1
|
Balbinot G, Milosevic M, Morshead CM, Iwasa SN, Zariffa J, Milosevic L, Valiante TA, Hoffer JA, Popovic MR. The mechanisms of electrical neuromodulation. J Physiol 2024. [PMID: 39740777 DOI: 10.1113/jp286205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 11/20/2024] [Indexed: 01/02/2025] Open
Abstract
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour. Here we examine the neural mechanisms that are thought to underlie the therapeutic effects seen with current neuromodulation technologies. To gain further insights into the mechanisms associated with electrical stimulation, we summarize recent findings from genetic dissection studies conducted in animal models. KEY POINTS: Electricity is everywhere around us and is essential for how our nerves communicate within our bodies. When nerves are damaged or not working properly, using exogenous electricity can help improve their function at distinct levels - inside individual cells, within neural circuits, and across entire systems. This method can be tailored to target specific types of cells, nerve fibres, neurotransmitters and communication pathways, offering significant therapeutic potential. This overview explains how exogenous electricity affects nerve function and its potential benefits, based on research in animal studies. Understanding these effects is important because electrical neuromodulation plays a key role in medical treatments for neurological conditions.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
| | - Matija Milosevic
- The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Cindi M Morshead
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Division of Anatomy, Department of Surgery, University of Toronto, Toronto, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Stephanie N Iwasa
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
| | - Jose Zariffa
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Luka Milosevic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Taufik A Valiante
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joaquín Andrés Hoffer
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Milos R Popovic
- Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada
- KITE Research Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Zheng J, Duan C, Ma C. Advancements in sacroiliac joint reduction for enhancing lumbosacral pain relief and achieving balanced gait: A literature review. Medicine (Baltimore) 2024; 103:e40350. [PMID: 39686504 DOI: 10.1097/md.0000000000040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
This article provides a comprehensive review of recent research advancements in sacroiliac joint reduction therapy for addressing lumbosacral pain and gait balance issues, delving into its application efficacy, future outlook, and existing challenges. Current literatures were searched on sacroiliac joint reduction therapy, lumbosacral pain and gait balance disorders using the databases PubMed and Cochrane. There were no restrictions when conducting the literature search with regard to publication date, study language, or study type. Research indicates notable enhancements in various gait parameters, including stride length, gait speed, and cycle uniformity, among patients undergoing sacroiliac joint reduction therapy. These improvements translate into augmented walking stability and a reduced risk of falls. Despite its clinical efficacy, this therapeutic modality encounters several challenges in practical implementation. One major hurdle is the absence of standardized international diagnostic criteria for sacroiliac joint dysfunction, hindering the widespread adoption and standardization of this treatment approach. Further clinical investigations and longitudinal data are imperative to ascertain the long-term efficacy and potential risks associated with this therapy. Future research avenues should prioritize the development of precise diagnostic tools and standardized treatment protocols to enhance the efficacy and safety of sacroiliac joint reduction therapy. Moreover, interdisciplinary collaboration is paramount, leveraging the expertise of physical therapists, rehabilitation specialists, and spine surgeons to offer comprehensive treatment solutions. Sacroiliac joint reduction therapy emerges as a compelling therapeutic option for individuals grappling with lumbosacral pain and gait instability, showcasing significant clinical potential and promising future prospects.
Collapse
Affiliation(s)
- Jingjing Zheng
- Department of Rehabilitation Medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | |
Collapse
|
3
|
Klocke P, Loeffler MA, Muessler H, Breu MS, Gharabaghi A, Weiss D. Supraspinal contributions to defective antagonistic inhibition and freezing of gait in Parkinson's disease. Brain 2024; 147:4056-4071. [PMID: 39470410 DOI: 10.1093/brain/awae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/24/2024] [Accepted: 06/13/2024] [Indexed: 10/30/2024] Open
Abstract
The neuromuscular circuit mechanisms of freezing of gait in Parkinson's disease have received little study. Technological progress enables researchers chronically to sense local field potential activity of the basal ganglia in patients while walking. To study subthalamic activity and the circuit processes of supraspinal contributions to spinal motor integration, we recorded local field potentials, surface EMG of antagonistic leg muscles and gait kinematics in patients while walking and freezing. To evaluate the specificity of our findings, we controlled our findings to internally generated volitional stops. We found specific activation-deactivation abnormalities of oscillatory activity of the subthalamic nucleus both before and during a freeze. Furthermore, we were able to show with synchronization analyses that subthalamo-spinal circuits entrain the spinal motor neurons to a defective timing and activation pattern. The main neuromuscular correlates when turning into freezing were as follows: (i) disturbed reciprocity between antagonistic muscles; (ii) increased co-contraction of the antagonists; (iii) defective activation and time pattern of the gastrocnemius muscle; and (iv) increased subthalamo-muscular coherence with the gastrocnemius muscles before the freeze. Beyond the pathophysiological insights into the supraspinal mechanisms contributing to freezing of gait, our findings have potential to inform the conceptualization of future neurorestorative therapies.
