1
|
Liu P, Ding H, Jia S, Pang Y, Li C, Zhao T, Skudder-Hill L, Wang J, Chen H, Zhao X, Chen X, Zhang J. Molecular Imaging of B7-H3-Targeting Bispecific T Cell-Engaging Antibody MGD009 in Glioblastoma Models. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40183579 DOI: 10.1021/acsami.5c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Adults diagnosed with glioblastoma (GBM) face an extremely poor prognosis; it is the most aggressive and fatal form of a primary brain tumor. The development of CD3-targeting bispecific antibodies (CD3-bsAbs) has recently gained attention as a promising therapeutic approach for GBM. MGD009, a CD3-bsAb, promotes T-cell-mediated cancer cell death by linking B7-H3 on tumor cells with CD3ε on T cells. The efficacy and relative toxicity of this treatment are closely associated with the tumor uptake and metabolic profile of major organs. However, limited data on the biodistribution and GBM targeting of MGD009 have been reported. In this study, surface plasmon resonance (SPR), flow cytometry, and immunofluorescence assays were carried out to assess the in vitro binding affinities of MGD009 with glioma cells. MGD009 was also labeled with a near-infrared fluorescent dye to evaluate its tumor targeting capacity and biodistribution in subcutaneous GBM models. Moreover, MGD009 was labeled with PET isotope zirconium-89 (89Zr) to facilitate noninvasive molecular imaging in subcutaneous and orthotopic GBM models. The fluorescence intensity of Cy5.5-labeled MGD009 peaked at 24 h postinjection (p.i.), with a radiant efficiency of 8.98 × 109 D/s/cm2/sr and a prolonged retention time up to 120 h. Tumor uptake of 89Zr-labeled MGD009 peaked at 24 h p.i., with an uptake value of 10.77 ± 1.43% ID/g. In orthotopic U-87MG models, tumor uptake of 89Zr-labeled MGD009 reached 18.10 ± 0.87% ID/g at 24 h p.i. Additionally, the liver, spleen, and bone marrow also showed a relatively high radioactivity. These findings provide critical insights into the biodistribution and tumor-targeting of MGD009, supporting its potential clinical application in glioblastoma treatment.
Collapse
Affiliation(s)
- Peifei Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| | - Haizhen Ding
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shubing Jia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yizhen Pang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| | - Cuicui Li
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| | - Tianzhi Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
| | - Loren Skudder-Hill
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Jingyan Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongmin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xiaobin Zhao
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Nan Si Huan Xi Lu 119, Fengtai District, Beijing 100070, China
| | - Xiaoyuan Chen
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117575, Singapore
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore 117544, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Jingjing Zhang
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117544, Singapore
| |
Collapse
|
2
|
Vonberg FW, Malik I, O'Reilly M, Hyare H, Carr AS, Roddie C. Neurotoxic complications of chimeric antigen receptor (CAR) T-cell therapy. J Neurol Neurosurg Psychiatry 2025:jnnp-2024-333924. [PMID: 40185628 DOI: 10.1136/jnnp-2024-333924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionised the treatment of haematological malignancies and has demonstrated efficacy in early trials for solid tumours, neurological and rheumatological autoimmune diseases. However, CAR-T is complicated in some patients by neurotoxicity syndromes including immune-effector cell-associated neurotoxicity syndrome, and the more recently described movement and neurocognitive treatment-emergent adverse events, and tumour inflammation-associated neurotoxicity. These neurotoxic syndromes remain poorly understood and are associated with significant morbidity and mortality. A multidisciplinary approach, including neurologists, haematologists and oncologists, is critical for the diagnosis and management of CAR-T neurotoxicity. This approach will be of increasing importance as the use of CAR-T expands, its applications increase and as novel neurotoxic syndromes emerge.
Collapse
Affiliation(s)
- Frederick W Vonberg
- National Hospital for Neurology and Neurosurgery, London, UK
- UCL Queen Square Institute of Neurology, London, UK
| | - Imran Malik
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Maeve O'Reilly
- Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Cancer Institute, London, UK
| | - Harpreet Hyare
- UCL Queen Square Institute of Neurology, London, UK
- Neuroradiology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Aisling S Carr
- UCL Queen Square Institute of Neurology, London, UK
- Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Claire Roddie
- Haematology, University College London Hospitals NHS Foundation Trust, London, UK
- UCL Cancer Institute, London, UK
| |
Collapse
|
3
|
Wang Y, Jiang J, Shang K, Xu X, Sun J. Turning "trashed" genomic loci into treasurable sites for integrating chimeric antigen receptors in T and NK cells. Mol Ther 2025; 33:1368-1379. [PMID: 39980196 DOI: 10.1016/j.ymthe.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 02/17/2025] [Indexed: 02/22/2025] Open
Abstract
Chimeric antigen receptor (CAR)-based immune cell therapy involves genetically engineering immune cells, such as T cells and natural killer (NK) cells, to express CARs that can specifically recognize target antigens. This modification enables T/NK cells to selectively eliminate tumor cells following adoptive transfer. One common approach to stably integrate CARs into the genome of T/NK cells is through retroviral or lentiviral vectors. However, these vectors mediate semi-random gene integration, posing risks such as oncogenic mutations, gene silencing, and variable CAR expression levels. Targeted integration of CAR genes into the specific genomic locus could overcome these limitations, but identifying the optimal integration sites to maximize the safety and efficacy of CAR-T/NK cell products remains a critical question. Improper integration sites may disturb the endogenous genes surrounding the integration sites, raising safety concerns. Additionally, regulatory elements at the integration sites, such as promoters, can influence the expression level of CAR genes, thus affecting the efficacy of CAR-T/NK cells. In this review, we summarized current strategies for selecting integration sites and promoters in the engineering of CAR-T/NK cells to achieve potent anti-tumor efficacy in preclinical studies.
Collapse
Affiliation(s)
- Yajie Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Jie Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Xiaobao Xu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, Hangzhou 311121, China; Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, China; Institute of Hematology, Zhejiang University and Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
4
|
Seblani M, Zannikou M, Duffy JT, Joshi T, Levine RN, Thakur A, Puigdelloses-Vallcorba M, Horbinski CM, Miska J, Hambardzumyan D, Becher OJ, Balyasnikova IV. IL13RA2-integrated genetically engineered mouse model allows for CAR T cells targeting pediatric high-grade gliomas. Acta Neuropathol Commun 2025; 13:69. [PMID: 40176156 PMCID: PMC11963683 DOI: 10.1186/s40478-025-01991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/26/2025] [Indexed: 04/04/2025] Open
Abstract
Pediatric high-grade gliomas (pHGG) and pediatric diffuse midline gliomas (pDMG) are devastating diseases without durable and curative options. Although targeted immunotherapy has shown promise, the field lacks immunocompetent animal models to study these processes in detail. To achieve this, we developed a fully immunocompetent, genetically engineered mouse model (GEMM) for pDMG and pHGG that incorporates the glioma-associated antigen, interleukin 13 receptor alpha 2 (IL13RA2). Utilizing the RCAS-Tva delivery system in Nestin-Tva mice, we induced gliomagenesis by overexpressing PDGFB and deleting p53 (p53fl/fl) or both p53 and PTEN (p53fl/fl PTENfl/fl), with or without IL13RA2 in neonatal mice. De novo tumors developed in models with and without IL13RA2, showing no statistical difference in onset (n = 33, 38 days, p = 0.62). The p53fl/fl PTENfl/fl tumors displayed more aggressive characteristics (n = 12, 31 days). Tumors exhibited features typical of high-grade glioma, including infiltration, pseudopalisading necrosis, and microvascular proliferation. They also showed a high Ki-67 index, variable IL13RA2 expression, a high frequency of CD11b + macrophages, and a low proportion of CD3 + T cells. The model proved effective for evaluating IL13RA2-targeted immunotherapies, with a significant response to CAR T-cell treatment that extended survival (46 days vs. 28 days control; p < 0.0001) and achieved 25% long-term survival in mice. This model facilitates the preclinical assessment of IL13RA2-directed therapies and holds potential for clinical application.
Collapse
Affiliation(s)
- M Seblani
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior St. Room 6-520, Chicago, IL, 60611, USA
| | - M Zannikou
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior St. Room 6-520, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - J T Duffy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior St. Room 6-520, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - T Joshi
- Departement of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R N Levine
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior St. Room 6-520, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - A Thakur
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior St. Room 6-520, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - C M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior St. Room 6-520, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - J Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior St. Room 6-520, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - D Hambardzumyan
- Departement of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - O J Becher
- Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departement of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, 303 E. Superior St. Room 6-520, Chicago, IL, 60611, USA.
