates in managing HIV-1 latency and reactivation. Together, dynamic fluctuations in the MSS pool have a significant and possibly conflicting effect on HIV-1 viral latency. The precision tools developed herein allow for orthogonal generation of persulfide within both mitochondria and the cytosol and will be useful in interrogating disease biology.
Collapse
Affiliation(s)
- Suman Manna
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Ragini Agrawal
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Tarun Yadav
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - T Anand Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Pooja Kumari
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Aadishakti Dalai
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Shaunak Kanade
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Nagaraj Balasubramanian
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| | - Amit Singh
- Department of Microbiology and Cell Biology, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, Karnataka, 560012, India
| | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, 411008, India
| |
Collapse
|
2
|
Pandey T, Kaundal RS, Pandey V. Biophysical characterization of hydrogen sulfide: A fundamental exploration in understanding significance in cell signaling. Biophys Chem 2024; 314:107317. [PMID: 39236424 DOI: 10.1016/j.bpc.2024.107317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
Hydrogen sulfide (H₂S) has emerged as a significant signaling molecule involved in various physiological processes, including vasodilation, neurotransmission, and cytoprotection. Its interactions with biomolecules are critical to understand its roles in health and disease. Recent advances in biophysical characterization techniques have shed light on the complex interactions of H₂S with proteins, nucleic acids, and lipids. Proteins are primary targets for H₂S, which can modify cysteine residues through S-sulfhydration, impacting protein function and signaling pathways. Advanced spectroscopic techniques, such as mass spectrometry and NMR, have enabled the identification of specific sulfhydrated sites and provided insights into the structural and functional consequences of these modifications. Nucleic acids also interact with H₂S, although this area is less explored compared to proteins. Recent studies have demonstrated that H₂S can induce modifications in nucleic acids, affecting gene expression and stability. Techniques like gel electrophoresis and fluorescence spectroscopy have been utilized to investigate these interactions, revealing that H₂S can protect DNA from oxidative damage and modulate RNA stability and function. Lipids, being integral components of cell membranes, interact with H₂S, influencing membrane fluidity and signaling. Biophysical techniques such as electron paramagnetic resonance (EPR) and fluorescence microscopy have elucidated the effects of H₂S on lipid membranes. These studies have shown that H₂S can alter lipid packing and dynamics, which may impact membrane-associated signaling pathways and cellular responses to stress. In the current work we have integrated this with key scientific explainations to provide a comprehensive review.
Collapse
Affiliation(s)
- Tejasvi Pandey
- Department of Forensic Sciences, School for Bioengineering and Biosciences Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Rajinder Singh Kaundal
- Department of Physics, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Vivek Pandey
- Department of Chemistry, School for Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| |
Collapse
|
3
|
Hayashi M, Okazaki K, Papgiannakopoulos T, Motohashi H. The Complex Roles of Redox and Antioxidant Biology in Cancer. Cold Spring Harb Perspect Med 2024; 14:a041546. [PMID: 38772703 PMCID: PMC11529857 DOI: 10.1101/cshperspect.a041546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Redox reactions control fundamental biochemical processes, including energy production, metabolism, respiration, detoxification, and signal transduction. Cancer cells, due to their generally active metabolism for sustained proliferation, produce high levels of reactive oxygen species (ROS) compared to normal cells and are equipped with antioxidant defense systems to counteract the detrimental effects of ROS to maintain redox homeostasis. The KEAP1-NRF2 system plays a major role in sensing and regulating endogenous antioxidant defenses in both normal and cancer cells, creating a bivalent contribution of NRF2 to cancer prevention and therapy. Cancer cells hijack the NRF2-dependent antioxidant program and exploit a very unique metabolism as a trade-off for enhanced antioxidant capacity. This work provides an overview of redox metabolism in cancer cells, highlighting the role of the KEAP1-NRF2 system, selenoproteins, sulfur metabolism, heme/iron metabolism, and antioxidants. Finally, we describe therapeutic approaches that can be leveraged to target redox metabolism in cancer.
Collapse
Affiliation(s)
- Makiko Hayashi
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Keito Okazaki
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | | | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
4
|
Moseler A, Wagner S, Meyer AJ. Protein persulfidation in plants: mechanisms and functions beyond a simple stress response. Biol Chem 2024:hsz-2024-0038. [PMID: 39303198 DOI: 10.1515/hsz-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH). The precise cellular mechanisms underlying the presumed persulfide signaling in plants are, however, only beginning to emerge. In the mitochondrial matrix, strict regulation of persulfidation and H2S homeostasis is of prime importance for maintaining mitochondrial bioenergetic processes because H2S is a highly potent poison for cytochrome c oxidase. This review summarizes the current knowledge about protein persulfidation and corresponding processes in mitochondria of the model plant Arabidopsis. These processes will be compared to the respective processes in non-plant models to underpin similarities or highlight apparent differences. We provide an overview of mitochondrial pathways that contribute to H2S and protein persulfide generation and mechanisms for H2S fixation and de-persulfidation. Based on current proteomic data, we compile a plant mitochondrial persulfidome and discuss how persulfidation may regulate protein function.