Collapse
Affiliation(s)
- Philipp Klocke
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| | - Moritz A Loeffler
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| | - Hannah Muessler
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| | - Maria-Sophie Breu
- Centre for Neurology, Department of Epileptology, University of Tübingen, 72076 Tübingen, Germany
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, 72076 Tübingen, Germany
- Centre for Bionic Intelligence Tübingen Stuttgart (BITS), University Hospital and University of Tübingen, 72076 Tübingen, Germany
- German Centre for Mental Health (DZPG), University Hospital and University of Tübingen, 72076 Tübingen, Germany
| | - Daniel Weiss
- Centre for Neurology, Department of Neurodegenerative Diseases, University of Tübingen, 72076 Tübingen, Germany
- Hertie Institute for Clinical Brain Research, 72076 Tübingen, Germany
| |
Collapse
|
4
|
Cui X, Wu L, Zhang C, Li Z. Implantable Self-Powered Systems for Electrical Stimulation Medical Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412044. [PMID: 39587936 DOI: 10.1002/advs.202412044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/27/2024] [Indexed: 11/27/2024]
Abstract
With the integration of bioelectronics and materials science, implantable self-powered systems for electrical stimulation medical devices have emerged as an innovative therapeutic approach, garnering significant attention in medical research. These devices achieve self-powering through integrated energy conversion modules, such as triboelectric nanogenerators (TENGs) and piezoelectric nanogenerators (PENGs), significantly enhancing the portability and long-term efficacy of therapeutic equipment. This review delves into the design strategies and clinical applications of implantable self-powered systems, encompassing the design and optimization of energy harvesting modules, the selection and fabrication of adaptable electrode materials, innovations in systematic design strategies, and the extensive utilization of implantable self-powered systems in biological therapies, including the treatment of neurological disorders, tissue regeneration engineering, drug delivery, and tumor therapy. Through a comprehensive analysis of the latest research progress, technical challenges, and future directions in these areas, this paper aims to provide valuable insights and inspiration for further research and clinical applications of implantable self-powered systems.
Collapse
Affiliation(s)
- Xi Cui
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Li Wu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Zemmar A, Aguirre-Padilla DH, Harmsen IE, Baarbé J, Sarica C, Yamamoto K, Grippe T, Darmani G, Bhattacharya A, Chen Z, Gartner KE, van Wouwe N, Azevedo P, Vetkas A, Paul D, Samuel N, Sorrento G, Santyr B, Rowland N, Kalia S, Chen R, Fasano A, Lozano AM. Dorsal Column Spinal Cord Stimulation Attenuates Brain-Spine Connectivity through Locomotion- and Visuospatial-Specific Area Activation in Progressive Freezing of Gait. Stereotact Funct Neurosurg 2024:1-12. [PMID: 39557021 DOI: 10.1159/000541986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/09/2024] [Indexed: 11/20/2024]
Abstract
INTRODUCTION Freezing of gait (FOG) is a clinical phenomenon with major life impairments and significant reduction in quality of life for affected patients. FOG is a feature of Parkinson's disease and a hallmark of primary progressive FOG, currently reclassified as Progressive Supranuclear Palsy-progressive gait freezing (PSP-PGF). The pathophysiology of FOG and particularly PGF, which is a rare degenerative disorder with a progressive natural history of gait decline, is poorly understood. Mechanistically, changes in oscillatory activity and synchronization in frontal cortical regions, the basal ganglia, and the midbrain locomotor region have been reported, indicating that dysrhythmic oscillations and coherence could play a causal role in the pathophysiology of FOG. Deep brain stimulation and spinal cord stimulation (SCS) have been tested as therapeutic neuromodulation avenues for FOG with mixed outcomes. METHODS We analyzed gait and balance in 3 patients with PSP-PGF who received percutaneous thoracic SCS and utilized magnetoencephalography (MEG), electroencephalography, and electromyography to evaluate functional connectivity between the brain and spine. RESULTS Gait and balance did not worsen over a 13-month period. This observation was accompanied by decreased beta-band spectral power in the whole brain and particularly in the basal ganglia. This was accompanied by increased functional connectivity in and between the sensorimotor cortices, basal ganglia, temporal cortex, and cerebellum, and a surge in corticomuscular coherence when SCS was paired with visual cues. CONCLUSION Our results suggest synergistic activity between brain and spinal circuits upon SCS for FOG in PGF, which may have implications for future brain-spine interfaces and closed-loop neuromodulation for patients with FOG.
