1
|
Williams JPC, Mouilleron S, Trapero RH, Bertran MT, Marsh JA, Walport LJ. Structural insight into the function of human peptidyl arginine deiminase 6. Comput Struct Biotechnol J 2024; 23:3258-3269. [PMID: 39286527 PMCID: PMC11402830 DOI: 10.1016/j.csbj.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Peptidyl arginine deiminase 6 (PADI6 or PAD6) is vital for early embryonic development in mice and humans, yet its function remains elusive. PADI6 is less conserved than other PADIs and it is currently unknown whether it has a catalytic function. Here we show that human PADI6 dimerises like hPADIs 2-4, however, does not bind Ca2+ and is inactive in in vitro assays against standard PADI substrates. By determining the crystal structure of hPADI6, we show that hPADI6 is structured in the absence of Ca2+ where hPADI2 and hPADI4 are not, and the Ca-binding sites are not conserved. Moreover, we show that whilst the key catalytic aspartic acid and histidine residues are structurally conserved, the cysteine is displaced far from the active site centre and the hPADI6 active site pocket appears closed through a unique evolved mechanism in hPADI6, not present in the other PADIs. Taken together, these findings provide insight into how the function of hPADI6 may differ from the other PADIs based on its structure and provides a resource for characterising the damaging effect of clinically significant PADI6 variants.
Collapse
Affiliation(s)
- Jack P C Williams
- Department of Chemistry, Imperial College London, London, United Kingdom
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Stephane Mouilleron
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
| | - Rolando Hernandez Trapero
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - M Teresa Bertran
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Louise J Walport
- Department of Chemistry, Imperial College London, London, United Kingdom
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
2
|
Bertran MT, Walmsley R, Cummings T, Aramburu IV, Benton DJ, Mora Molina R, Assalaarachchi J, Chasampalioti M, Swanton T, Joshi D, Federico S, Okkenhaug H, Yu L, Oxley D, Walker S, Papayannopoulos V, Suga H, Christophorou MA, Walport LJ. A cyclic peptide toolkit reveals mechanistic principles of peptidylarginine deiminase IV regulation. Nat Commun 2024; 15:9746. [PMID: 39528459 PMCID: PMC11555231 DOI: 10.1038/s41467-024-53554-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Peptidylarginine deiminase IV (PADI4, PAD4) deregulation promotes the development of autoimmunity, cancer, atherosclerosis and age-related tissue fibrosis. PADI4 additionally mediates immune responses and cellular reprogramming, although the full extent of its physiological roles is unexplored. Despite detailed molecular knowledge of PADI4 activation in vitro, we lack understanding of its regulation within cells, largely due to a lack of appropriate systems and tools. Here, we develop and apply a set of potent and selective PADI4 modulators. Using the mRNA-display-based RaPID system, we screen >1012 cyclic peptides for high-affinity, conformation-selective binders. We report PADI4_3, a cell-active inhibitor specific for the active conformation of PADI4; PADI4_7, an inert binder, which we functionalise for the isolation and study of cellular PADI4; and PADI4_11, a cell-active PADI4 activator. Structural studies with PADI4_11 reveal an allosteric binding mode that may reflect the mechanism that promotes cellular PADI4 activation. This work contributes to our understanding of PADI4 regulation and provides a toolkit for the study and modulation of PADI4 across (patho)physiological contexts.
Collapse
Affiliation(s)
- M Teresa Bertran
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Robert Walmsley
- Epigenetics, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Thomas Cummings
- Epigenetics, The Babraham Institute, Cambridge, CB22 3AT, UK
- MRC Human Genetics Unit, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Iker Valle Aramburu
- Antimicrobial Defense Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Donald J Benton
- Structural Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | | | | | | | - Tessa Swanton
- Antimicrobial Defense Laboratory, The Francis Crick Institute, London, NW1 1AT, UK
| | - Dhira Joshi
- Chemical Biology, The Francis Crick Institute, London, NW1 1AT, UK
| | | | | | - Lu Yu
- Proteomics, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - David Oxley
- Proteomics, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Simon Walker
- Imaging, The Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Hiroaki Suga
- The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Maria A Christophorou
- Epigenetics, The Babraham Institute, Cambridge, CB22 3AT, UK.