Collapse
Affiliation(s)
- Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
5
|
Martínez-Cenalmor P, Martínez AE, Moneo-Corcuera D, González-Jiménez P, Pérez-Sala D. Oxidative stress elicits the remodeling of vimentin filaments into biomolecular condensates. Redox Biol 2024; 75:103282. [PMID: 39079387 PMCID: PMC11338992 DOI: 10.1016/j.redox.2024.103282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/21/2024] [Accepted: 07/21/2024] [Indexed: 08/23/2024] Open
Abstract
The intermediate filament protein vimentin performs an essential role in cytoskeletal interplay and dynamics, mechanosensing and cellular stress responses. In pathology, vimentin is a key player in tumorigenesis, fibrosis and infection. Vimentin filaments undergo distinct and versatile reorganizations, and behave as redox sensors. The vimentin monomer possesses a central α-helical rod domain flanked by N- and C-terminal low complexity domains. Interactions between this type of domains play an important function in the formation of phase-separated biomolecular condensates, which in turn are critical for the organization of cellular components. Here we show that several oxidants, including hydrogen peroxide and diamide, elicit the remodeling of vimentin filaments into small particles. Oxidative stress elicited by diamide induces a fast dissociation of filaments into circular, motile dots, which requires the presence of the single vimentin cysteine residue, C328. This effect is reversible, and filament reassembly can occur within minutes of oxidant removal. Diamide-elicited vimentin droplets recover fluorescence after photobleaching. Moreover, fusion of cells expressing differentially tagged vimentin allows the detection of dots positive for both tags, indicating that vimentin dots merge upon cell fusion. The aliphatic alcohol 1,6-hexanediol, known to alter interactions between low complexity domains, readily dissolves diamide-elicited vimentin dots at low concentrations, in a C328 dependent manner, and hampers reassembly. Taken together, these results indicate that vimentin oxidation promotes a fast and reversible filament remodeling into biomolecular condensate-like structures, and provide primary evidence of its regulated phase separation. Moreover, we hypothesize that filament to droplet transition could play a protective role against irreversible damage of the vimentin network by oxidative stress.
Collapse
Affiliation(s)
- Paula Martínez-Cenalmor
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040, Madrid, Spain
| | - Alma E Martínez
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040, Madrid, Spain
| | - Diego Moneo-Corcuera
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040, Madrid, Spain
| | - Patricia González-Jiménez
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Department of Cellular and Molecular Biosciences, Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Li K, Zakharov LN, Pluth MD. Synthesis, Characterization, and Reactivity of a Synthetic End-On Cobalt(II) Alkyl Persulfide Complex as a Model Platform for Thiolate Persulfidation. J Am Chem Soc 2024; 146:21999-22007. [PMID: 39044627 DOI: 10.1021/jacs.4c07276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Persulfides (RSS-) are ubiquitous source of sulfides (S2-) in biology, and interactions between RSS- and bioinorganic metal centers play critical roles in biological hydrogen sulfide (H2S) biogenesis, signaling, and catabolism. Here, we report the use of contact-ion stabilized [Na(15-crown-5)][tBuSS] (1) as a simple synthon to access rare metal alkyl persulfide complexes and to investigate the reactivity of RSS- with transition metal centers to provide insights into metal thiolate persulfidation, including the fundamental difference between alkyl persulfides and alkyl thiolates. Reaction of 1 with [CoII(TPA)(OTf)]+ afforded the η1-alkyl persulfide complex [CoII(TPA)(SStBu)]+ (2), which was characterized by X-ray crystallography, UV-vis spectroscopy, and Raman spectroscopy. RSS- coordination to the Lewis acidic Co2+ center provided additional stability to the S-S bond, as evidenced by a significant increase in the Raman stretching frequency for 2 (vS-S = 522 cm-1, ΔvS-S = 66 cm-1). The effect of persulfidation on metal center redox potentials was further elucidated using cyclic voltammetry, in which the Co2+ → Co3+ oxidation potential of 2 (Ep,a = +89 mV vs SCE) is lowered by nearly 700 mV when compared to the corresponding thiolate complex [CoII(TPA)(StBu)]+ (3) (Ep,a = +818 mV vs SCE), despite persulfidation being generally seen as an oxidative post-translational modification. The reactivity of 2 toward reducing agents including PPh3, BH4-, and biologically relevant thiol reductant DTT led to different S2- output pathways, including formation of a dinuclear 2Co-2SH complex [CoII2(TPA)2(μ2-SH)2]2+(4).
Collapse
Affiliation(s)
- Keyan Li
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Lev N Zakharov
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
7
|
Pedre B. A guide to genetically-encoded redox biosensors: State of the art and opportunities. Arch Biochem Biophys 2024; 758:110067. [PMID: 38908743 DOI: 10.1016/j.abb.2024.110067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Genetically-encoded redox biosensors have become invaluable tools for monitoring cellular redox processes with high spatiotemporal resolution, coupling the presence of the redox-active analyte with a change in fluorescence signal that can be easily recorded. This review summarizes the available fluorescence recording methods and presents an in-depth classification of the redox biosensors, organized by the analytes they respond to. In addition to the fluorescent protein-based architectures, this review also describes the recent advances on fluorescent, chemigenetic-based redox biosensors and other emerging chemigenetic strategies. This review examines how these biosensors are designed, the biosensors sensing mechanism, and their practical advantages and disadvantages.
Collapse
Affiliation(s)
- Brandán Pedre
- Biochemistry, Molecular and Structural Biology Unit, Department of Chemistry, KU Leuven, Belgium.
| |
Collapse
|
8
|
Stoltzfus AT, Ballot JG, Vignane T, Li H, Worth MM, Muller L, Siegler MA, Kane MA, Filipovic MR, Goldberg DP, Michel SLJ. Chemoselective Proteomics, Zinc Fingers, and a Zinc(II) Model for H 2S Mediated Persulfidation. Angew Chem Int Ed Engl 2024; 63:e202401003. [PMID: 38808693 PMCID: PMC11346292 DOI: 10.1002/anie.202401003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 05/30/2024]
Abstract
The gasotransmitter hydrogen sulfide (H2S) is thought to be involved in the post-translational modification of cysteine residues to produce reactive persulfides. A persulfide-specific chemoselective proteomics approach with mammalian cells has identified a broad range of zinc finger (ZF) proteins as targets of persulfidation. Parallel studies with isolated ZFs show that persulfidation is mediated by ZnII, O2, and H2S, with intermediates involving oxygen- and sulfur-based radicals detected by mass spectrometry and optical spectroscopies. A small molecule ZnII complex exhibits analogous reactivity with H2S and O2, giving a persulfidated product. These data show that ZnII is not just a biological structural element, but also plays a critical role in mediating H2S-dependent persulfidation. ZF persulfidation appears to be a general post-translational modification and a possible conduit for H2S signaling. This work has implications for our understanding of H2S-mediated signaling and the regulation of ZFs in cellular physiology and development.