Collapse
Affiliation(s)
- Ajmal Zemmar
- Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, China
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - David H Aguirre-Padilla
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Neuromodulation and Functional Neurosurgery Program, San Borja Arriarán Hospital, Santiago, Chile
- Department of Neurology and Neurosurgery, Medical School, University of Chile, Santiago, Chile
| | - Irene E Harmsen
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Mitchell Goldhar MEG Unit, University Health Network, Toronto, Ontario, Canada
| | - Julianne Baarbé
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
| | - Can Sarica
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Kazuaki Yamamoto
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Functional Neurosurgery Center, Shonan Fujisawa Tokushukai Hospital, Fujisawa, Japan
- Department of Neurosurgery, Osaka Medical and Pharmaceutical University, Takatsuki, Japan
| | - Talyta Grippe
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
| | - Amitabh Bhattacharya
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
| | - Zhongcan Chen
- Department of Neurosurgery, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Kelly E Gartner
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Nelleke van Wouwe
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Paula Azevedo
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
| | - Artur Vetkas
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Darcia Paul
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nardin Samuel
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Gianluca Sorrento
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
| | - Brendan Santyr
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Nathan Rowland
- Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina, USA
- Murray Center for Research on Parkinson's Disease and Related Disorders, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Suneil Kalia
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application, University Health Network, Toronto, Ontario, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Center for Advancing Neurotechnological Innovation to Application, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Beaubois R, Cheslet J, Ikeuchi Y, Branchereau P, Levi T. Real-time multicompartment Hodgkin-Huxley neuron emulation on SoC FPGA. Front Neurosci 2024; 18:1457774. [PMID: 39600652 PMCID: PMC11588749 DOI: 10.3389/fnins.2024.1457774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/14/2024] [Indexed: 11/29/2024] Open
Abstract
Advanced computational models and simulations to unravel the complexities of brain function have known a growing interest in recent years in the field of neurosciences, driven by significant technological progress in computing platforms. Multicompartment models, which capture the detailed morphological and functional properties of neural circuits, represent a significant advancement in this area providing more biological coherence than single compartment modeling. These models serve as a cornerstone for exploring the neural basis of sensory processing, learning paradigms, adaptive behaviors, and neurological disorders. Yet, the high complexity of these models presents a challenge for their real-time implementation, which is essential for exploring alternative therapies for neurological disorders such as electroceutics that rely on biohybrid interaction. Here, we present an accessible, user-friendly, and real-time emulator for multicompartment Hodgkin-Huxley neurons on SoC FPGA. Our system enables real-time emulation of multicompartment neurons while emphasizing cost-efficiency, flexibility, and ease of use. We showcase an implementation utilizing a technology that remains underrepresented in the current literature for this specific application. We anticipate that our system will contribute to the enhancement of computation platforms by presenting an alternative architecture for multicompartment computation. Additionally, it constitutes a step toward developing neuromorphic-based neuroprostheses for bioelectrical therapeutics through an embedded real-time platform running at a similar timescale to biological networks.
Collapse
Affiliation(s)
- Romain Beaubois
- IMS, UMR5218, CNRS, University of Bordeaux, Talence, France
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
- JSPS International Research Fellow, The University of Tokyo, Tokyo, Japan
| | - Jérémy Cheslet
- IMS, UMR5218, CNRS, University of Bordeaux, Talence, France
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
| | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | | | - Timothee Levi
- IMS, UMR5218, CNRS, University of Bordeaux, Talence, France
| |
Collapse
|
7
|
Yang S, Yang S, Li P, Gou S, Cheng Y, Jia Q, Du Z. Advanced neuroprosthetic electrode design optimized by electromagnetic finite element simulation: innovations and applications. Front Bioeng Biotechnol 2024; 12:1476447. [PMID: 39574462 PMCID: PMC11579925 DOI: 10.3389/fbioe.2024.1476447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024] Open
Abstract
Based on electrophysiological activity, neuroprostheses can effectively monitor and control neural activity. Currently, electrophysiological neuroprostheses are widely utilized in treating neurological disorders, particularly in restoring motor, visual, auditory, and somatosensory functions after nervous system injuries. They also help alleviate inflammation, regulate blood pressure, provide analgesia, and treat conditions such as epilepsy and Alzheimer's disease, offering significant research, economic, and social value. Enhancing the targeting capabilities of neuroprostheses remains a key objective for researchers. Modeling and simulation techniques facilitate the theoretical analysis of interactions between neuroprostheses and the nervous system, allowing for quantitative assessments of targeting efficiency. Throughout the development of neuroprostheses, these modeling and simulation methods can save time, materials, and labor costs, thereby accelerating the rapid development of highly targeted neuroprostheses. This article introduces the fundamental principles of neuroprosthesis simulation technology and reviews how various simulation techniques assist in the design and performance enhancement of neuroprostheses. Finally, it discusses the limitations of modeling and simulation and outlines future directions for utilizing these approaches to guide neuroprosthesis design.
Collapse
Affiliation(s)
- Shu Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Siyi Yang
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peixuan Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuchun Gou
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuhang Cheng
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qinggang Jia
- Institute of Applied Physics and Computational Mathematics, Beijing, China
| | - Zhanhong Du
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology, Shenzhen, China
- Shenzhen Fundamental Research Institutions, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Acharya R, Owens RM. Reaching across the divide: materials scientists interfacing with biologists. MATERIALS HORIZONS 2024; 11:5141-5146. [PMID: 39252659 DOI: 10.1039/d4mh00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Scientific research is becoming increasingly interdisciplinary and poses new challenges, undertakings, and prospects. In this article, we discuss the various aspects of interdisciplinarity in the developing field of organic bioelectronics. The authors represent two different fields, namely, biochemistry and materials science, and discuss their perspectives on working together in a scientifically diverse research environment. We outline today's challenges based on personal experiences and present possible solutions and hopeful opportunities for the future.