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Pherez-Farah A, Boncompagni G, Chudnovskiy A, Pasqual G. The Bidirectional Interplay between T Cell-Based Immunotherapies and the Tumor Microenvironment. Cancer Immunol Res 2025; 13:463-475. [PMID: 39786986 PMCID: PMC7617322 DOI: 10.1158/2326-6066.cir-24-0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
T cell-based therapies, including tumor-infiltrating lymphocyte therapy, T-cell receptor-engineered T cells, and chimeric antigen receptor T cells, are powerful therapeutic approaches for cancer treatment. Whereas these therapies are primarily known for their direct cytotoxic effects on cancer cells, accumulating evidence indicates that they also influence the tumor microenvironment (TME) by altering the cytokine milieu and recruiting additional effector populations to help orchestrate the antitumor immune response. Conversely, the TME itself can modulate the behavior of these therapies within the host by either supporting or inhibiting their activity. In this review, we provide an overview of clinical and preclinical data on the bidirectional influences between T-cell therapies and the TME. Unraveling the interactions between T cell-based therapies and the TME is critical for a better understanding of their mechanisms of action, resistance, and toxicity, with the goal of optimizing efficacy and safety.
Collapse
Affiliation(s)
- Alfredo Pherez-Farah
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Gioia Boncompagni
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV IRCCS, Padua, Italy
| |
Collapse
|
6
|
Uslu U, June CH. Beyond the blood: expanding CAR T cell therapy to solid tumors. Nat Biotechnol 2025; 43:506-515. [PMID: 39533105 DOI: 10.1038/s41587-024-02446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy stands as a transformative advancement in immunotherapy, triumphing against hematological malignancies and, increasingly, autoimmune disorders. After a decade of relatively modest results for solid tumors, recent clinical trials and patient reports have also started to yield promising outcomes in glioblastoma and other challenging solid tumor entities. This Perspective seeks to explore the reasons behind these latest achievements and discusses how they can be sustained and expanded through different strategies involving CAR engineering and synthetic biology. Furthermore, we critically analyze how these breakthroughs can be leveraged to maintain momentum and broaden the therapeutic impact of CAR T cells across a variety of solid tumor landscapes.
Collapse
Affiliation(s)
- Ugur Uslu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Zhai Y, Li G, Pan C, Yu M, Hu H, Wang D, Shi Z, Jiang T, Zhang W. The development and potent antitumor efficacy of CD44/CD133 dual-targeting IL7Rα-armored CAR-T cells against glioblastoma. Cancer Lett 2025; 614:217541. [PMID: 39952598 DOI: 10.1016/j.canlet.2025.217541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Tumor heterogeneity and an immunosuppressive microenvironment pose significant challenges for immunotherapy against solid tumors, particularly glioblastoma multiforme (GBM). Recent studies have highlighted the crucial role of glioma stem cells (GSCs) in tumor recurrence and therapeutic resistance. In this context, we developed a tandem chimeric antigen receptor (CAR)-T cell targeting CD44 and CD133 (PROM1), containing a truncated IL-7 receptor alpha intracellular domain (Δ7R) between the CD28 costimulatory receptor and the CD3ζ signaling chain (Tanζ-T28-Δ7R). Our target identification and validation were carried out using GSCs, samples from GBM patients, and the corresponding sequencing data. The antitumor efficacy of CAR-T cells was evaluated in patient-derived GSCs, intracranial xenograft models, patient-derived xenograft models, and glioblastoma organoids (GBOs). Single-cell RNA sequencing and mass cytometry were used to determine the immune phenotypes of CAR-T cells. We showed that locoregionally administered Tanζ-T28-Δ7R CAR-T cells induced long-term tumor regression with the desired safety outcomes. Patient-derived autologous Tanζ-T28-Δ7R CAR-T cells showed robust antitumor activity against GBOs. Our pre-clinical data has demonstrated the translational potential of Tanζ-T28-Δ7R CAR-T cell against GBM.
Collapse
Affiliation(s)
- You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China; Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China; Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, PR China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China; Beijing Engineering Research Center of Targeted Drugs and Cell Therapy for CNS Tumors, Beijing, PR China.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China; China National Clinical Research Center for Neurological Diseases, Beijing, PR China; Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China; Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China; Beijing Engineering Research Center of Targeted Drugs and Cell Therapy for CNS Tumors, Beijing, PR China.
| |
Collapse
|
8
|
Pearson ADJ, Rossig C, Mackall CL, Shah NN, Baruchel A, Daems S, Anderson J, Biondi A, Bird N, Bodmer N, Brivio E, Buechner J, Calkoen FG, Cooper T, de Rojas T, Fox E, Gardner R, Ghorashian S, Heenen D, Ifversen M, Jacoby E, Juan M, Knox L, Komanduri K, Larghero J, Locatelli F, Ludwinski D, Majzner RG, McDonough J, Minard-Colin V, Nysom K, Pappo A, Park JR, Qasim W, Quintarelli C, Rives S, Rouce RH, Scobie N, Seitz C, Tasian SK, Weigel B, Weiner S, Zwaan CM, Vassal G. New models for the development of and access to CAR T-cell therapies for children and adolescents with cancer: an ACCELERATE multistakeholder analysis. Lancet Oncol 2025; 26:e214-e224. [PMID: 40179917 DOI: 10.1016/s1470-2045(24)00736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 04/05/2025]
Abstract
Realising the potentially substantial benefits of chimeric antigen receptor (CAR) T-cell therapy for children with cancer is hindered by non-scientific barriers that are also relevant for other rare diseases. A solely commercial development model will not deliver optimally due to insufficient return on investment for pharmaceutical companies. Access to therapies is restricted for patients who might benefit and advancing innovation in the academic research setting is difficult. Challenges relating to CAR T-cell therapies in paediatric malignancies and how they might be addressed were discussed in a meeting convened by ACCELERATE-an international multistakeholder organisation aiming to advance the timely investigation of new anticancer drugs. New academic and biopharma hybrid development models could benefit rare populations and coordination of early development can promote synergy and avoid duplicative efforts. Following promising first-in-child trials, new models are needed to support pivotal trials, decentralised manufacturing, registration, and reduced costs. The European Medicines Agency and the US Food and Drug Administration encourage academic development and early discussions. A biotech company funded via a pooled investment vehicle could provide access to safe and effective products for children and adolescents with cancer through registration and reimbursement.
Collapse
Affiliation(s)
| | - Claudia Rossig
- University Children's Hospital Muenster, Muenster, Germany
| | | | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - André Baruchel
- Hôpital Universitaire Robert Debré and Saint-Louis, Paris, France
| | - Sam Daems
- Waterland Private Equity Investments, Antwerp, Belgium; I3h Institute, Université libre de Bruxelles, Brussels, Belgium
| | - John Anderson
- University College London Great Ormond Street Institute of Child Health, Great Ormond Street Hospital, London, UK
| | | | | | | | - Erica Brivio
- Princess Máxima Center for Pediatric Oncology, Utrecht and Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | | | - Friso G Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht and Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Todd Cooper
- Cancer and Blood Disorders Service, Seattle Children's Hospital, Seattle, WA, USA
| | | | - Elizabeth Fox
- St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Sara Ghorashian
- University College London Great Ormond Street Institute of Child Health, Great Ormond Street Hospital, London, UK
| | | | | | - Elad Jacoby
- Sheba Medical Center, Tel-Hashomer, Sackler School of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Manel Juan
- Hospital Clínic de Barcelona, IDIBAPS, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | | | | | - Jerome Larghero
- Hôpital Universitaire Robert Debré and Saint-Louis, Paris, France
| | - Franco Locatelli
- IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | | | | | - Joe McDonough
- The Andrew McDonough B+ Foundation, Wilmington, DE, USA
| | | | | | - Alberto Pappo
- St Jude Children's Research Hospital, Memphis, TN, USA
| | - Julie R Park
- St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Concetta Quintarelli
- IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy; Catholic University of the Sacred Heart, Rome, Italy
| | - Susana Rives
- Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | | | | | - Sarah K Tasian
- Children's Hospital of Philadelphia, Division of Oncology and Center for Childhood Cancer Research, Philadelphia, PA, USA; Department of Pediatrics and Abramson Cancer Center, School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - C Michel Zwaan
- Princess Máxima Center for Pediatric Oncology, Utrecht and Erasmus MC-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Gilles Vassal
- ACCELERATE, Brussels, Belgium; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
9
|
Gajecki L, Lebedeva IV, Liao YR, Ambriz D, Carter LM, Kumpf M, Lovibond S, Hachey JS, Graham MS, Postow M, Lewis JS, Andrew DP, Baca M, Schöder H, Larson SM, Veach DR, Krebs S. IL13Rα2-Targeting Antibodies for Immuno-PET in Solid Malignancies. J Nucl Med 2025; 66:605-611. [PMID: 39978817 PMCID: PMC11960613 DOI: 10.2967/jnumed.124.268762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/15/2025] [Indexed: 02/22/2025] Open
Abstract
Interleukin-13 receptor α-2 (IL13Rα2) is a cell surface receptor frequently expressed in solid malignancies, such as glioblastoma and melanoma, with limited expression in healthy tissue, rendering it an ideal target for noninvasive and specific tumor delineation. In this study, we report the development of 5 novel IL13Rα2-targeted human monoclonal antibodies (mAbs) KLG-1-5; in subsequent in vitro and in vivo studies after radiolabeling with 89Zr, we evaluate their performance to identify a lead candidate. Methods: Five novel human anti-IL13Rα2 mAbs KLG-1-5 were developed and in vitro binding properties and target specificity assessed. In vivo 89Zr-immuno-PET using KLG-1-5 was conducted in a subcutaneous U-87 MG glioblastoma mouse model, and a mass dose titration study was conducted with lead candidate KLG-3. Ex vivo biodistribution results were used to derive prospective dosimetry of 177Lu-labeled KLG-3. Targeting with KLG-3 was also verified in an A-375 melanoma model using the optimized conditions determined in the U-87 MG xenograft model. Results: In vitro studies confirmed target specificity and pico- to low nanomolar binding affinity. Immuno-PET studies with KLG-1-5 in U-87 MG xenografts demonstrated continuously increasing tumoral uptake with maximal uptake at 144 h after tracer injection, clearance of the unbound tracer from the blood pool, and little uptake in any other normal tissues, leading to high-contrast images. KLG-3 provided the highest tumoral uptake and tumor-to-normal tissue ratios and was chosen as the lead candidate, and further dose optimization with this antibody led to tumoral uptake of 97 ± 6 maximum percent of injected dose per gram at 144 h after tracer injection. Ex vivo biodistribution-derived prospective dosimetry for 177Lu-labeled KLG-3 predicted a favorable therapeutic index, encouraging the development of IL13Rα2-targeted radioimmunotherapy. Of note, KLG-3 performed similarly well in a melanoma model, emphasizing the versatility of this antibody. Conclusion: Lead candidate anti-IL13Rα2 mAb KLG-3 validated highly specific target binding in human glioblastoma and melanoma models, resulting in high-contrast PET images with minimal accumulation in off-target healthy tissues. Prospective dosimetry of its 177Lu-labeled counterpart suggested therapeutic efficacy at relatively low injected activities, supporting further pursuit of KLG-3 in future translational radioimmunotherapy applications.