- MRC Human Genetics Unit, The University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | - Louise J Walport
- Protein-Protein Interaction Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
- The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
- Imperial College London, Department of Chemistry, London, W12 0BZ, UK.
| |
Collapse
|
3
|
Hu W, Liu Y, Li X, Lei L, Lin H, Yuan Q, Mao D, Luo Y. Nanobody-based strategy for rapid and accurate pathogen detection: A case of COVID-19 testing. Biosens Bioelectron 2024; 263:116598. [PMID: 39094292 DOI: 10.1016/j.bios.2024.116598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Antibody pairs-based immunoassay platforms served as essential and effective tools in the field of pathogen detection. However, the cumbersome preparation and limited detection sensitivity of antibody pairs challenge in establishment of a highly sensitive detection platform. In this study, using COVID-19 testing as a case, we utilized readily accessible nanobodies as detection antibodies and further proposed an accurate design concept with a more scientific and efficient screening strategy to obtain ultrasensitive antibody pairs. We employed nanobodies capable of binding different antigenic epitopes of the nucleocapsid (NP) or receptor-binding domain (RBD) antigens sandwich as substitutes for monoclonal antibodies (mAbs) sandwich in fast detection formats and utilized time-resolved fluorescence (TRF) microspheres as the signal probe. Consequently, we developed a multi-epitope nanobody sandwich-based fluorescence lateral flow immunoassay (FLFA) strip. Our results suggest that the NP antigen had a detection limit of 12.01pg/mL, while the RBD antigen had a limit of 6.51 pg/mL using our FLFA strip. Based on double mAb sandwiches, the values presented herein demonstrated 4 to 32-fold enhancements in sensitivity, and 32 to 256-fold enhancements compared to commercially available antigen lateral flow assay kits. Furthermore, we demonstrated the excellent characteristics of the proposed test strip, including its specificity, stability, accuracy, and repeatability, which underscores its the prospective utility. Indeed, these findings indicate that our established screening strategy along with the multi-epitope nanobody sandwich mode provides an optimized strategy in the field of pathogen detection.
Collapse
Affiliation(s)
- Wenjin Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Yichen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Xi Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Liusheng Lei
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Huai Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Qingbin Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, 300350, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
4
|
Panchalingam S, Jayaraman M, Jeyaraman J, Kasivelu G. Harnessing marine natural products to inhibit PAD4 triple mutant: A structure-based virtual screening approach for rheumatoid arthritis therapy. Arch Biochem Biophys 2024; 761:110164. [PMID: 39326772 DOI: 10.1016/j.abb.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/07/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Peptidylarginine deiminase type4 (PAD4) is a pivotal pro-inflammatory protein within the human immune system, intricately involved in both inflammatory processes and immune responses. Its role extends to the generation of diverse immune cell types, including T cells, B cells, natural killer cells, and dendritic cells. PAD4 has recently garnered attention due to its association with a spectrum of inflammatory and autoimmune disorders, notably rheumatoid arthritis (RA). Mutations in the PAD4 gene, leading to the conversion of arginine to citrulline, have emerged as significant factors in the pathogenesis of RA and related conditions. As a calcium-dependent enzyme, PAD4 is central to the citrullination process, a crucial post-translational modification implicated in disease pathophysiology. Its critical role in autoimmune disorders and inflammation makes PAD4 a prime candidate for therapeutic intervention in RA. Inhibiting PAD4 presents a promising avenue for mitigating inflammatory responses and curtailing joint degradation and impairment. To explore its therapeutic potential, a structure-based virtual screening (SBVS) approach was employed, harnessing an array of marine natural products (MNPs) sourced from databases such as CMNPD, MNPD, and Seaweed. Notably, MNPD10752, CMNPD12680, and CMNPD2751 emerged as potential hit molecules, exhibiting adherence to essential pharmacokinetic properties and favorable toxicity profiles. Quantum mechanics studies using density functional theory (DFT) calculations revealed the inhibitory potential of these identified natural products. Further structural elucidation through molecular dynamics simulations (MDS) and principal component-based free energy landscape (FEL) analysis shed light on the stability of MNP-bound PAD4 complexes. In conclusion, this computational study serves as a stepping stone for further experimental evaluation, aiming to explore the potential of MNPs in addressing PAD4-related human pathologies.
Collapse
Affiliation(s)
- Santhiya Panchalingam
- Centre for Ocean Research, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, 600 119, Tamil Nadu, India
| | - Manikandan Jayaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Jeyakanthan Jeyaraman
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, 630 004, Tamil Nadu, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology (Deemed to be University), Chennai, 600 119, Tamil Nadu, India.