Collapse
Affiliation(s)
- Rachana Acharya
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0AS Cambridge, UK.
| |
Collapse
|
9
|
Meppelink AM, de Jong BM, Beudel M. Internal and external modulation of parieto-premotor circuitry in movement disorders. Brain Commun 2024; 6:fcae339. [PMID: 39386088 PMCID: PMC11462435 DOI: 10.1093/braincomms/fcae339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/04/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
This scientific commentary refers to 'Increased beta synchronization underlies perception-action hyperbinding in functional movement disorders', by Pastötter et al. (https://doi.org/10.1093/braincomms/fcae301).
Collapse
Affiliation(s)
| | - Bauke M de Jong
- Department of Neurology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Martijn Beudel
- Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
10
|
Eldabe S, Nevitt S, Bentley A, Mekhail NA, Gilligan C, Billet B, Staats PS, Maden M, Soliday N, Leitner A, Duarte RV. Response to "Competing Narratives: Moving the Field Forward on Spinal Cord Stimulation". Clin J Pain 2024; 40:557-560. [PMID: 39023036 DOI: 10.1097/ajp.0000000000001232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Affiliation(s)
- Sam Eldabe
- Department of Pain Medicine, The James Cook University Hospital, Middlesbrough
| | - Sarah Nevitt
- Centre for Reviews and Dissemination University of York, York
| | | | - Nagy A Mekhail
- Evidence-Based Pain Management Research, Cleveland Clinic, Cleveland, OH
| | | | | | | | - Michelle Maden
- Department of Health Data Science University of Liverpool, Liverpool, UK
| | - Nicole Soliday
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Angela Leitner
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| | - Rui V Duarte
- Department of Health Data Science University of Liverpool, Liverpool, UK
- Saluda Medical Pty Ltd, Artarmon, New South Wales, Australia
| |
Collapse
|
11
|
Seufert CG, Borutta MC, Regensburger M, Zhao Y, Kinfe T. New Perspectives for Spinal Cord Stimulation in Parkinson's Disease-Associated Gait Impairment: A Systematic Review. Biomedicines 2024; 12:1824. [PMID: 39200289 PMCID: PMC11351408 DOI: 10.3390/biomedicines12081824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/21/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's Disease is a neurodegenerative disorder manifesting itself as a hypokinetic movement impairment with postural instability and gait disturbance. In case of failure and/or limited response, deep brain stimulation has been established as an alternative and effective treatment modality. However, a subset of PD patients with gait impairment represents a therapeutic challenge. A systematic review (2000-2023) was performed using PubMed, Embase, Web of Science, Scopus, and Cochrane Library databases to determine the efficacy, stimulation waveform/parameters, spine level, and outcome measures of spinal cord stimulation using different waveforms in PD patients with and without chronic pain. Spinal cord stimulation responsiveness was assessed within the pre-defined follow-up period in three groups (short-term follow-up = 0-3 months; intermediate follow-up = 3-12 months; and long-term follow-up = more than 12 months). In addition, we briefly outline alternative neurostimulation therapies and the most recent developments in closed-loop spinal cord stimulation relevant to PD. In summary, 18 publications and 70 patients from uncontrolled observational trials were included, with low-quality evidence and conflicting findings. First and foremost, the currently available data do not support the use of spinal cord stimulation to treat PD-related gait disorders but have confirmed its usefulness for PD-associated chronic pain.
Collapse
Affiliation(s)
- Christian G. Seufert
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.G.S.); (Y.Z.)
| | - Matthias C. Borutta
- Department of Neurology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Martin Regensburger
- Department of Neurology, Molecular Neurology, Division of Movement Disorders, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Yining Zhao
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.G.S.); (Y.Z.)
| | - Thomas Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (C.G.S.); (Y.Z.)
- Department of Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
12
|
Hvingelby VS, Carra RB, Terkelsen MH, Hamani C, Capato T, Košutzká Z, Krauss JK, Moro E, Pavese N, Cury RG. A Pragmatic Review on Spinal Cord Stimulation Therapy for Parkinson's Disease Gait Related Disorders: Gaps and Controversies. Mov Disord Clin Pract 2024; 11:927-947. [PMID: 38899557 PMCID: PMC11329578 DOI: 10.1002/mdc3.14143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Parkinson's Disease (PD) is a progressive neurological disorder that results in potentially debilitating mobility deficits. Recently, spinal cord stimulation (SCS) has been proposed as a novel therapy for PD gait disorders. The highest levels of evidence remain limited for SCS. OBJECTIVES In this systematic review and narrative synthesis, the literature was searched using combinations of key phrases indicating spinal cord stimulation and PD. METHODS We included pre-clinical studies and all published clinical trials, case reports, conference abstracts as well as protocols for ongoing clinical trials. Additionally, we included trials of SCS applied to atypical parkinsonism. RESULTS A total of 45 human studies and trials met the inclusion criteria. Based on the narrative synthesis, a number of knowledge gaps and future avenues of potential research were identified. This review demonstrated that evidence for SCS is currently not sufficient to recommend it as an evidence-based therapy for PD related gait disorders. There remain challenges and significant barriers to widespread implementation, including issues regarding patient selection, effective outcome selection, stimulation location and mode, and in programming parameter optimization. Results of early randomized controlled trials are currently pending. SCS is prone to placebo, lessebo and nocebo as well as blinding effects which may impact interpretation of outcomes, particularly when studies are underpowered. CONCLUSION Therapies such as SCS may build on current evidence and be shown to improve specific gait features in PD. Early negative trials should be interpreted with caution, as more evidence will be required to develop effective methodologies in order to drive clinical outcomes.