Collapse
Affiliation(s)
- Andrew T. Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Jasper G. Ballot
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
| | - Thibaut Vignane
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V. Dortmund, Germany, 44139
| | - Haoju Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Madison M. Worth
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Ludovic Muller
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Maxime A. Siegler
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Milos R. Filipovic
- Leibniz-Institut für Analytische Wissenschaften—ISAS—e.V. Dortmund, Germany, 44139
| | - David P. Goldberg
- Department of Chemistry, Johns Hopkins University, 3400 N Charles Street, Baltimore, MD, 21218, USA
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| |
Collapse
|
9
|
Kaleta K, Janik K, Rydz L, Wróbel M, Jurkowska H. Bridging the Gap in Cancer Research: Sulfur Metabolism of Leukemic Cells with a Focus on L-Cysteine Metabolism and Hydrogen Sulfide-Producing Enzymes. Biomolecules 2024; 14:746. [PMID: 39062461 PMCID: PMC11274876 DOI: 10.3390/biom14070746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/12/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Leukemias are cancers of the blood-forming system, representing a significant challenge in medical science. The development of leukemia cells involves substantial disturbances within the cellular machinery, offering hope in the search for effective selective treatments that could improve the 5-year survival rate. Consequently, the pathophysiological processes within leukemia cells are the focus of critical research. Enzymes such as cystathionine beta-synthase and sulfurtransferases like thiosulfate sulfurtransferase, 3-mercaptopyruvate sulfurtransferase, and cystathionine gamma-lyase play a vital role in cellular sulfur metabolism. These enzymes are essential to maintaining cellular homeostasis, providing robust antioxidant defenses, and supporting cell division. Numerous studies have demonstrated that cancerous processes can alter the expression and activity of these enzymes, uncovering potential vulnerabilities or molecular targets for cancer therapy. Recent laboratory research has indicated that certain leukemia cell lines may exhibit significant changes in the expression patterns of these enzymes. Analysis of the scientific literature and online datasets has confirmed variations in sulfur enzyme function in specific leukemic cell lines compared to normal leukocytes. This comprehensive review collects and analyzes available information on sulfur enzymes in normal and leukemic cell lines, providing valuable insights and identifying new research pathways in this field.
Collapse
Affiliation(s)
- Konrad Kaleta
- Students’ Scientific Group of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland;
| | - Klaudia Janik
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Leszek Rydz
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Maria Wróbel
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| | - Halina Jurkowska
- Chair of Medical Biochemistry, Faculty of Medicine, Jagiellonian University Medical College, 7 Kopernika St., 31-034 Krakow, Poland; (K.J.); (L.R.); (M.W.)
| |
Collapse
|
10
|
Li H, Stoltzfus AT, Michel SLJ. Mining proteomes for zinc finger persulfidation. RSC Chem Biol 2024; 5:572-585. [PMID: 38846077 PMCID: PMC11151867 DOI: 10.1039/d3cb00106g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/03/2023] [Indexed: 06/09/2024] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gasotransmitter that signals via persulfidation. There is evidence that the cysteine residues of certain zinc finger (ZF) proteins, a common type of cysteine rich protein, are modified to persulfides by H2S. To determine how frequently ZF persulfidation occurs in cells and identify the types of ZFs that are persulfidated, persulfide specific proteomics data were evaluated. 22 datasets from 16 studies were analyzed via a meta-analysis approach. Persulfidated ZFs were identified in a range of eukaryotic species, including Homo sapiens, Mus musculus, Rattus norvegicus, Arabidopsis thaliana, and Emiliania huxley (single-celled phytoplankton). The types of ZFs identified for each species encompassed all three common ZF ligand sets (4-cysteine, 3-cysteine-1-histidine, and 2-cysteine-2-hisitidine), indicating that persulfidation of ZFs is broad. Overlap analysis between different species identified several common ZFs. GO and KEGG analysis identified pathway enrichment for ubiquitin-dependent protein catabolic process and viral carcinogenesis. These collective findings support ZF persulfidation as a wide-ranging PTM that impacts all classes of ZFs.
Collapse
Affiliation(s)
- Haoju Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore MD 21201 USA
| | - Andrew T Stoltzfus
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore MD 21201 USA
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy Baltimore MD 21201 USA
| |
Collapse
|
11
|
Salti T, Braunstein I, Haimovich Y, Ziv T, Benhar M. Widespread S-persulfidation in activated macrophages as a protective mechanism against oxidative-inflammatory stress. Redox Biol 2024; 72:103125. [PMID: 38574432 PMCID: PMC11000178 DOI: 10.1016/j.redox.2024.103125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
Acute inflammatory responses often involve the production of reactive oxygen and nitrogen species by innate immune cells, particularly macrophages. How activated macrophages protect themselves in the face of oxidative-inflammatory stress remains a long-standing question. Recent evidence implicates reactive sulfur species (RSS) in inflammatory responses; however, how endogenous RSS affect macrophage function and response to oxidative and inflammatory insults remains poorly understood. In this study, we investigated the endogenous pathways of RSS biogenesis and clearance in macrophages, with a particular focus on exploring how hydrogen sulfide (H2S)-mediated S-persulfidation influences macrophage responses to oxidative-inflammatory stress. We show that classical activation of mouse or human macrophages using lipopolysaccharide and interferon-γ (LPS/IFN-γ) triggers substantial production of H2S/RSS, leading to widespread protein persulfidation. Biochemical and proteomic analyses revealed that this surge in cellular S-persulfidation engaged ∼2% of total thiols and modified over 800 functionally diverse proteins. S-persulfidation was found to be largely dependent on the cystine importer xCT and the H2S-generating enzyme cystathionine γ-lyase and was independent of changes in the global proteome. We further investigated the role of the sulfide-oxidizing enzyme sulfide quinone oxidoreductase (SQOR), and found that it acts as a negative regulator of S-persulfidation. Elevated S-persulfidation following LPS/IFN-γ stimulation or SQOR inhibition was associated with increased resistance to oxidative stress. Upregulation of persulfides also inhibited the activation of the macrophage NLRP3 inflammasome and provided protection against inflammatory cell death. Collectively, our findings shed light on the metabolism and effects of RSS in macrophages and highlight the crucial role of persulfides in enabling macrophages to withstand and alleviate oxidative-inflammatory stress.