Collapse
Affiliation(s)
- Leah Gajecki
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Irina V Lebedeva
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Yu-Rou Liao
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Daisy Ambriz
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Melina Kumpf
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samantha Lovibond
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Justin S Hachey
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Pharmacology, Weill Cornell Graduate School of Medicine Sciences, New York, New York
| | - Maya S Graham
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael Postow
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - David P Andrew
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Manuel Baca
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, New York
| | - Heiko Schöder
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Steven M Larson
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Darren R Veach
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiology, Weill Cornell Medicine, New York, New York
| | - Simone Krebs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York;
- Department of Radiology, Weill Cornell Medicine, New York, New York
- Department of Nuclear Medicine, University of Texas MD Anderson Cancer Center, Houston, Texas; and
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
10
|
Gaoual Y, Mahyaoui A, Yachi L, Bouatia M, Aliat Z, Rahali Y. Advancements and challenges in CAR T cell therapy for pediatric brain tumors: A review. J Oncol Pharm Pract 2025:10781552251331609. [PMID: 40156311 DOI: 10.1177/10781552251331609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
Abstract
Chimeric Antigen Receptor (CAR) T cell therapy represents a groundbreaking advancement in immunotherapy, initially gaining FDA approval for treating hematological malignancies. This therapy has shown promising results in solid tumors, particularly in pediatric brain tumors, which are the leading cause of cancer-related death in children. CAR T cells are engineered to target specific antigens on tumor cells, thereby reducing off-target effects and increasing the cytotoxic impact on cancer cells. Over the years, CAR T cell technology has evolved through five generations, each enhancing the structure, functionality, and safety of these cells. Despite these advancements, the application of CAR T cells in solid tumors, especially within the central nervous system (CNS), faces significant challenges. These include the physical barrier posed by the blood-brain barrier (BBB), the immunosuppressive tumor microenvironment (TME), and the heterogeneity of tumor antigens. The review discusses several promising antigenic targets for CAR T cells in pediatric brain tumors, such as HER2, EphA2, IL-13Rα2, and Survivin, which have been explored in recent clinical trials. These trials have shown early promise in improving patient outcomes, though the risks of cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS) remain concerns. The future of CAR T cell therapy lies in overcoming these barriers through innovative approaches like "Armored CARs" or TRUCKs, designed to modulate the TME and improve CAR T cell efficacy in solid tumors. Additionally, combination therapies and safety switches in next-generation CAR T cells are being explored to enhance therapeutic potential while minimizing adverse effects.
Collapse
Affiliation(s)
- Yasmina Gaoual
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
| | - Adam Mahyaoui
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
| | - Lamyae Yachi
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Children's hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Team of analytical chemistry and bromatology, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
| | - Mustapha Bouatia
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Children's hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Team of analytical chemistry and bromatology, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
- Ibn Sina University Hospital Center, 10 170 Rabat, Morocco
| | - Zineb Aliat
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
| | - Younes Rahali
- Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, 10 170 Rabat, Morocco
- Specialties Hospital of Rabat, Ibn Sina University Hospital, 10 170 Rabat, Morocco
- Ibn Sina University Hospital Center, 10 170 Rabat, Morocco
- Team of Formulation and Quality Control of Health Products, Faculty of Medicine and Pharmacy, Mohammed V University- Rabat, 10 170 Rabat, Morocco
| |
Collapse
|
11
|
Patel KK, Tariveranmoshabad M, Kadu S, Shobaki N, June C. From concept to cure: The evolution of CAR-T cell therapy. Mol Ther 2025:S1525-0016(25)00179-0. [PMID: 40070120 DOI: 10.1016/j.ymthe.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/21/2025] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy has revolutionized cancer immunotherapy in the 21st century, providing innovative solutions and life-saving therapies for previously untreatable diseases. This approach has shown remarkable success in treating various hematological malignancies and is now expanding into clinical trials for solid tumors, such as prostate cancer and glioblastoma, as well as infectious and autoimmune diseases. CAR-T cell therapy involves harvesting a patient's T cells, genetically engineering them with viral vectors to express CARs targeting specific antigens and reinfusing the modified cells into the patient. These CAR-T cells function independently of major histocompatibility complex (MHC) antigen presentation, selectively identifying and eliminating target cells. This review highlights the key milestones in CAR-T cell evolution, from its invention to its clinical applications. It outlines the historical timeline leading to the invention of CAR-T cells, discusses the major achievements that have transformed them into a breakthrough therapy, and addresses remaining challenges, including high manufacturing costs, limited accessibility, and toxicity issues such as cytokine release syndrome and immune effector cell-associated neurotoxicity syndrome. Additionally, the review explores future directions and advances in the field, such as developing next-generation CAR-T cells aiming to maximize efficacy, minimize toxicity, and broaden therapeutic applications.
Collapse
Affiliation(s)
- Kisha K Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mito Tariveranmoshabad
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siddhant Kadu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nour Shobaki
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy at University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Begley SL, O'Rourke DM, Binder ZA. CAR T cell therapy for glioblastoma: A review of the first decade of clinical trials. Mol Ther 2025:S1525-0016(25)00178-9. [PMID: 40057825 DOI: 10.1016/j.ymthe.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with a poor prognosis and few effective treatment options. Focus has shifted toward using immunotherapies, such as chimeric antigen receptor (CAR) T cells, to selectively target tumor antigens and mediate cytotoxic activity within an otherwise immunosuppressive tumor microenvironment. Between 2015 and 2024, the results of eight completed and two ongoing phase I clinical trials have been published. The majority of studies have treated recurrent GBM patients, although the inter- and intra-patient tumor heterogeneity has been historically challenging to overcome. Molecular targets have included EGFR, HER2, and IL13Rα2 and there has been continued development in improving receptor constructs, identifying novel targets, and adding adjuvant enhancers to increase efficacy. CAR T cells have been safely administered through both peripheral and locoregional routes but with variable clinical and radiographic efficacy. Most trials utilized autologous T cell products to avoid immune rejection yet were unable to consistently show robust engraftment and persistence within patients. Nonetheless, targeted immunotherapies such as CAR T cell therapy remain the next frontier for GBM treatment, and the popularity and complexity of this undertaking is evident in the past, present, and future landscape of clinical trials.
Collapse
Affiliation(s)
- Sabrina L Begley
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Donald M O'Rourke
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zev A Binder
- GBM Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Kuroda H, Kijima N, Tachi T, Ikeda S, Murakami K, Nakagawa T, Yaga M, Nakagawa K, Utsugi R, Hirayama R, Okita Y, Kagawa N, Hosen N, Kishima H. Prostaglandin F2 receptor negative regulator as a potential target for chimeric antigen receptor-T cell therapy for glioblastoma. Cancer Immunol Immunother 2025; 74:136. [PMID: 40047938 PMCID: PMC11885767 DOI: 10.1007/s00262-025-03979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy targeting novel glioblastoma (GBM)-specific cell surface antigens is a promising approach. However, transcriptome analyses have revealed few GBM-specific target antigens. METHODS A library of monoclonal antibodies (mAbs) against tumor cell lines derived from patients with GBM was generated. mAbs reacting with tumor cells in resected tissues from patients with GBM but not with nonmalignant human brain cells were detected. The antigens that were recognized were identified through expression cloning. CAR-T cells derived from a candidate mAb were generated, and their functionality was tested in vitro and in vivo. RESULTS Approximately 3,200 clones were established. Among them, 5E17 reacted with tumor cells in six of seven patients with GBM, but not with nonmalignant human brain cells. Prostaglandin F2 receptor negative regulator (PTGFRN) was identified as an antigen recognized by 5E17. CAR-T cells derived from 5E17 produced cytokines and exerted cytotoxicity upon co-culture with tumor cells from patients with GBM. Furthermore, intracranial injection of 5E17-CAR-T cells demonstrated antitumor effects in an orthotopic xenograft murine model with patient-derived GBM cells. CONCLUSIONS Cell surface PTGFRN is a candidate target for intracranial CAR-T cell therapy for GBM. On-target off-tumor toxicity in alternative normal tissues needs to be carefully tested.