Collapse
Affiliation(s)
- Victor S. Hvingelby
- Department of Clinical Medicine – Nuclear Medicine and PET CenterAarhus UniversityAarhusDenmark
| | - Rafael B. Carra
- Department of Neurology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Miriam H. Terkelsen
- Department of Clinical Medicine – Nuclear Medicine and PET CenterAarhus UniversityAarhusDenmark
| | - Clement Hamani
- Division of Neurosurgery, Sunnybrook Health Sciences CentreUniversity of TorontoTorontoOntarioCanada
| | - Tamine Capato
- Department of Neurology, School of MedicineUniversity of São PauloSão PauloBrazil
| | - Zuzana Košutzká
- Second Department of NeurologyComenius University BratislavaBratislavaSlovakia
| | - Joachim K. Krauss
- Department of Neurosurgery, Hannover Medical SchoolHannoverGermany
- Center for Systems NeuroscienceHannoverGermany
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, CHU of Grenoble, Grenoble Institute of NeurosciencesGrenobleFrance
| | - Nicola Pavese
- Clinical Ageing Research Unit Newcastle UniversityNewcastle upon TyneUK
| | | |
Collapse
|
13
|
Beaubois R, Cheslet J, Duenki T, De Venuto G, Carè M, Khoyratee F, Chiappalone M, Branchereau P, Ikeuchi Y, Levi T. BiœmuS: A new tool for neurological disorders studies through real-time emulation and hybridization using biomimetic Spiking Neural Network. Nat Commun 2024; 15:5142. [PMID: 38902236 PMCID: PMC11190274 DOI: 10.1038/s41467-024-48905-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 05/15/2024] [Indexed: 06/22/2024] Open
Abstract
Characterization and modeling of biological neural networks has emerged as a field driving significant advancements in our understanding of brain function and related pathologies. As of today, pharmacological treatments for neurological disorders remain limited, pushing the exploration of promising alternative approaches such as electroceutics. Recent research in bioelectronics and neuromorphic engineering have fostered the development of the new generation of neuroprostheses for brain repair. However, achieving their full potential necessitates a deeper understanding of biohybrid interaction. In this study, we present a novel real-time, biomimetic, cost-effective and user-friendly neural network capable of real-time emulation for biohybrid experiments. Our system facilitates the investigation and replication of biophysically detailed neural network dynamics while prioritizing cost-efficiency, flexibility and ease of use. We showcase the feasibility of conducting biohybrid experiments using standard biophysical interfaces and a variety of biological cells as well as real-time emulation of diverse network configurations. We envision our system as a crucial step towards the development of neuromorphic-based neuroprostheses for bioelectrical therapeutics, enabling seamless communication with biological networks on a comparable timescale. Its embedded real-time functionality enhances practicality and accessibility, amplifying its potential for real-world applications in biohybrid experiments.
Collapse
Affiliation(s)
- Romain Beaubois
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
| | - Jérémy Cheslet
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
| | - Tomoya Duenki
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | | | - Marta Carè
- DIBRIS, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Farad Khoyratee
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France
| | - Michela Chiappalone
- DIBRIS, University of Genova, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Rehab Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Yoshiho Ikeuchi
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- LIMMS, CNRS-Institute of Industrial Science, UMI 2820, The University of Tokyo, Tokyo, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, Japan
| | - Timothée Levi
- IMS, CNRS UMR5218, Bordeaux INP, University of Bordeaux, Talence, France.