Collapse
Affiliation(s)
- Talal Salti
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ilana Braunstein
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yael Haimovich
- Smoler Proteomics Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center and Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Moran Benhar
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
12
|
Matyasova K, Soltysova A, Babula P, Krizanova O, Liskova V. Role of the 3-mercaptopyruvate sulfurtransferase in colon/colorectal cancers. Eur J Cell Biol 2024; 103:151415. [PMID: 38631098 DOI: 10.1016/j.ejcb.2024.151415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024] Open
Abstract
The 3-mercaptopyruvate sulfurtransferase (MPST) is a protein persulfidase, occurring mainly in mitochondria. Although function of this protein in cancer cells has been already studied, no clear outcome can be postulated up to now. Therefore, we focused on the determination of function of MPST in colon (HCT116 cells)/colorectal (DLD1 cells) cancers. In silico analysis revealed that in gastrointestinal cancers, MPST together with its binding partners can be either of a high risk or might have a protective effect. Silencing of MPST gene resulted in decreased ATP, while acetyl-CoA levels were elevated. Increased apoptosis was detected in cells with silenced MPST gene, which was accompanied by decrease in mitochondrial membrane potential, but no changes in IP3 receptor's protein. Mitochondria underwent activation of fission and elevated DRP1 expression after MPST silencing. Proliferation and migration of DLD1 and HCT116 cells were markedly affected, showing the importance of MPST protein in colon/colorectal cancer development.
Collapse
Affiliation(s)
- Katarina Matyasova
- Institute of Clinical and Translational Research, Biomedical Research Center, SAS, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrea Soltysova
- Institute of Clinical and Translational Research, Biomedical Research Center, SAS, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Olga Krizanova
- Institute of Clinical and Translational Research, Biomedical Research Center, SAS, Slovak Academy of Sciences, Bratislava, Slovakia; Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
| | - Veronika Liskova
- Institute of Clinical and Translational Research, Biomedical Research Center, SAS, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
13
|
Sprenger HG, Mittenbühler MJ, Sun Y, Van Vranken JG, Schindler S, Jayaraj A, Khetarpal SA, Vargas-Castillo A, Puszynska AM, Spinelli JB, Armani A, Kunchok T, Ryback B, Seo HS, Song K, Sebastian L, O'Young C, Braithwaite C, Dhe-Paganon S, Burger N, Mills EL, Gygi SP, Arthanari H, Chouchani ET, Sabatini DM, Spiegelman BM. Ergothioneine boosts mitochondrial respiration and exercise performance via direct activation of MPST. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588849. [PMID: 38645260 PMCID: PMC11030429 DOI: 10.1101/2024.04.10.588849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Ergothioneine (EGT) is a diet-derived, atypical amino acid that accumulates to high levels in human tissues. Reduced EGT levels have been linked to age-related disorders, including neurodegenerative and cardiovascular diseases, while EGT supplementation is protective in a broad range of disease and aging models in mice. Despite these promising data, the direct and physiologically relevant molecular target of EGT has remained elusive. Here we use a systematic approach to identify how mitochondria remodel their metabolome in response to exercise training. From this data, we find that EGT accumulates in muscle mitochondria upon exercise training. Proteome-wide thermal stability studies identify 3-mercaptopyruvate sulfurtransferase (MPST) as a direct molecular target of EGT; EGT binds to and activates MPST, thereby boosting mitochondrial respiration and exercise training performance in mice. Together, these data identify the first physiologically relevant EGT target and establish the EGT-MPST axis as a molecular mechanism for regulating mitochondrial function and exercise performance.
Collapse
|
14
|
Koike S, Ogasawara Y. Analysis and characterization of sulfane sulfur. Anal Biochem 2024; 687:115458. [PMID: 38182032 DOI: 10.1016/j.ab.2024.115458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/16/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
In the late 1970s, sulfane sulfur was defined as sulfur atoms covalently bound only to sulfur atoms. However, this definition was not generally accepted, as it was slightly vague and difficult to comprehend. Thus, in the early 1990s, it was defined as "bound sulfur," which easily converts to hydrogen sulfide upon reduction with a thiol-reducing agent. H2S-related bound sulfur species include persulfides (R-SSH), polysulfides (H2Sn, n ≥ 2 or R-S(S)nS-R, n ≥ 1), and protein-bound elemental sulfur (S0). Many of the biological effects currently associated with H2S may be attributed to persulfides and polysulfides. In the 20th century, quantitative determination of "sulfane sulfur" was conventionally performed using a reaction called cyanolysis. Several methods have been developed over the past 30 years. Current methods used for the detection of H2S and polysulfides include colorimetric assays for methylene blue formation, sulfide ion-selective or polarographic electrodes, gas chromatography with flame photometric or sulfur chemiluminescence detection, high-performance liquid chromatography analysis with fluorescent derivatization of sulfides, liquid chromatography with tandem mass spectrometry, the biotin switch technique, and the use of sulfide or polysulfide-sensitive fluorescent probes. In this review, we discuss the methods reported to date for measuring sulfane sulfur and the results obtained using these methods.
Collapse
Affiliation(s)
- Shin Koike
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| |
Collapse
|
15
|
Borbényi-Galambos K, Czikora Á, Erdélyi K, Nagy P. Versatile roles of cysteine persulfides in tumor biology. Curr Opin Chem Biol 2024; 79:102440. [PMID: 38422870 DOI: 10.1016/j.cbpa.2024.102440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Rewiring the transsulfuration pathway is recognized as a rapid adaptive metabolic response to environmental conditions in cancer cells to support their increased cysteine demand and to produce Reactive Sulfur Species (RSS) including hydrogen sulfide (H2S) and cysteine persulfide. This can directly (via RSS) or indirectly (by supplying Cys) trigger chemical or enzyme catalyzed persulfidation on critical protein cysteine residues to protect them from oxidative damage and to orchestrate protein functions, and thereby contribute to cancer cell plasticity. In this review key aspects of persulfide-mediated biological processes are highlighted and critically discussed in relation to cancer cell survival, bioenergetics, proliferation as well as in tumor angiogenesis, adaptation to hypoxia and oxidative stress, and regulation of epithelial to mesenchymal transition.