| |
Collapse
|
5
|
Byrnes LJ, Choi WY, Balbo P, Banker ME, Chang J, Chen S, Cheng X, Cong Y, Culp J, Di H, Griffor M, Hall J, Meng X, Morgan B, Mousseau JJ, Nicki J, O'Connell T, Ramsey S, Shaginian A, Shanker S, Trujillo J, Wan J, Vincent F, Wright SW, Vajdos F. Discovery, Characterization, and Structure of a Cell Active PAD2 Inhibitor Acting through a Novel Allosteric Mechanism. ACS Chem Biol 2024; 19:2186-2197. [PMID: 39316753 DOI: 10.1021/acschembio.4c00397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Peptidyl arginine deiminases (PADs) are important enzymes in many diseases, especially those involving inflammation and autoimmunity. Despite many years of effort, developing isoform-specific inhibitors has been a challenge. We describe herein the discovery of a potent, noncovalent PAD2 inhibitor, with selectivity over PAD3 and PAD4, from a DNA-encoded library. The biochemical and biophysical characterization of this inhibitor and two noninhibitory binders indicated a novel, Ca2+ competitive mechanism of inhibition. This was confirmed via X-ray crystallographic analysis. Finally, we demonstrate that this inhibitor selectively inhibits PAD2 in a cellular context.
Collapse
Affiliation(s)
- Laura J Byrnes
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Won Young Choi
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Paul Balbo
- Pfizer Worldwide Research and Development, 1 Portland St., Cambridge, Massachusetts 02139, United States
| | - Mary Ellen Banker
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jeanne Chang
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Shi Chen
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Xuemin Cheng
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Yang Cong
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jeff Culp
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Hongxia Di
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Matt Griffor
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Justin Hall
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Xiaoyun Meng
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Barry Morgan
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - James J Mousseau
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jennifer Nicki
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Thomas O'Connell
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Simeon Ramsey
- Pfizer Worldwide Research and Development, 1 Portland St., Cambridge, Massachusetts 02139, United States
| | - Alex Shaginian
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Suman Shanker
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - John Trujillo
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Jinqiao Wan
- Hitgen Inc., Building C2, NO.8, Huigu first East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu City, Sichuan Province 610041, P.R. China
| | - Fabien Vincent
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Stephen W Wright
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| | - Felix Vajdos
- Pfizer Worldwide Research and Development, Eastern Pt. Rd, Groton, Connecticut 06340-5146, United States
| |
Collapse
|
6
|
Zhang H, Luo JJ, Wang RL, He XY, Zou HL, Luo HQ, Li NB, Li BL. Electrophoretic Microplate Protein Identification Based on Gold Staining of Molybdenum Disulfide Hydrogels. Anal Chem 2024; 96:10074-10083. [PMID: 38848224 DOI: 10.1021/acs.analchem.4c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Numerous high-performance nanotechnologies have been developed, but their practical applications are largely restricted by the nanomaterials' low stabilities and high operation complexity in aqueous substrates. Herein, we develop a simple and high-reliability hydrogel-based nanotechnology based on the in situ formation of Au nanoparticles in molybdenum disulfide (MoS2)-doped agarose (MoS2/AG) hydrogels for electrophoresis-integrated microplate protein recognition. After the incubation of MoS2/AG hydrogels in HAuCl4 solutions, MoS2 nanosheets spontaneously reduce Au ions, and the hydrogels are remarkably stained with the color of as-synthetic plasmonic Au hybrid nanomaterials (Au staining). Proteins can precisely mediate the morphologies and optical properties of Au/MoS2 heterostructures in the hydrogels. Consequently, Au staining-based protein recognition is exhibited, and hydrogels ensure the comparable stabilities and sensitivities of protein analysis. In comparison to the fluorescence imaging and dye staining, enhanced sensitivity and recognition performances of proteins are implemented by Au staining. In Au staining, exfoliated MoS2 semiconductors directly guide the oriented growth of plasmonic Au nanostructures in the presence of formaldehyde, showing environment-friendly features. The Au-stained hydrogels merge the synthesis and recognition applications of plasmonic Au nanomaterials. Significantly, the one-step incubation of the electrophoretic hydrogels leads to high simplicity of operation, largely challenging those multiple-step Ag staining routes which were performed with high complexity and formaldehyde toxicity. Due to its toxic-free, simple, and sensitive merits, the Au staining integrated with electrophoresis-based separation and microplate-based high-throughput measurements exhibits highly promising and improved practicality of those developing nanotechnologies and largely facilitates in-depth understanding of biological information.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jun Jiang Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Lan Wang
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xin Yu He
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hao Lin Zou
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Qun Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bang Lin Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
7
|
Unno M. Modes of PADing. Nat Chem Biol 2024; 20:662-663. [PMID: 38308045 DOI: 10.1038/s41589-023-01506-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Affiliation(s)
- Masaki Unno
- Graduate School of Science and Engineering, Ibaraki University, Hitachi, Japan.
| |
Collapse
|