Collapse
Affiliation(s)
- Hideki Kuroda
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Noriyuki Kijima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan.
| | - Tetsuro Tachi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Shunya Ikeda
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Koki Murakami
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Tomoyoshi Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Moto Yaga
- Department of Respiratory Medicine, Osaka General Hospital, Osaka, Osaka, Japan
| | - Kanji Nakagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Reina Utsugi
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Ryuichi Hirayama
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Yoshiko Okita
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Naoki Kagawa
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| | - Naoki Hosen
- World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan.
| | - Haruhiko Kishima
- Department of Neurosurgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 5650871, Japan
| |
Collapse
|
14
|
Hu X, Zhang G, Wang Y, Zhang X, Xie R, Liu X, Ding H. Microvascular heterogeneity exploration in core and invasive zones of orthotopic rat glioblastoma via ultrasound localization microscopy. Eur Radiol Exp 2025; 9:30. [PMID: 40045008 PMCID: PMC11882483 DOI: 10.1186/s41747-025-00555-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/15/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND We studied the microvascular structure and function of in situ glioblastoma using ultrasound localization microscopy (ULM). METHODS The in vivo study was conducted via craniotomy in six Sprague-Dawley rats. Capillary pattern, capillary hemodynamics, and functional quantitative parameters were compared among tumor core, invasive zone, and normal brain tissue with ex vivo micro-computed tomography (micro-CT) and scanning electron microscopy. Correlations between quantitative parameters and histopathological vascular density (VD-H), proliferation index, and histopathological vascular maturity index (VMI-H) were evaluated. Kruskal-Wallis H, ANOVA, Mann-Whitney U, Pearson, and Spearman correlation statistics were used. RESULTS Compared to the tumor core, the invasive zone exhibited higher microvascularity structural disorder and complexity, increased hemodynamic heterogeneity, higher local blood flow perfusion (p ≤ 0.033), and slightly lower average flow velocity (p = 0.873). Significant differences were observed between the invasive zone and normal brain tissue across all parameters (p ≤ 0.001). ULM demonstrated higher microstructural resolution compared to micro-CT and a nonsignificant difference compared to scanning electron microscopy. The invasive zone vascular density correlated with VD-H (r = 0.781, p < 0.001). Vessel diameter (r = 0.960, p < 0.001), curvature (r = 0.438, p = 0.047), blood flow velocity (r = 0.487, p = 0.025), and blood flow volume (r = 0.858, p < 0.001) correlated with proliferation index. Vascular density (r = -0.444, p = 0.044) and fractal dimension (r = -0.933, p < 0.001) correlated with VMI-H. CONCLUSION ULM provided high-resolution, noninvasive imaging of glioblastoma microvascularity, offering insights into structural/functional abnormalities. RELEVANCE STATEMENT ULM technology based on ultrafast ultrasound can accurately quantify the microvessels of glioblastoma, providing a new method for evaluating the effectiveness of antiangiogenic therapy and visualizing disease progression. This method may facilitate early therapeutic assessment. KEY POINTS ULM reliably captures the vascular structures and hemodynamic features of glioblastoma in rats. Micro-CT and scanning electron microscopy validated its effectiveness in microvascular non-invasion characterization. ULM is expected to effectively evaluate glioblastoma anti-vascular therapy response.
Collapse
Affiliation(s)
- Xing Hu
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China
| | - Gaobo Zhang
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yong Wang
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China
| | - Xiandi Zhang
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, E Fudan Univertity, Shanghai, China
| | - Xin Liu
- Academy for Engineering and Technology, Fudan University, Shanghai, China.
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan Univertity, Shanghai, China.
| |
Collapse
|
15
|
Gerber WK, Xie Y, Patel SA. Expanding the Therapeutic Reach of Chimeric Antigen Receptor T-Cells and Bispecific T-Cell Engagers Across Solid Tumors. JCO Precis Oncol 2025; 9:e2400753. [PMID: 40138603 PMCID: PMC11952672 DOI: 10.1200/po-24-00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 03/29/2025] Open
Abstract
The introduction of T-cell-based therapeutics in hematologic malignancies has led to improvements in outcomes for patients with acute leukemia, lymphoma, and multiple myeloma. To date, the Food and Drug Administration (FDA) has approved seven chimeric antigen receptor-T (CAR-T) cell therapies and seven bispecific T-cell engagers (BiTEs) across a variety of hematologic malignancies; however, the extension of CAR-T therapies and BiTEs to the solid tumor arena has been somewhat limited. In this review, we discuss the landmark data that led to the commercialization of four novel FDA-approved T-cell-based therapeutics in solid malignancies, including tarlatamab for small cell lung cancer, afamitresgene autoleucel for synovial sarcoma, lifileucel for metastatic melanoma, and tebentafusp for metastatic uveal melanoma. We discuss the targetable antigen landscape of CAR-T therapies and BiTEs under investigation in solid malignancies. We explore the translational potential for various CARs under active investigation, including human epidermal growth factor receptor 2-directed CARs in breast cancer, prostate stem cell antigen-directed CARs for prostate cancer, epidermal growth factor receptor (EGFR)-IL13Ra2 and EGFR-vIII CARs for glioblastoma, and GD2-directed CARs for neuroblastoma. We glean from lessons learned for existing CAR-T therapies and BiTEs for hematologic malignancies and emphasize solutions toward facilitating the clinical rollout of T-cell-based therapies in solid tumors, including scalability to meet the growing needs of clinical oncology. Some solutions include addressing on-target, off-tumor toxicity; improving the manufacturing of CARs; optimizing the tissue-specific tumor microenvironment by combating immune desert tumors; and discovering natural tumor neoantigens and non-self-epitopes generated by tumor-specific mutations. These concepts can help provide transformative benefits for patients with solid malignancies in the coming years.
Collapse
Affiliation(s)
- William K. Gerber
- Dept. of Medicine – Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
| | - Yiyu Xie
- Dept. of Medicine – Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
| | - Shyam A. Patel
- Dept. of Medicine – Division of Hematology/Oncology, UMass Memorial Medical Center, UMass Chan Medical School, Worcester, MA
- Center for Clinical and Translational Science, UMass Chan Medical School, Worcester, MA
- Cancer Biology Program, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA
| |
Collapse
|
16
|
Pearson AD, Mueller S, Filbin MG, Grill J, Hawkins C, Jones C, Donoghue M, Drezner N, Weiner S, Russo M, Dun MD, Allen JE, Alonso M, Benaim E, Buenger V, de Rojas T, Desserich K, Fox E, Friend J, Glade Bender J, Hargrave D, Jensen M, Kholmanskikh O, Kieran MW, Knoderer H, Koschmann C, Lesa G, Ligas F, Lipsman N, Ludwinski D, Marshall L, McDonough J, McNicholl AG, Mirsky D, Monje M, Nysom K, Pappo A, Rosenfield A, Scobie N, Slaughter J, Smith M, Souweidane M, Straathof K, Ward L, Weigel B, Zamoryakhin D, Karres D, Vassal G. Paediatric strategy forum for medicinal product development in diffuse midline gliomas in children and adolescents ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2025; 217:115230. [PMID: 39854822 DOI: 10.1016/j.ejca.2025.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Fewer than 10 % of children with diffuse midline glioma (DMG) survive 2 years from diagnosis. Radiation therapy remains the cornerstone of treatment and there are no medicinal products with regulatory approval. Although the biology of DMG is better characterized, this has not yet translated into effective treatments. H3K27-alterations initiate the disease but additional drivers are required for malignant growth. Hence, there is an urgent unmet need to develop new multi-modality therapeutic strategies, including alternative methods of drug delivery. ONC201 (DRD2 antagonist and mitochondrial ClpP agonist) is the most widely evaluated investigational drug. Encouraging early data is emerging for CAR T-cells and oncolytic viruses. GD2, B7-H3 and PI3K signalling are ubiquitous targets across all subtypes and therapeutics directed to these targets would potentially benefit the largest number of children. PI3K, ACVR1, MAPK and PDGFRA pathways should be targeted in rational biological combinations. Drug discovery is a very high priority. New specific and potent epigenetic modifiers (PROTACS e.g. SMARCA4 degraders), with blood-brain penetrance are needed. Cancer neuroscience therapeutics are in early development. Overall survival is the preferred regulatory endpoint. However, the evaluation of this can be influenced by the use of re-irradiation at the time of progression. An efficient clinical trial design fit for regulatory purposes for the evaluation of new therapeutics would aid industry and facilitate more efficient therapy development. Challenges in conducting clinical trials such as the need for comparator data and defining endpoints, could be addressed through an international, first-in-child, randomised, complex innovative design trial. To achieve progress: i) drug discovery; ii) new multi-modality, efficient, collaborative, pre-clinical approaches, possibly including artificial intelligence and, iii) efficient clinical trial designs fit for regulatory purposes are required.