Collapse
Affiliation(s)
- Klaudia Borbényi-Galambos
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hajdú-Bihar County, 4032, Hungary
| | - Ágnes Czikora
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Katalin Erdélyi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, 1122, Hungary; Department of Anatomy and Histology, HUN-REN-UVMB Laboratory of Redox Biology Research Group, University of Veterinary Medicine, Budapest, 1078, Hungary; Chemistry Institute, University of Debrecen, Debrecen, Hajdú-Bihar County, 4012, Hungary.
| |
Collapse
|
16
|
Pérez-Sala D, Quinlan RA. The redox-responsive roles of intermediate filaments in cellular stress detection, integration and mitigation. Curr Opin Cell Biol 2024; 86:102283. [PMID: 37989035 DOI: 10.1016/j.ceb.2023.102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/18/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
Intermediate filaments are critical for cell and tissue homeostasis and for stress responses. Cytoplasmic intermediate filaments form versatile and dynamic assemblies that interconnect cellular organelles, participate in signaling and protect cells and tissues against stress. Here we have focused on their involvement in redox signaling and oxidative stress, which arises in numerous pathophysiological situations. We pay special attention to type III intermediate filaments, mainly vimentin, because it provides a physical interface for redox signaling, stress responses and mechanosensing. Vimentin possesses a single cysteine residue that is a target for multiple oxidants and electrophiles. This conserved residue fine tunes vimentin assembly, response to oxidative stress and crosstalk with other cellular structures. Here we integrate evidence from the intermediate filament and redox biology fields to propose intermediate filaments as redox sentinel networks of the cell. To support this, we appraise how vimentin detects and orchestrates cellular responses to oxidative and electrophilic stress.
Collapse
Affiliation(s)
- Dolores Pérez-Sala
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, C.S.I.C., 28040 Madrid, Spain.
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy Science Site, Durham, United Kingdom; Biophysical Sciences Institute, University of Durham, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, WA, United States.
| |
Collapse
|
17
|
Nishimura A, Yoon S, Matsunaga T, Ida T, Jung M, Ogata S, Morita M, Yoshitake J, Unno Y, Barayeu U, Takata T, Takagi H, Motohashi H, van der Vliet A, Akaike T. Longevity control by supersulfide-mediated mitochondrial respiration and regulation of protein quality. Redox Biol 2024; 69:103018. [PMID: 38199039 PMCID: PMC10821618 DOI: 10.1016/j.redox.2023.103018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Supersulfides, which are defined as sulfur species with catenated sulfur atoms, are increasingly being investigated in biology. We recently identified pyridoxal phosphate (PLP)-dependent biosynthesis of cysteine persulfide (CysSSH) and related supersulfides by cysteinyl-tRNA synthetase (CARS). Here, we investigated the physiological role of CysSSH in budding yeast (Saccharomyces cerevisiae) by generating a PLP-binding site mutation K109A in CRS1 (the yeast ortholog of CARS), which decreased the synthesis of CysSSH and related supersulfides and also led to reduced chronological aging, effects that were associated with an increased endoplasmic reticulum stress response and impaired mitochondrial bioenergetics. Reduced chronological aging in the K109A mutant could be rescued by using exogenous supersulfide donors. Our findings indicate important roles for CARS in the production and metabolism of supersulfides-to mediate mitochondrial function and to regulate longevity.
Collapse
Affiliation(s)
- Akira Nishimura
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan; Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan.
| | - Sunghyeon Yoon
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan; Organization for Research Promotion, Osaka Metropolitan University, Osaka, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Seiryo Ogata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Yoshitake
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuka Unno
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsuyoshi Takata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| |
Collapse
|
18
|
Kimura H. Hydrogen Sulfide (H 2S)/Polysulfides (H 2S n) Signalling and TRPA1 Channels Modification on Sulfur Metabolism. Biomolecules 2024; 14:129. [PMID: 38275758 PMCID: PMC10813152 DOI: 10.3390/biom14010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Hydrogen sulfide (H2S) and polysulfides (H2Sn, n ≥ 2) produced by enzymes play a role as signalling molecules regulating neurotransmission, vascular tone, cytoprotection, inflammation, oxygen sensing, and energy formation. H2Sn, which have additional sulfur atoms to H2S, and other S-sulfurated molecules such as cysteine persulfide and S-sulfurated cysteine residues of proteins, are produced by enzymes including 3-mercaptopyruvate sulfurtransferase (3MST). H2Sn are also generated by the chemical interaction of H2S with NO, or to a lesser extent with H2O2. S-sulfuration (S-sulfhydration) has been proposed as a mode of action of H2S and H2Sn to regulate the activity of target molecules. Recently, we found that H2S/H2S2 regulate the release of neurotransmitters, such as GABA, glutamate, and D-serine, a co-agonist of N-methyl-D-aspartate (NMDA) receptors. H2S facilitates the induction of hippocampal long-term potentiation, a synaptic model of memory formation, by enhancing the activity of NMDA receptors, while H2S2 achieves this by activating transient receptor potential ankyrin 1 (TRPA1) channels in astrocytes, potentially leading to the activation of nearby neurons. The recent findings show the other aspects of TRPA1 channels-that is, the regulation of the levels of sulfur-containing molecules and their metabolizing enzymes. Disturbance of the signalling by H2S/H2Sn has been demonstrated to be involved in various diseases, including cognitive and psychiatric diseases. The physiological and pathophysiological roles of these molecules will be discussed.