| |
Collapse
|
14
|
Mahrous AA, Chardon M, Johnson M, Miller J, Heckman CJ. A NEW POSTURAL MOTOR RESPONSE TO SPINAL CORD STIMULATION: POST-STIMULATION REBOUND EXTENSION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598885. [PMID: 38915687 PMCID: PMC11195294 DOI: 10.1101/2024.06.13.598885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Spinal cord stimulation (SCS) has emerged as a therapeutic tool for improving motor function following spinal cord injury. While many studies focus on restoring locomotion, little attention is paid to enabling standing which is a prerequisite of walking. In this study, we fully characterize a new type of response to SCS, a long extension activated post-stimulation (LEAP). LEAP is primarily directed to ankle extensors and hence has great clinical potential to assist postural movements. To characterize this new response, we used the decerebrate cat model to avoid the suppressive effects of anesthesia, and combined EMG and force measurement in the hindlimb with intracellular recordings in the lumbar spinal cord. Stimulation was delivered as five-second trains via bipolar electrodes placed on the cord surface, and multiple combinations of stimulation locations (L4 to S2), amplitudes (50-600 uA), and frequencies (10-40 Hz) were tested. While the optimum stimulation location and frequency differed slightly among animals, the stimulation amplitude was key for controlling LEAP duration and amplitude. To study the mechanism of LEAP, we performed in vivo intracellular recordings of motoneurons. In 70% of motoneurons, LEAP increased at hyperpolarized membrane potentials indicating a synaptic origin. Furthermore, spinal interneurons exhibited changes in firing during LEAP, confirming the circuit origin of this behavior. Finally, to identify the type of afferents involved in generating LEAP, we used shorter stimulation pulses (more selective for proprioceptive afferents), as well as peripheral stimulation of the sural nerve (cutaneous afferents). The data indicates that LEAP primarily relies on proprioceptive afferents and has major differences from pain or withdrawal reflexes mediated by cutaneous afferents. Our study has thus identified and characterized a novel postural motor response to SCS which has the potential to expand the applications of SCS for patients with motor disorders.
Collapse
|
15
|
Moritz C, Field-Fote EC, Tefertiller C, van Nes I, Trumbower R, Kalsi-Ryan S, Purcell M, Janssen TWJ, Krassioukov A, Morse LR, Zhao KD, Guest J, Marino RJ, Murray LM, Wecht JM, Rieger M, Pradarelli J, Turner A, D'Amico J, Squair JW, Courtine G. Non-invasive spinal cord electrical stimulation for arm and hand function in chronic tetraplegia: a safety and efficacy trial. Nat Med 2024; 30:1276-1283. [PMID: 38769431 PMCID: PMC11108781 DOI: 10.1038/s41591-024-02940-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/22/2024] [Indexed: 05/22/2024]
Abstract
Cervical spinal cord injury (SCI) leads to permanent impairment of arm and hand functions. Here we conducted a prospective, single-arm, multicenter, open-label, non-significant risk trial that evaluated the safety and efficacy of ARCEX Therapy to improve arm and hand functions in people with chronic SCI. ARCEX Therapy involves the delivery of externally applied electrical stimulation over the cervical spinal cord during structured rehabilitation. The primary endpoints were safety and efficacy as measured by whether the majority of participants exhibited significant improvement in both strength and functional performance in response to ARCEX Therapy compared to the end of an equivalent period of rehabilitation alone. Sixty participants completed the protocol. No serious adverse events related to ARCEX Therapy were reported, and the primary effectiveness endpoint was met. Seventy-two percent of participants demonstrated improvements greater than the minimally important difference criteria for both strength and functional domains. Secondary endpoint analysis revealed significant improvements in fingertip pinch force, hand prehension and strength, upper extremity motor and sensory abilities and self-reported increases in quality of life. These results demonstrate the safety and efficacy of ARCEX Therapy to improve hand and arm functions in people living with cervical SCI. ClinicalTrials.gov identifier: NCT04697472 .
Collapse
Affiliation(s)
- Chet Moritz
- Departments of Rehabilitation Medicine, Electrical & Computer Engineering, Physiology & Biophysics and Center for Neurotechnology, University of Washington, Seattle, WA, USA
| | - Edelle C Field-Fote
- Shepherd Center, Crawford Research Institute and Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Ilse van Nes
- Sint Maartenskliniek, Revalidatiegeneeskunde, Nijmegen, The Netherlands
| | - Randy Trumbower
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
- Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Sukhvinder Kalsi-Ryan
- KITE Research Institute|Toronto Rehab, University Health Network, Toronto, Ontario, Canada
| | - Mariel Purcell
- Scottish Centre for Innovation in Spinal Cord Injury, Queen Elizabeth National Spinal Injuries Unit, Queen Elizabeth University Hospital, Glasgow, UK
| | - Thomas W J Janssen
- Amsterdam Rehabilitation Research Center | Reade, Amsterdam, The Netherlands
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Andrei Krassioukov
- ICORD and Division of Physical Medicine and Rehabilitation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Kristin D Zhao
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, USA
| | - James Guest
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, USA
- Miami Project to Cure Paralysis, Miami, FL, USA
| | - Ralph J Marino
- Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Lynda M Murray
- Departments of Rehabilitation and Human Performance and Medicine, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Research and Development, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jill M Wecht
- Department of Research and Development, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Jessica D'Amico
- ONWARD Medical, Lausanne, Switzerland
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, Alberta, Canada
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan W Squair
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland
- NeuroRestore, NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Gregoire Courtine
- NeuroX Institute and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland.
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.
- Defitech Center for Interventional Neurotherapies (NeuroRestore), EPFL/CHUV/UNIL, Lausanne, Switzerland.