Collapse
Affiliation(s)
| | - Sabine Mueller
- Departments of Neurological Surgery, Pediatrics and, Neurology University of California, San Francisco, California, USA. Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Mariella G Filbin
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Chris Jones
- The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Nicole Drezner
- US Food and Drug Administration, Silver Springs, MD, USA
| | - Susan Weiner
- ACCELERATE, Europe; Children's Cancer Cause, Washington, DC, USA; Memorial Sloan Kettering Cancer Centre, New York, USA
| | | | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Mark Hughes Foundation for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | | | - Marta Alonso
- Program of Solid Tumors, Center for the Applied Medical Research, Pamplona, Spain; Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Center for the Applied Medical Research, Pamplona, Spain
| | | | - Vickie Buenger
- Coalition Against Childhood Cancer (CAC2), Philadelphia, USA
| | | | | | | | | | | | - Darren Hargrave
- University College London Great Ormond Street Institute of Child Health, London, UK
| | | | | | | | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Nir Lipsman
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Lynley Marshall
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | | | - David Mirsky
- University of Colorado, School of Medicine, CO, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA, Howard Hughes Medical Institute, Stanford, CA, USA
| | | | | | | | | | | | | | | | - Karin Straathof
- University College London Cancer Institute, Great Ormond Street Biomedical Research Centre, London, UK
| | - Lisa Ward
- DIPG-DMG Research Funding Alliance DDRFA /Tough2gether, Manhattan, KS, USA
| | | | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
17
|
Ahmed T, Alam KT. Biomimetic Nanoparticle Based Targeted mRNA Vaccine Delivery as a Novel Therapy for Glioblastoma Multiforme. AAPS PharmSciTech 2025; 26:68. [PMID: 39984771 DOI: 10.1208/s12249-025-03065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/06/2025] [Indexed: 02/23/2025] Open
Abstract
The prognosis for patients with glioblastoma multiforme (GBM), an aggressive and deadly brain tumor, is poor due to the limited therapeutic options available. Biomimetic nanoparticles have emerged as a promising vehicle for targeted mRNA vaccine delivery, thanks to recent advances in nanotechnology. This presents a novel treatment method for GBM. This review explores the potential of using biomimetic nanoparticles to improve the specificity and effectiveness of mRNA vaccine against GBM. These nanoparticles can evade immune detection, cross the blood-brain barrier, & deliver mRNA directly to glioma cells by mimicking natural biological structures. This allows glioma cells to produce tumor-specific antigens that trigger strong immune responses against the tumor. This review discusses biomimetic nanoparticle design strategies, which are critical for optimizing transport and ensuring targeted action. These tactics include surface functionalization and encapsulation techniques. It also highlights the ongoing preclinical research and clinical trials that demonstrate the therapeutic advantages and challenges of this strategy. Biomimetic nanoparticles for mRNA vaccine delivery represent a new frontier in GBM treatment, which could impact the management of this deadly disease and improve patient outcomes by integrating cutting-edge nanotechnology with immunotherapy.
Collapse
Affiliation(s)
- Tanvir Ahmed
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh.
| | - Kazi Tasnuva Alam
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University, Plot 15, Block B, Bashundhara R/A, Dhaka, 1229, Bangladesh
| |
Collapse
|
18
|
Gordon KS, Perez CR, Garmilla A, Lam MSY, Aw JJY, Datta A, Lauffenburger DA, Pavesi A, Birnbaum ME. Pooled screening for CAR function identifies novel IL-13Rα2-targeted CARs for treatment of glioblastoma. J Immunother Cancer 2025; 13:e009574. [PMID: 39933837 PMCID: PMC11815465 DOI: 10.1136/jitc-2024-009574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR) therapies have demonstrated potent efficacy in treating B-cell malignancies, but have yet to meaningfully translate to solid tumors. Nonetheless, they are of particular interest for the treatment of glioblastoma, which is an aggressive form of brain cancer with few effective therapeutic options, due to their ability to cross the highly selective blood-brain barrier. METHODS Here, we use our pooled screening platform, CARPOOL, to expedite the discovery of CARs with antitumor functions necessary for solid tumor efficacy. We performed selections in primary human T cells expressing a library of 1.3×106 third generation CARs targeting IL-13Rα2, a cancer testis antigen commonly expressed in glioblastoma. Selections were performed for cytotoxicity, proliferation, memory formation, and persistence on repeated antigen challenge. RESULTS Each enriched CAR robustly produced the phenotype for which it was selected, and one enriched CAR triggered potent cytotoxicity and long-term proliferation on in vitro tumor rechallenge. It also showed significantly improved persistence and comparable tumor control in a microphysiological human in vitro model and a xenograft model of human glioblastoma, but also demonstrated increased off-target recognition of IL-13Rα1. CONCLUSION Taken together, this work demonstrates the utility of extending CARPOOL to diseases beyond hematological malignancies and represents the largest exploration of signaling combinations in human primary cells to date.
Collapse
Affiliation(s)
- Khloe S Gordon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Caleb R Perez
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| | - Andrea Garmilla
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Program in Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maxine S Y Lam
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Joey J Y Aw
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
| | - Anisha Datta
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science Technology and Research (A*STAR), Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Michael E Birnbaum
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Singapore-MIT Alliance for Research and Technology Centre, Singapore
| |
Collapse
|
19
|
Gallus M, Young JS, Cook Quackenbush S, Khasraw M, de Groot J, Okada H. Chimeric antigen receptor T-cell therapy in patients with malignant glioma-From neuroimmunology to clinical trial design considerations. Neuro Oncol 2025; 27:352-368. [PMID: 39450490 PMCID: PMC11812040 DOI: 10.1093/neuonc/noae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Clinical trials evaluating chimeric antigen receptor (CAR) T-cell therapy in patients with malignant gliomas have shown some early promise in pediatric and adult patients. However, the long-term benefits and safety for patients remain to be established. The ultimate success of CAR T-cell therapy for malignant glioma will require the integration of an in-depth understanding of the immunology of the central nervous system (CNS) parenchyma with strategies to overcome the paucity and heterogeneous expression of glioma-specific antigens. We also need to address the cold (immunosuppressive) microenvironment, exhaustion of the CAR T-cells, as well as local and systemic immunosuppression. Here, we discuss the basics and scientific considerations for CAR T-cell therapies and highlight recent clinical trials. To help identify optimal CAR T-cell administration routes, we summarize our current understanding of CNS immunology and T-cell homing to the CNS. We also discuss challenges and opportunities related to clinical trial design and patient safety/monitoring. Finally, we provide our perspective on future prospects in CAR T-cell therapy for malignant gliomas by discussing combinations and novel engineering strategies to overcome immuno-regulatory mechanisms. We hope this review will serve as a basis for advancing the field in a multiple discipline-based and collaborative manner.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | | | - Mustafa Khasraw
- The Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - John de Groot
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Hideho Okada
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| |
Collapse
|
20
|
Grewal EP, Nahed BV, Carter BS, Gerstner ER, Curry WT, Maus MV, Choi BD. Clinical progress in the development of CAR T cells to treat malignant glioma. J Neurooncol 2025; 171:571-579. [PMID: 39695004 DOI: 10.1007/s11060-024-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
CONTEXT Chimeric antigen receptor (CAR) T cell therapy is an exciting modality of immunotherapy that has revolutionized the treatment of hematologic malignancies. However, translating this success to malignant gliomas such as glioblastoma (GBM) and diffuse midline glioma (DMG) remains a formidable challenge due to multiple biologic, anatomic, and immunologic factors. Despite these hurdles, a number of clinical trials deployed over the last decade have increased optimism for the potential of CAR T cell therapy in glioma treatment. EVIDENCE SYNTHESIS We highlight historical and ongoing clinical trials of CAR T cell therapy in glioma, with a focus on key tumor-associated antigens such as IL-13Rα2, HER2, EGFR, EGFRvIII, EphA2, GD2, and B7-H3. Early studies established proof-of-concept for antigen-specific CAR T cell targeting, yet immune evasion mechanisms such as antigen downregulation and limited CAR T cell persistence remain significant obstacles. Recent approaches, including multiantigen targeting, alternative cell sources, and innovations in delivery routes offer promising strategies to overcome these challenges. CONCLUSIONS The rapid evolution of investigational CAR T cell therapies portends great potential for the future of glioma treatment. Future studies will need to refine antigen targeting strategies, optimize CAR T cell persistence, and integrate combinatorial approaches to fully harness the therapeutic potential of this modality and improve the therapeutic window against brain tumors.