Collapse
Affiliation(s)
- Hideo Kimura
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Dori, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| |
Collapse
|
19
|
Barayeu U, Sawa T, Nishida M, Wei FY, Motohashi H, Akaike T. Supersulfide biology and translational medicine for disease control. Br J Pharmacol 2023. [PMID: 37872133 DOI: 10.1111/bph.16271] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/27/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023] Open
Abstract
For decades, the major focus of redox biology has been oxygen, the most abundant element on Earth. Molecular oxygen functions as the final electron acceptor in the mitochondrial respiratory chain, contributing to energy production in aerobic organisms. In addition, oxygen-derived reactive oxygen species including hydrogen peroxide and nitrogen free radicals, such as superoxide, hydroxyl radical and nitric oxide radical, undergo a complicated sequence of electron transfer reactions with other biomolecules, which lead to their modified physiological functions and diverse biological and pathophysiological consequences (e.g. oxidative stress). What is now evident is that oxygen accounts for only a small number of redox reactions in organisms and knowledge of biological redox reactions is still quite limited. This article reviews a new aspects of redox biology which is governed by redox-active sulfur-containing molecules-supersulfides. We define the term 'supersulfides' as sulfur species with catenated sulfur atoms. Supersulfides were determined to be abundant in all organisms, but their redox biological properties have remained largely unexplored. In fact, the unique chemical properties of supersulfides permit them to be readily ionized or radicalized, thereby allowing supersulfides to actively participate in redox reactions and antioxidant responses in cells. Accumulating evidence has demonstrated that supersulfides are indispensable for fundamental biological processes such as energy production, nucleic acid metabolism, protein translation and others. Moreover, manipulation of supersulfide levels was beneficial for pathogenesis of various diseases. Thus, supersulfide biology has opened a new era of disease control that includes potential applications to clinical diagnosis, prevention and therapeutics of diseases.
Collapse
Grants
- 22K19397 Ministry of Education, Culture, Sports, Science and Technology
- 21H05263 Ministry of Education, Culture, Sports, Science and Technology
- 18H05277 Ministry of Education, Culture, Sports, Science and Technology
- 21H04799 Ministry of Education, Culture, Sports, Science and Technology
- 21H05264 Ministry of Education, Culture, Sports, Science and Technology
- 21H05265 Ministry of Education, Culture, Sports, Science and Technology
- 21H02659 Ministry of Education, Culture, Sports, Science and Technology
- JPMJER2002 Ministry of Education, Culture, Sports, Science and Technology
- JPMJFR205Y Ministry of Education, Culture, Sports, Science and Technology
- 22K19395 Ministry of Education, Culture, Sports, Science and Technology
- 22H02772 Ministry of Education, Culture, Sports, Science and Technology
- 21H05269 Ministry of Education, Culture, Sports, Science and Technology
- 21H05267 Ministry of Education, Culture, Sports, Science and Technology
- 21H02071 Ministry of Education, Culture, Sports, Science and Technology
- 21H05258 Ministry of Education, Culture, Sports, Science and Technology
- JPMJCR2024 Japan Science and Technology Agency
- PE23749 Japan Society for the Promotion of Science
- JP21zf0127001 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
- Uladzimir Barayeu
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Motohiro Nishida
- Department of Physiology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Fan-Yan Wei
- Department of Modomics Biology and Medicine, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Japan
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
Giedroc DP, Antelo GT, Fakhoury JN, Capdevila DA. Sensing and regulation of reactive sulfur species (RSS) in bacteria. Curr Opin Chem Biol 2023; 76:102358. [PMID: 37399745 PMCID: PMC10526684 DOI: 10.1016/j.cbpa.2023.102358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 07/05/2023]
Abstract
The infected host deploys generalized oxidative stress caused by small inorganic reactive molecules as antibacterial weapons. An emerging consensus is that hydrogen sulfide (H2S) and forms of sulfur with sulfur-sulfur bonds termed reactive sulfur species (RSS) provide protection against oxidative stressors and antibiotics, as antioxidants. Here, we review our current understanding of RSS chemistry and its impact on bacterial physiology. We start by describing the basic chemistry of these reactive species and the experimental approaches developed to detect them in cells. We highlight the role of thiol persulfides in H2S-signaling and discuss three structural classes of ubiquitous RSS sensors that tightly regulate cellular H2S/RSS levels in bacteria, with a specific focus on the chemical specificity of these sensors.
Collapse
Affiliation(s)
- David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | - Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| | - Joseph N Fakhoury
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
21
|
Pis Diez CM, Antelo GT, Dalia TN, Dalia AB, Giedroc DP, Capdevila DA. Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in Vibrio cholerae. J Biol Chem 2023; 299:105147. [PMID: 37567478 PMCID: PMC10509353 DOI: 10.1016/j.jbc.2023.105147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023] Open
Abstract
The vertebrate host's immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae, sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass spectrometry-based profiling, metabolomics, expression assays, and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular forms of sulfur with sulfur-sulfur bonds, termed reactive sulfur species (RSS). We first present a comprehensive sequence similarity network analysis of the arsenic repressor superfamily of transcriptional regulators, where RSS and hydrogen peroxide sensors segregate into distinct clusters of sequences. We show that HlyU, transcriptional activator of hlyA in V. cholerae, belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity or DNA dissociation following treatment with glutathione disulfide or hydrogen peroxide. Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA. However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.