- NeuroRestore, NeuroX Institute, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
16
|
Rajnicek AM, Casañ-Pastor N. Wireless control of nerve growth using bipolar electrodes: a new paradigm in electrostimulation. Biomater Sci 2024; 12:2180-2202. [PMID: 38358306 DOI: 10.1039/d3bm01946b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Electrical activity underpins all life, but is most familiar in the nervous system, where long range electrical signalling is essential for function. When this is lost (e.g., traumatic injury) or it becomes inefficient (e.g., demyelination), the use of external fields can compensate for at least some functional deficits. However, its potential to also promote biological repair at the cell level is underplayed despite abundant in vitro evidence for control of neuron growth. This perspective article considers specifically the emerging possibility of achieving cell growth through the interaction of external electric fields using conducting materials as unwired bipolar electrodes, and without intending stimulation of neuron electrical activity to be the primary consequence. The use of a wireless method to create electrical interactions represents a paradigm shift and may allow new applications in vivo where physical wiring is not possible. Within that scheme of thought an evaluation of specific materials and their dynamic responses as bipolar unwired electrodes is summarized and correlated with changes in dynamic nerve growth during stimulation, suggesting possible future schemes to achieve neural growth using bipolar unwired electrodes with specific characteristics. This strategy emphasizes how nerve growth can be encouraged at injury sites wirelessly to induce repair, as opposed to implanting devices that may substitute the neural signals.
Collapse
Affiliation(s)
- Ann M Rajnicek
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, United KIngdom
| | - Nieves Casañ-Pastor
- Institut de Ciència de Materials de Barcelona, CSIC, Campus UAB, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
17
|
Davidson B, Bhattacharya A, Sarica C, Darmani G, Raies N, Chen R, Lozano AM. Neuromodulation techniques - From non-invasive brain stimulation to deep brain stimulation. Neurotherapeutics 2024; 21:e00330. [PMID: 38340524 PMCID: PMC11103220 DOI: 10.1016/j.neurot.2024.e00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
Over the past 30 years, the field of neuromodulation has witnessed remarkable advancements. These developments encompass a spectrum of techniques, both non-invasive and invasive, that possess the ability to both probe and influence the central nervous system. In many cases neuromodulation therapies have been adopted into standard care treatments. Transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and transcranial ultrasound stimulation (TUS) are the most common non-invasive methods in use today. Deep brain stimulation (DBS), spinal cord stimulation (SCS), and vagus nerve stimulation (VNS), are leading surgical methods for neuromodulation. Ongoing active clinical trials using are uncovering novel applications and paradigms for these interventions.
Collapse
Affiliation(s)
- Benjamin Davidson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Can Sarica
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Ghazaleh Darmani
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Nasem Raies
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Robert Chen
- Krembil Research Institute, University Health Network, Toronto, ON, Canada; Edmond J. Safra Program in Parkinson's Disease Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Canada; Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
18
|
Bath JE, Wang DD. Unraveling the threads of stability: A review of the neurophysiology of postural control in Parkinson's disease. Neurotherapeutics 2024; 21:e00354. [PMID: 38579454 PMCID: PMC11000188 DOI: 10.1016/j.neurot.2024.e00354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/18/2024] [Accepted: 03/23/2024] [Indexed: 04/07/2024] Open
Abstract
Postural instability is a detrimental and often treatment-refractory symptom of Parkinson's disease. While many existing studies quantify the biomechanical deficits among various postural domains (static, anticipatory, and reactive) in this population, less is known regarding the neural network dysfunctions underlying these phenomena. This review will summarize current studies on the cortical and subcortical neural activities during postural responses in healthy subjects and those with Parkinson's disease. We will also review the effects of current therapies, including neuromodulation and feedback-based wearable devices, on postural instability symptoms. With recent advances in implantable devices that allow chronic, ambulatory neural data collection from patients with Parkinson's disease, combined with sensors that can quantify biomechanical measurements of postural responses, future work using these devices will enable better understanding of the neural mechanisms of postural control. Bridging this knowledge gap will be the critical first step towards developing novel neuromodulatory interventions to enhance the treatment of postural instability in Parkinson's disease.
Collapse
Affiliation(s)
- Jessica E Bath
- Department of Physical Therapy & Rehabilitation Science, University of California, San Francisco, USA; Department of Neurological Surgery, University of California, San Francisco, USA
| | - Doris D Wang
- Department of Neurological Surgery, University of California, San Francisco, USA.
| |
Collapse
|
19
|
Jagrit V, Koffler J, Dulin JN. Combinatorial strategies for cell transplantation in traumatic spinal cord injury. Front Neurosci 2024; 18:1349446. [PMID: 38510468 PMCID: PMC10951004 DOI: 10.3389/fnins.2024.1349446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024] Open
Abstract
Spinal cord injury (SCI) substantially reduces the quality of life of affected individuals. Recovery of function is therefore a primary concern of the patient population and a primary goal for therapeutic interventions. Currently, even with growing numbers of clinical trials, there are still no effective treatments that can improve neurological outcomes after SCI. A large body of work has demonstrated that transplantation of neural stem/progenitor cells (NSPCs) can promote regeneration of the injured spinal cord by providing new neurons that can integrate into injured host neural circuitry. Despite these promising findings, the degree of functional recovery observed after NSPC transplantation remains modest. It is evident that treatment of such a complex injury cannot be addressed with a single therapeutic approach. In this mini-review, we discuss combinatorial strategies that can be used along with NSPC transplantation to promote spinal cord regeneration. We begin by introducing bioengineering and neuromodulatory approaches, and highlight promising work using these strategies in integration with NSPCs transplantation. The future of NSPC transplantation will likely include a multi-factorial approach, combining stem cells with biomaterials and/or neuromodulation as a promising treatment for SCI.