Collapse
Affiliation(s)
- Eric P Grewal
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - William T Curry
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
| | - Bryan D Choi
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
21
|
Rechberger JS, Toll SA, Biswas S, You HB, Chow WD, Kendall N, Navalkele P, Khatua S. Advances in the Repurposing and Blood-Brain Barrier Penetrance of Drugs in Pediatric Brain Tumors. Cancers (Basel) 2025; 17:439. [PMID: 39941807 PMCID: PMC11816256 DOI: 10.3390/cancers17030439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
Central nervous system (CNS) tumors are the leading cause of cancer-related mortality in children, with prognosis remaining dismal for some of these malignancies. Though the past two decades have seen advancements in surgery, radiation, and targeted therapy, major unresolved hurdles continue to undermine the therapeutic efficacy. These include challenges in suboptimal drug delivery through the blood-brain barrier (BBB), marked intra-tumoral molecular heterogeneity, and the elusive tumor microenvironment. Drug repurposing or re-tasking FDA-approved drugs with evidence of penetration into the CNS, using newer methods of intracranial drug delivery facilitating optimal drug exposure, has been an area of intense research. This could be a valuable tool, as most of these agents have already gone through the lengthy process of drug development and the evaluation of safety risks and the optimal pharmacokinetic profile. They can now be used and tested in clinics with an accelerated and different approach. Conclusions: The next-generation therapeutic strategy should prioritize repurposing oncologic and non-oncologic drugs that have been used for other indication, and have demonstrated robust preclinical activity against pediatric brain tumors. In combination with novel drug delivery techniques, these drugs could hold significant therapeutic promise in pediatric neurooncology.
Collapse
Affiliation(s)
| | - Stephanie A. Toll
- Children’s Hospital of Michigan, Central Michigan University School of Medicine, Saginaw, MI 48602, USA;
| | - Subhasree Biswas
- Bronglais General Hospital, Caradog Road, Aberystwyth SY23 1ER, Wales, UK;
| | - Hyo Bin You
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (H.B.Y.); (W.D.C.)
| | - William D. Chow
- Mayo Clinic Alix School of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA; (H.B.Y.); (W.D.C.)
| | - Nicholas Kendall
- School of Medicine, University of South Dakota Sanford, Vermillion, SD 57069, USA;
| | - Pournima Navalkele
- Division of Oncology, Children’s Hospital of Orange County, Orange, CA 92868, USA;
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Yang Y, Wang J, Zhong Y, Tian M, Zhang H. Advances in Radionuclide-Labeled Biological Carriers for Tumor Imaging and Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4316-4336. [PMID: 39792777 DOI: 10.1021/acsami.4c19059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Biological carriers have emerged as significant tools to deliver radionuclides in nuclear medicine, providing a meaningful perspective for tumor imaging and treatment. Various radionuclide-labeled biological carriers have been developed to meet the needs of biomedical applications. This review introduces the principles of radionuclide-mediated imaging and therapy and the selected criteria of them, as well as a comprehensive description of the characteristics and functions of representative biological carriers including bacteria, cells, viruses, and their biological derivatives, emphasizing the labeled strategies of biological carriers combined with radionuclides. Subsequently, we in-depth introduce the application of radionuclide-labeled biological carriers in tumor imaging and treatment, including the imaging of the behaviors of biological carriers in vivo and tumor metastasis and the tumor treatment by radionuclide therapy, plus other strategies and radiation-induced photodynamic therapy. Finally, the challenges and prospects of radionuclide-labeled biological carriers are discussed to improve the shortcomings of this innovative platform and promote clinical transformation in the field of medical imaging.
Collapse
Affiliation(s)
- Yaozhang Yang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310014, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
23
|
Ismail FS, Gallus M, Meuth SG, Okada H, Hartung HP, Melzer N. Current and Future Roles of Chimeric Antigen Receptor T-Cell Therapy in Neurology: A Review. JAMA Neurol 2025; 82:93-103. [PMID: 39585688 DOI: 10.1001/jamaneurol.2024.3818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Importance Advancements in molecular engineering have facilitated the creation of engineered T cells that express synthetic receptors, termed chimeric antigen receptors (CARs). This is promising not only in cancer treatment but also in addressing a spectrum of other conditions. This review provides a comprehensive overview of the current approaches and future potential of CAR T-cell therapy in the field of neurology, particularly for primary brain tumors and autoimmune neurological disorders. Observations CAR T-cell therapy for glioblastoma is promising; however, first-in-human trials did not yield significant success or showed only limited success in a subset of patients. To date, the efficacy of CAR T-cell therapies has been demonstrated in animal models of multiple sclerosis, but larger human studies to corroborate the efficacy remain pending. CAR T cells showed efficacy in treatment of patients with relapsed or refractory aquaporin 4-immunoglobulin G-seropositive neuromyelitis optica spectrum disorders. Further studies with larger patient populations are needed to confirm these results. Success was reported also for treatment of cases with generalized myasthenia gravis using CAR T cells. Chimeric autoantibody receptor T cells, representing a modified form of CAR T cells directed against autoreactive B cells secreting autoantibodies, were used to selectively target autoreactive anti-N-methyl-d-aspartate B cells under in vitro and in vivo conditions, providing the basis for human studies and application to other types of autoimmune encephalitis associated with neuronal or glial antibodies. Conclusions and Relevance CAR T cells herald a new era in the therapeutic landscape of neurological disorders. While their application in solid tumors, such as glioblastoma, has not universally yielded robust success, emerging innovative strategies show promise, and there is optimism for their effectiveness in certain autoimmune neurological disorders.
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen, Germany
| | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
24
|
Mobark N, Hull CM, Maher J. Optimising CAR T therapy for the treatment of solid tumors. Expert Rev Anticancer Ther 2025; 25:9-25. [PMID: 39466110 DOI: 10.1080/14737140.2024.2421194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Adoptive immunotherapy using chimeric antigen receptor (CAR)-engineered T cells has proven transformative in the management of B cell and plasma cel derived malignancies. However, solid tumors have largely proven to be resistant to this therapeutic modality. Challenges include the paucity of safe target antigens, heterogeneity of target expression within the tumor, difficulty in delivery of CAR T cells to the site of disease, poor penetration within solid tumor deposits and inability to circumvent the array of immunosuppressive and biophysical barriers imposed by the solid tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database, excluding occasional papers which were not available as open access publications or through other means. EXPERT OPINION Here, we have surveyed the large body of technological advances that have been made in the quest to bridge the gap toward successful deployment of CAR T cells for the treatment of solid tumors. These encompass the development of more sophisticated targeting strategies to engage solid tumor cells safely and comprehensively, improved drug delivery solutions, design of novel CAR architectures that achieve improved functional persistence and which resist physical, chemical and biological hurdles present in tumor deposits. Prospects for combination therapies that incorporate CAR T cells are also considered.
Collapse
Affiliation(s)
- Norhan Mobark
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Leucid Bio Ltd., Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
25
|
Agliardi G, Dias J, Rampotas A, Garcia J, Roddie C. Accelerating and optimising CAR T-cell manufacture to deliver better patient products. Lancet Haematol 2025; 12:e57-e67. [PMID: 39510106 DOI: 10.1016/s2352-3026(24)00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 11/15/2024]
Abstract
Autologous chimeric antigen receptor (CAR) T-cell therapy has transformed the management of B-cell leukaemia and lymphoma. However, current manufacturing processes present logistical hurdles, restricting broader application. As clinical outcomes can be heavily influenced by the quality of autologous starting materials and production processes, strategies to improve product phenotype are crucial. Short manufacturing processes have the advantage of bringing products to patients more quickly and, in parallel, avoiding the highly differentiated and exhausted CAR T-cell phenotypes associated with prolonged ex vivo manufacture. This Review examines advances in our understanding of what constitutes an effective CAR T-cell product and approaches to improve product quality. Historically, strategies have relied on adjustments in medium composition and selection of less differentiated cell subtypes. Since 2020, the field has been shifting towards reduced-expansion protocols, no-activation protocols, and point-of-care manufacturing. These approaches have the advantage of a rapid turnaround while maintaining a less differentiated and exhausted phenotype. These efforts are leading to ultrarapid production methods and even elimination of ex vivo manipulation with the use of in vivo manufacturing approaches. In this Review, we focus on the advances needed to accelerate CAR T-cell manufacture (including near-patient methods), with an emphasis on improved therapeutic efficacy and rapid turnaround time, and simplified quality control procedures required to fully realise the clinical potential of CAR T-cell therapies.
Collapse
Affiliation(s)
- Giulia Agliardi
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Juliana Dias
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Alexandros Rampotas
- Cancer Institute, University College London, London, UK; Department of Haematology, University College London Hospitals, London, UK
| | - John Garcia
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Claire Roddie
- Cancer Institute, University College London, London, UK; Department of Haematology, University College London Hospitals, London, UK.
| |
Collapse
|
26
|
Vignot S, Bellesoeur A, Bouleuc C, Cohen R, Courtier B, Crozier C, De Nonneville A, Delom F, Evrard S, Firmin N, Gandemer V, Khettab M, Magné N, Orbach D, Pellier I, Rodrigues M, Wislez M, Bay JO. [A 2024 inventory in oncology news]. Bull Cancer 2025; 112:19-34. [PMID: 39690092 DOI: 10.1016/j.bulcan.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
The editorial board of the Bulletin du cancer has compiled a summary of the news from 2024 in oncology, based on the main results presented at international congresses or published over the past year. After a year marked by the success of the Olympic Games, the selection of data is presented and discussed in podiums of three main results by topic. Emphasis is placed on studies that have an immediate impact on practice and on data that raise important questions for the year 2025.