Collapse
Affiliation(s)
- Cristian M Pis Diez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina; Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Giuliano T Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina; Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Triana N Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Ankur B Dalia
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA.
| | - Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
22
|
Głowacka U, Magierowski M, Śliwowski Z, Cieszkowski J, Szetela M, Wójcik-Grzybek D, Chmura A, Brzozowski T, Wallace JL, Magierowska K. Hydrogen Sulfide-Releasing Indomethacin-Derivative (ATB-344) Prevents the Development of Oxidative Gastric Mucosal Injuries. Antioxidants (Basel) 2023; 12:1545. [PMID: 37627540 PMCID: PMC10452022 DOI: 10.3390/antiox12081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Hydrogen sulfide (H2S) emerged recently as an anti-oxidative signaling molecule that contributes to gastrointestinal (GI) mucosal defense and repair. Indomethacin belongs to the class of non-steroidal anti-inflammatory drugs (NSAIDs) and is used as an effective intervention in the treatment of gout- or osteoarthritis-related inflammation. However, its clinical use is strongly limited since indomethacin inhibits gastric mucosal prostaglandin (PG) biosynthesis, predisposing to or even inducing ulcerogenesis. The H2S moiety was shown to decrease the GI toxicity of some NSAIDs. However, the GI safety and anti-oxidative effect of a novel H2S-releasing indomethacin derivative (ATB-344) remain unexplored. Thus, we aimed here to compare the impact of ATB-344 and classic indomethacin on gastric mucosal integrity and their ability to counteract the development of oxidative gastric mucosal injuries. Wistar rats were pretreated intragastrically (i.g.) with vehicle, ATB-344 (7-28 mg/kg i.g.), or indomethacin (5-20 mg/kg i.g.). Next, animals were exposed to microsurgical gastric ischemia-reperfusion (I/R). Gastric damage was assessed micro- and macroscopically. The volatile H2S level was assessed in the gastric mucosa using the modified methylene blue method. Serum and gastric mucosal PGE2 and 8-hydroxyguanozine (8-OHG) concentrations were evaluated by ELISA. Molecular alterations for gastric mucosal barrier-specific targets such as cyclooxygenase-1 (COX)-1, COX-2, heme oxygenase-1 (HMOX)-1, HMOX-2, superoxide dismutase-1 (SOD)-1, SOD-2, hypoxia inducible factor (HIF)-1α, xanthine oxidase (XDH), suppressor of cytokine signaling 3 (SOCS3), CCAAT enhancer binding protein (C/EBP), annexin A1 (ANXA1), interleukin 1 beta (IL-1β), interleukin 1 receptor type I (IL-1R1), interleukin 1 receptor type II (IL-1R2), inducible nitric oxide synthase (iNOS), tumor necrosis factor receptor 2 (TNFR2), or H2S-producing enzymes, cystathionine γ-lyase (CTH), cystathionine β-synthase (CBS), or 3-mercaptopyruvate sulfur transferase (MPST), were assessed at the mRNA level by real-time PCR. ATB-344 (7 mg/kg i.g.) reduced the area of gastric I/R injuries in contrast to an equimolar dose of indomethacin. ATB-344 increased gastric H2S production, did not affect gastric mucosal PGE2 content, prevented RNA oxidation, and maintained or enhanced the expression of oxidation-sensitive HMOX-1 and SOD-2 in line with decreased IL-1β and XDH. We conclude that due to the H2S-releasing ability, i.g., treatment with ATB-344 not only exerts dose-dependent GI safety but even enhances gastric mucosal barrier capacity to counteract acute oxidative injury development when applied at a low dose of 7 mg/kg, in contrast to classic indomethacin. ATB-344 (7 mg/kg) inhibited COX activity on a systemic level but did not affect cytoprotective PGE2 content in the gastric mucosa and, as a result, evoked gastroprotection against oxidative damage.
Collapse
Affiliation(s)
- Urszula Głowacka
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Kraków, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Zbigniew Śliwowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Jakub Cieszkowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Małgorzata Szetela
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Dagmara Wójcik-Grzybek
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Anna Chmura
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| | - John L. Wallace
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Katarzyna Magierowska
- Department of Physiology, Jagiellonian University Medical College, 16 Grzegórzecka Street, 31-531 Kraków, Poland
| |
Collapse
|
23
|
Vignane T, Filipovic MR. Emerging Chemical Biology of Protein Persulfidation. Antioxid Redox Signal 2023; 39:19-39. [PMID: 37288744 PMCID: PMC10433728 DOI: 10.1089/ars.2023.0352] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Significance: Protein persulfidation (the formation of RSSH), an evolutionarily conserved oxidative posttranslational modification in which thiol groups in cysteine residues are converted into persulfides, has emerged as one of the main mechanisms through which hydrogen sulfide (H2S) conveys its signaling. Recent Advances: New methodological advances in persulfide labeling started unraveling the chemical biology of this modification and its role in (patho)physiology. Some of the key metabolic enzymes are regulated by persulfidation. RSSH levels are important for the cellular defense against oxidative injury, and they decrease with aging, leaving proteins vulnerable to oxidative damage. Persulfidation is dysregulated in many diseases. Critical Issues: A relatively new field of signaling by protein persulfidation still has many unanswered questions: the mechanism(s) of persulfide formation and transpersulfidation and the identification of "protein persulfidases," the improvement of methods to monitor RSSH changes and identify protein targets, and understanding the mechanisms through which this modification controls important (patho)physiological functions. Future Directions: Deep mechanistic studies using more selective and sensitive RSSH labeling techniques will provide high-resolution structural, functional, quantitative, and spatiotemporal information on RSSH dynamics and help with better understanding how H2S-derived protein persulfidation affects protein structure and function in health and disease. This knowledge could pave the way for targeted drug design for a wide variety of pathologies. Antioxid. Redox Signal. 39, 19-39.
Collapse
Affiliation(s)
- Thibaut Vignane
- Leibniz Institute for Analytical Sciences, ISAS e.V., Dortmund, Germany
| | | |
Collapse
|
24
|
Fukuto JM. The chemistry of hydropersulfides (RSSH) as related to possible physiological functions. Arch Biochem Biophys 2023:109659. [PMID: 37263465 DOI: 10.1016/j.abb.2023.109659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/03/2023]
Abstract
Hydropersulfides (RSSH) are oxidized thiol (RSH) derivatives that have been shown to be biologically prevalent with likely important functions (along with other polysulfur compounds). The functional utility of RSSH can be gleaned from their unique chemical properties. That is, RSSH possess chemical reactivity not present in other biologically relevant sulfur species that should allow them to be used in specific ways in biology as effector/signaling molecules. For example, compared to RSH, RSSH are considered to be superior nucleophiles, reductants and metal ligands. Moreover, unlike RSH, RSSH can be either reductants/nucleophiles or oxidants/electrophiles depending on the protonated state. It has also become clear that studies related to the chemical biology and physiology of hydrogen suflide (H2S) must also consider the effects of RSSH (and related polysulfur species) as they are biochemically linked. Herein is a discussion of the relevant chemistry of RSSH that can serve as a basis for understanding how RSSH can be used by cells to, for example, combat stresses and used in signaling. Also, discussed are some current experimental studies regarding the biological activity of RSSH that can be explained by their chemical properties.