Collapse
Affiliation(s)
- Vipin Jagrit
- Department of Biology, Texas A&M University, College Station, TX, United States
| | - Jacob Koffler
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
- Veterans Affairs Medical Center, San Diego, CA, United States
| | - Jennifer N. Dulin
- Department of Biology, Texas A&M University, College Station, TX, United States
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
20
|
Fomenko A, Fasano A, Kalia SK. Another Step Forward for Freezing of Gait in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:353-355. [PMID: 38251064 PMCID: PMC10977400 DOI: 10.3233/jpd-230412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/23/2024]
Abstract
The study "A spinal cord neuroprosthesis for locomotor deficits due to Parkinson's disease" by Milekovic et al. introduces a novel neuroprosthesis for treating locomotor deficits in late-stage Parkinson's disease (PD). This approach employs an epidural spinal array targeting dorsal roots and electromyography to create a spatiotemporal map of muscle activation, aiming to restore natural gait patterns. Significant improvements in gait freezing and balance were observed in both non-human primate models and a human patient, resulting in improved mobility and quality of life. This innovative method, integrating real-time feedback and non-invasive motor intention decoding, marks a significant advancement in PD treatment.
Collapse
Affiliation(s)
- Anton Fomenko
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), University of Toronto, Toronto, ON, Canada
| | - Alfonso Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Division of Neurology, Edmond J. Safra Program in Parkinson’s Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University of Toronto, Toronto, ON, Canada
| | - Suneil K. Kalia
- Department of Surgery, Division of Neurosurgery, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), University of Toronto, Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
| |
Collapse
|
21
|
Rouiller EM. Adaptation of the layer V supraspinal motor corticofugal projections from the primary (M1) and premotor (PM) cortices after CNS motor disorders in non-human primates: A survey. Transl Neurosci 2024; 15:20220342. [PMID: 38860225 PMCID: PMC11163158 DOI: 10.1515/tnsci-2022-0342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 06/12/2024] Open
Abstract
Motor commands are transmitted from the motor cortical areas to effectors mostly via the corticospinal (CS) projection. Several subcortical motor nuclei also play an important role in motor control, the subthalamic nucleus, the red nucleus, the reticular nucleus and the superior colliculus. These nuclei are influenced by motor cortical areas via respective corticofugal projections, which undergo complex adaptations after motor trauma (spinal cord/motor cortex injury) or motor disease (Parkinson), both in the absence or presence of putative treatments, as observed in adult macaque monkeys. A dominant effect was a nearly complete suppression of the corticorubral projection density and a strong downregulation of the corticoreticular projection density, with the noticeable exception in the latter case of a considerable increase of projection density following spinal cord injury, even enhanced when an anti-NogoA antibody treatment was administered. The effects were diverse and less prominent on the corticotectal and corticosubthalamic projections. The CS projection may still be the major efferent pathway through which motor adaptations can take place after motor trauma or disease. However, the parallel supraspinal motor corticofugal projections may also participate in connectional adaptations supporting the functional recovery of motor abilities, representing potential targets for future clinical strategies, such as selective electrical neurostimulations.
Collapse
Affiliation(s)
- Eric M. Rouiller
- Department of Neurosciences and Movement sciences, Section of Medicine, Faculty of Sciences and Medicine, University of Fribourg, Ch. du Musée 5, CH-1700Fribourg, Switzerland
| |
Collapse
|
22
|
Oliveira FFD. Assessing Independence in Activities of Daily Living and Quality of Life in Patients with Dementia with Lewy Bodies. J Alzheimers Dis 2024; 101:441-443. [PMID: 39177604 DOI: 10.3233/jad-240676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Knowledge of performance in activities of daily living and quality of life is important for management decisions and research endpoints. The use of harmonized scales is essential for objective assessment of both caregivers and patients with dementia with Lewy bodies. Functionality and quality of life are more impaired in dementia with Lewy bodies than in Alzheimer's disease, mostly due to higher prevalence of behavioral symptoms and motor manifestations in dementia with Lewy bodies. More longitudinal studies are required to assess if causality mediates the associations of clinical features with functional independence and worsened quality of life in these patients.
Collapse
|
23
|
Mizrahi-Kliger A, Ganguly K. Spinal stimulation for unfreezing gait in Parkinson's disease. Nat Med 2023; 29:2713-2715. [PMID: 37932549 DOI: 10.1038/s41591-023-02604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Affiliation(s)
| | - Karunesh Ganguly
- Department of Neurology, University of California, San Francisco, CA, USA.
- Neurology and Rehabilitation Service, San Francisco VA Health Care System, San Francisco, CA, USA.
| |
Collapse
|