Collapse
Affiliation(s)
- Stéphane Vignot
- UR7509 IRMAIC, université Reims Champagne Ardenne, 1, rue du Maréchal-Juin, 51100 Reims, France; Département d'oncologie médicale, institut Godinot, 1, rue du Général Koenig, 51100 Reims, France.
| | | | - Carole Bouleuc
- Département de soins de support, institut Curie, Paris, France
| | - Romain Cohen
- Service d'oncologie médicale, hôpital Saint-Antoine, AP-HP, Paris, France; Inserm, unité mixte de recherche scientifique 938 et SIRIC CURAMUS, centre de recherche Saint-Antoine, équipe instabilite des microsatellites et cancer, Paris, France
| | | | - Carolyne Crozier
- Département d'oncologie médicale, institut Paoli-Calmettes, Marseille, France
| | | | - Frédéric Delom
- ARTiSt Lab, Inserm U1312, université de Bordeaux, Bordeaux, France
| | - Serge Evrard
- Institut Bergonié, université de Bordeaux, Inserm BRIC 1312, Bordeaux, France
| | - Nelly Firmin
- ICM Montpellier et Inserm U1194, IRCM, université de Montpellier, Montpellier, France
| | - Virginie Gandemer
- Service d'onco-hématologie pédiatrie, CHU hôpital sud, université Rennes 1, 16, boulevard de Bulgarie, 35203 Rennes, France
| | - Mohamed Khettab
- Service d'hémato-oncologie, centre hospitalier universitaire de la Réunion, groupe hospitalier Sud Réunion, Saint-Pierre, France
| | - Nicolas Magné
- UMR CNRS5822/IP2I Cellular and Molecular Radiobiology Laboratory, université de Lyon, Lyon, France; Faculté de médecine Jacques-Lisfranc, université Jean Monnet, Saint-Étienne, France; Département de radiothérapie, institut Bergonie, Bordeaux, France
| | - Daniel Orbach
- Centre intégré de soins et de recherche en oncologie de l'enfant, adolescent et jeune adulte (SIREDO), université PSL, institut Curie, Paris, France
| | - Isabelle Pellier
- Unité d'onco-hématologie et immunologie pédiatrique, CHU d'Angers, Angers, France
| | - Manuel Rodrigues
- Département d'oncologie médicale, Institut Curie, PSL Research University, Paris, France
| | - Marie Wislez
- Service de pneumologie, unité d'oncologie thoracique, AP-HP centre, hôpital Cochin, Paris, France
| | - Jacques-Olivier Bay
- UE7453 CHELTER, Inserm CIC-501, site Estaing, service de thérapie cellulaire et d'hématologie clinique adulte, service d'oncologie médicale, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
27
|
Monje M, Mahdi J, Majzner R, Yeom KW, Schultz LM, Richards RM, Barsan V, Song KW, Kamens J, Baggott C, Kunicki M, Rietberg SP, Lim AS, Reschke A, Mavroukakis S, Egeler E, Moon J, Patel S, Chinnasamy H, Erickson C, Jacobs A, Duh AK, Tunuguntla R, Klysz DD, Fowler C, Green S, Beebe B, Carr C, Fujimoto M, Brown AK, Petersen ALG, McIntyre C, Siddiqui A, Lepori-Bui N, Villar K, Pham K, Bove R, Musa E, Reynolds WD, Kuo A, Prabhu S, Rasmussen L, Cornell TT, Partap S, Fisher PG, Campen CJ, Grant G, Prolo L, Ye X, Sahaf B, Davis KL, Feldman SA, Ramakrishna S, Mackall C. Intravenous and intracranial GD2-CAR T cells for H3K27M + diffuse midline gliomas. Nature 2025; 637:708-715. [PMID: 39537919 PMCID: PMC11735388 DOI: 10.1038/s41586-024-08171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
H3K27M-mutant diffuse midline gliomas (DMGs) express high levels of the disialoganglioside GD2 (ref. 1). Chimeric antigen receptor-modified T cells targeting GD2 (GD2-CART) eradicated DMGs in preclinical models1. Arm A of Phase I trial no. NCT04196413 (ref. 2) administered one intravenous (IV) dose of autologous GD2-CART to patients with H3K27M-mutant pontine (DIPG) or spinal DMG (sDMG) at two dose levels (DL1, 1 × 106 kg-1; DL2, 3 × 106 kg-1) following lymphodepleting chemotherapy. Patients with clinical or imaging benefit were eligible for subsequent intracerebroventricular (ICV) intracranial infusions (10-30 × 106 GD2-CART). Primary objectives were manufacturing feasibility, tolerability and the identification of maximally tolerated IV dose. Secondary objectives included preliminary assessments of benefit. Thirteen patients enroled, with 11 receiving IV GD2-CART on study (n = 3 DL1 (3 DIPG); n = 8 DL2 (6 DIPG, 2 sDMG)). GD2-CART manufacture was successful for all patients. No dose-limiting toxicities occurred on DL1, but three patients experienced dose-limiting cytokine release syndrome on DL2, establishing DL1 as the maximally tolerated IV dose. Nine patients received ICV infusions, with no dose-limiting toxicities. All patients exhibited tumour inflammation-associated neurotoxicity, safely managed with intensive monitoring and care. Four patients demonstrated major volumetric tumour reductions (52, 54, 91 and 100%), with a further three patients exhibiting smaller reductions. One patient exhibited a complete response ongoing for over 30 months since enrolment. Nine patients demonstrated neurological benefit, as measured by a protocol-directed clinical improvement score. Sequential IV, followed by ICV GD2-CART, induced tumour regressions and neurological improvements in patients with DIPG and those with sDMG.
Collapse
Affiliation(s)
- Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Jasia Mahdi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Robbie Majzner
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Kristen W Yeom
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Division of Neuroradiology, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Liora M Schultz
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Rebecca M Richards
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Valentin Barsan
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Kun-Wei Song
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Jen Kamens
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Christina Baggott
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Michael Kunicki
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Skyler P Rietberg
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Alexandria Sung Lim
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Agnes Reschke
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Sharon Mavroukakis
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Emily Egeler
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Jennifer Moon
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Shabnum Patel
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Harshini Chinnasamy
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Courtney Erickson
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Ashley Jacobs
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Allison K Duh
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Ramya Tunuguntla
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Dorota Danuta Klysz
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Carley Fowler
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Sean Green
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Barbara Beebe
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Casey Carr
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Michelle Fujimoto
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Annie Kathleen Brown
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Ann-Louise G Petersen
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | | | - Aman Siddiqui
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Nadia Lepori-Bui
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Katlin Villar
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Kymhuynh Pham
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Rachel Bove
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Eric Musa
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Warren D Reynolds
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Adam Kuo
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Snehit Prabhu
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Lindsey Rasmussen
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Stanford University, Stanford, CA, US
| | - Timothy T Cornell
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Stanford University, Stanford, CA, US
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Paul G Fisher
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Cynthia J Campen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Laura Prolo
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bita Sahaf
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Kara L Davis
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Steven A Feldman
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Sneha Ramakrishna
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Crystal Mackall
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Division of Stem Cell Transplantation and Cell Therapy, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Ellis R, Weiss A. Human vaccines and immunotherapeutics: News March 2024. Hum Vaccin Immunother 2024; 20:2340950. [PMID: 40228043 PMCID: PMC11005794 DOI: 10.1080/21645515.2024.2340950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Affiliation(s)
| | - Adam Weiss
- Acquisitions Editor, Taylor & Francis Group
| |
Collapse
|
29
|
Erickson SM, Manning BM, Kumar A, Patel MR. Engineered Cellular Therapies for the Treatment of Thoracic Cancers. Cancers (Basel) 2024; 17:35. [PMID: 39796666 PMCID: PMC11718842 DOI: 10.3390/cancers17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses. In this review, we discuss the prospect of chimeric antigen receptor-T (CAR-T) cells, natural killer (NK) cells, T cell receptor-engineered (TCR-T) cells, and tumor-infiltrating lymphocytes (TILs) as treatments for thoracic malignancies. CAR-T cells and TILs have proven successful in several hematologic cancers and advanced melanoma, respectively, but outside of melanoma, results have thus far been unsuccessful in most other solid tumors. NK cells and TCR-T cells are additional cell therapy platforms with their own unique advantages and challenges. Obstacles that must be overcome to develop effective cell therapy for these malignancies include selecting an appropriate target antigen, combating immunosuppressive cells and signaling molecules present in the tumor microenvironment, persistence, and delivering a sufficient quantity of antitumor immune cells to the tumor. Induced pluripotent stem cells (iPSCs) offer great promise as a source for both NK and T cell-based therapies due to their unlimited expansion potential. Here, we review clinical trial data, as well as recent basic scientific advances that offer insight into how we may overcome these obstacles, and provide an overview of ongoing trials testing novel strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Spencer M. Erickson
- Internal Medicine Residency Program, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Benjamin M. Manning
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Akhilesh Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Manish R. Patel
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| |
Collapse
|
30
|
Wang X, Fan R, Mu M, Zhou L, Zou B, Tong A, Guo G. Harnessing nanoengineered CAR-T cell strategies to advance solid tumor immunotherapy. Trends Cell Biol 2024:S0962-8924(24)00252-6. [PMID: 39721923 DOI: 10.1016/j.tcb.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The efficacy and safety of chimeric antigen receptor (CAR) T cell therapy is still inconclusive in solid tumor treatment. Recently, nanotechnology has emerged as a potent strategy to reshape CAR-T cell therapy with promising outcomes. This review aims to discuss the significant potential of nano-engineered CAR-T cell therapy in addressing existing challenges, including CAR-T cell engineering evolution, tumor microenvironment (TME) modulation, and precise CAR-T cell therapy (precise targeting, monitoring, and activation), under the main consideration of clinical translation. It also focuses on the growing trend of technological convergence within this domain, such as mRNA therapeutics, organoids, neoantigen, and artificial intelligence. Moreover, safety management of nanomedicine is seriously emphasized to facilitate clinical translation.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Mu
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Park S, Maus MV, Choi BD. CAR-T cell therapy for the treatment of adult high-grade gliomas. NPJ Precis Oncol 2024; 8:279. [PMID: 39702579 DOI: 10.1038/s41698-024-00753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
Treatment for malignant primary brain tumors, including glioblastoma, remains a significant challenge despite advances in therapy. CAR-T cell immunotherapy represents a promising alternative to conventional treatments. This review discusses the landscape of clinical trials for CAR-T cell therapy targeting brain tumors, highlighting key advancements like novel target antigens and combinatorial strategies designed to address tumor heterogeneity and immunosuppression, with the goal of improving outcomes for patients with these aggressive cancers.