Collapse
Affiliation(s)
- Jon M Fukuto
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Chemistry, Sonoma State University, Rohnert Park, CA, 94928, USA.
| |
Collapse
|
25
|
Zainol Abidin QH, Ida T, Morita M, Matsunaga T, Nishimura A, Jung M, Hassan N, Takata T, Ishii I, Kruger W, Wang R, Motohashi H, Tsutsui M, Akaike T. Synthesis of Sulfides and Persulfides Is Not Impeded by Disruption of Three Canonical Enzymes in Sulfur Metabolism. Antioxidants (Basel) 2023; 12:antiox12040868. [PMID: 37107243 PMCID: PMC10135671 DOI: 10.3390/antiox12040868] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Reactive sulfur species, or persulfides and polysulfides, such as cysteine hydropersulfide and glutathione persulfide, are endogenously produced in abundance in both prokaryotes and eukaryotes, including mammals. Various forms of reactive persulfides occur in both low-molecular-weight and protein-bound thiols. The chemical properties and great supply of these molecular species suggest a pivotal role for reactive persulfides/polysulfides in different cellular regulatory processes (e.g., energy metabolism and redox signaling). We demonstrated earlier that cysteinyl-tRNA synthetase (CARS) is a new cysteine persulfide synthase (CPERS) and is responsible for the in vivo production of most reactive persulfides (polysulfides). Some researchers continue to suggest that 3-mercaptopyruvate sulfurtransferase (3-MST), cystathionine β-synthase (CBS), and cystathionine γ-lyase (CSE) may also produce hydrogen sulfide and persulfides that may be generated during the transfer of sulfur from 3-mercaptopyruvate to the cysteine residues of 3-MST or direct synthesis from cysteine by CBS/CSE, respectively. We thus used integrated sulfur metabolome analysis, which we recently developed, with 3-MST knockout (KO) mice and CBS/CSE/3-MST triple-KO mice, to elucidate the possible contribution of 3-MST, CBS, and CSE to the production of reactive persulfides in vivo. We therefore quantified various sulfide metabolites in organs derived from these mutant mice and their wild-type littermates via this sulfur metabolome, which clearly revealed no significant difference between mutant mice and wild-type mice in terms of reactive persulfide production. This result indicates that 3-MST, CBS, and CSE are not major sources of endogenous reactive persulfide production; rather, CARS/CPERS is the principal enzyme that is actually involved in and even primarily responsible for the biosynthesis of reactive persulfides and polysulfides in vivo in mammals.
Collapse
Affiliation(s)
- Qamarul Hafiz Zainol Abidin
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomoaki Ida
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masanobu Morita
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tetsuro Matsunaga
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Nishimura
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Minkyung Jung
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Naim Hassan
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tsuyoshi Takata
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Warren Kruger
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA 19111-2497, USA
| | - Rui Wang
- Faculty of Science, York University, Toronto, ON M3J 1P3, Canada
| | - Hozumi Motohashi
- Department of Gene Expression Regulation, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Masato Tsutsui
- Department of Pharmacology, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Takaaki Akaike
- Department of Environmental Medicine and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
26
|
Pis Diez CM, Antelo GT, Dalia TN, Dalia AB, Giedroc DP, Capdevila DA. Increased intracellular persulfide levels attenuate HlyU-mediated hemolysin transcriptional activation in Vibrio cholerae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532278. [PMID: 36993174 PMCID: PMC10054925 DOI: 10.1101/2023.03.13.532278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The vertebrate host’s immune system and resident commensal bacteria deploy a range of highly reactive small molecules that provide a barrier against infections by microbial pathogens. Gut pathogens, such as Vibrio cholerae , sense and respond to these stressors by modulating the expression of exotoxins that are crucial for colonization. Here, we employ mass-spectrometry-based profiling, metabolomics, expression assays and biophysical approaches to show that transcriptional activation of the hemolysin gene hlyA in V. cholerae is regulated by intracellular reactive sulfur species (RSS), specifically sulfane sulfur. We first present a comprehensive sequence similarity network analysis of the arsenic repressor (ArsR) superfamily of transcriptional regulators where RSS and reactive oxygen species (ROS) sensors segregate into distinct clusters. We show that HlyU, transcriptional activator of hlyA in V. cholerae , belongs to the RSS-sensing cluster and readily reacts with organic persulfides, showing no reactivity and remaining DNA-bound following treatment with various ROS in vitro, including H 2 O 2 . Surprisingly, in V. cholerae cell cultures, both sulfide and peroxide treatment downregulate HlyU-dependent transcriptional activation of hlyA . However, RSS metabolite profiling shows that both sulfide and peroxide treatment raise the endogenous inorganic sulfide and disulfide levels to a similar extent, accounting for this crosstalk, and confirming that V. cholerae attenuates HlyU-mediated activation of hlyA in a specific response to intracellular RSS. These findings provide new evidence that gut pathogens may harness RSS-sensing as an evolutionary adaptation that allows them to overcome the gut inflammatory response by modulating the expression of exotoxins.
Collapse
Affiliation(s)
- Cristian M. Pis Diez
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Giuliano T. Antelo
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Triana N. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - Ankur B. Dalia
- Department of Biology, Indiana University, Bloomington, IN 47405-7102, USA
| | - David P. Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Daiana A. Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405BWE Ciudad Autónoma de, Buenos Aires, Argentina
| |
Collapse
|