Collapse
Affiliation(s)
- Sangwoo Park
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bryan D Choi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Zhou S, Lin W, Jin X, Niu R, Yuan Z, Chai T, Zhang Q, Guo M, Kim SS, Liu M, Deng Y, Park JB, Choi SI, Shi B, Yin J. CD97 maintains tumorigenicity of glioblastoma stem cells via mTORC2 signaling and is targeted by CAR Th9 cells. Cell Rep Med 2024; 5:101844. [PMID: 39637858 PMCID: PMC11722114 DOI: 10.1016/j.xcrm.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Glioblastoma (GBM) stem cells (GSCs) contribute to poor prognosis in patients with GBM. Identifying molecular markers is crucial for developing targeted therapies. Here, we identify cluster of differentiation 97 (CD97) as an optimal GSC surface antigen for potential targeting by chimeric antigen receptor (CAR) T cell therapy through in vitro antibody screening. CD97 is consistently expressed in all validated patient-derived GSCs and positively correlated with known intracellular GSC markers. Silencing CD97 reduces GSC tumorigenicity-related activities, including self-renewal, proliferation, and tumor progression. Transcriptome analysis reveals that CD97 activates mTORC2, leading to AKT S473 phosphorylation and enhanced expression of the downstream genes ARHGAP1, BZW1, and BZW2. Inhibiting mTORC2 with JR-AB2-011 suppresses GSC tumorigenicity and downstream gene expression. We develop CD97-CAR T helper (Th) 9 cells, which exhibit potent cytotoxic effects in vitro and extend survival in mice. These findings suggest that CD97 is a promising GSC-enriched antigen and that targeting it with CAR Th9 cells offers a potential therapeutic strategy for GBM.
Collapse
MESH Headings
- Glioblastoma/pathology
- Glioblastoma/metabolism
- Glioblastoma/immunology
- Glioblastoma/genetics
- Humans
- Animals
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/immunology
- Signal Transduction
- Mice
- Mechanistic Target of Rapamycin Complex 2/metabolism
- Mechanistic Target of Rapamycin Complex 2/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Carcinogenesis/pathology
- Carcinogenesis/genetics
- Cell Proliferation
- Cell Line, Tumor
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Brain Neoplasms/pathology
- Brain Neoplasms/immunology
- Brain Neoplasms/metabolism
- Brain Neoplasms/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Mice, Inbred NOD
- Immunotherapy, Adoptive/methods
- Gene Expression Regulation, Neoplastic
- GTPase-Activating Proteins/metabolism
- GTPase-Activating Proteins/genetics
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- Shuchang Zhou
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Weiwei Lin
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China; Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Xiong Jin
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Rui Niu
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zheng Yuan
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tianran Chai
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Qi Zhang
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meixia Guo
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Sung Soo Kim
- Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Meichen Liu
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yilin Deng
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sun Il Choi
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Bingyang Shi
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Jinlong Yin
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
33
|
Seblani M, Zannikou M, Duffy J, Levine R, Thakur A, Puigdelloses-Vallcorba M, Horbinski C, Miska J, Hambardzumyan D, Becher O, Balyasnikova I. IL13RA2-integrated genetically engineered mouse model allows for CAR T cells targeting pediatric high-grade gliomas. RESEARCH SQUARE 2024:rs.3.rs-5398280. [PMID: 39711568 PMCID: PMC11661357 DOI: 10.21203/rs.3.rs-5398280/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Pediatric high-grade gliomas (pHGG) and pediatric diffuse midline gliomas (pDMG) are devastating diseases without durable and curative options. Although targeted immunotherapy has shown promise, the field lacks immunocompetent animal models to study these processes in detail. To achieve this, we developed a fully immunocompetent, genetically engineered mouse model (GEMM) for pDMG and pHGG that incorporates the glioma-associated antigen, interleukin 13 receptor alpha 2 (IL13RA2). Utilizing the RCAS-Tva delivery system in Nestin-Tva mice, we induced gliomagenesis by overexpressing PDGFB and deleting p53 (p53fl/fl) or both p53 and PTEN (p53fl/fl PTENfl/fl), with or without IL13RA2 in neonatal mice. De novo tumors developed in models with and without IL13RA2, showing no statistical difference in onset (n = 33, 38 days, p = 0.62). The p53fl/fl PTENfl/fl tumors displayed more aggressive characteristics (n = 12, 31 days). Tumors exhibited features typical of high-grade glioma, including infiltration, pseudopalisading necrosis, and microvascular proliferation. They also showed a high Ki-67 index, variable IL13RA2 expression, a high frequency of CD11b + macrophages, and a low proportion of CD3 + T cells. The model proved effective for evaluating IL13RA2-targeted immunotherapies, with a significant response to CAR T-cell treatment that extended survival (46 days vs. 28 days control; p < 0.0001) and achieved 25% long-term survival in mice. This model facilitates the preclinical assessment of IL13RA2-directed therapies and holds potential for clinical application.
Collapse
|
34
|
Yao CD, Davis KL. Correlative studies reveal factors contributing to successful CAR-T cell therapies in cancer. Cancer Metastasis Rev 2024; 44:15. [PMID: 39625613 DOI: 10.1007/s10555-024-10232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Cellular and targeted immunotherapies have revolutionized cancer treatments in the last several decades. Successful cellular therapies require both effective and durable cytotoxic activity from the immune cells as well as an accessible and susceptible response from targeted cancer cells. Correlative studies from clinical trials as well as real-world data from FDA-approved therapies have revealed invaluable insights about immune cell factors and cancer cell factors that impact rates of response and relapse to cellular therapies. This review focuses on the flagship cellular therapy of engineered chimeric antigen receptor T-cells (CAR-T cells). Within the CAR-T cell compartment, we discuss discoveries about T-cell phenotype, transcriptome, epigenetics, cytokine signaling, and metabolism that inform the cell manufacturing process to produce the most effective and durable CAR-T cells. Within the cancer cell compartment, we discuss mechanisms of resistance and relapse caused by mutations, alternative splicing, post-transcriptional modifications, and cellular reprogramming. Continued correlative and mechanistic studies are required to help us further optimize cellular therapies in a variety of malignancies.
Collapse
Affiliation(s)
- Catherine D Yao
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kara L Davis
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
35
|
Song KW, Scott BJ. CAR T-cell therapy for gliomas. Curr Opin Neurol 2024; 37:672-681. [PMID: 39498846 DOI: 10.1097/wco.0000000000001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
PURPOSE OF REVIEW To review the landscape of chimeric antigen receptor T-cell (CAR T) therapy for gliomas as seen in recently published trials and discuss on-going challenges with new cancer immunotherapy treatments. RECENT FINDINGS Given how CAR T therapy has revolutionized the treatment of several hematologic malignancies, there has been increasing interest in using immunotherapy, and particularly CAR T therapy for gliomas. Within the past decade, several first in human trials have published early patient experiences showing treatment is generally well tolerated but with limited efficacy, which may be improving with newer evolutions in CAR T design to overcome known resistance mechanisms in glioma treatment. SUMMARY CAR T therapy is a promising avenue of treatment for high-grade gliomas, which have a universally poor prognosis as well as limited therapeutics. There are a growing number of CAR T clinical trials for CNS tumors and thus, an understanding of their treatment strategies, toxicity management, and overcoming resistance mechanisms will be important for both clinical practice and to identify areas for future research.
Collapse
Affiliation(s)
- Kun-Wei Song
- Department of Neurology, Stanford University School of Medicine
- Stanford Neuro-Immuno-Oncology (NIO) Program, Stanford, California, USA
| | - Brian J Scott
- Department of Neurology, Stanford University School of Medicine
- Stanford Neuro-Immuno-Oncology (NIO) Program, Stanford, California, USA
| |
Collapse
|
36
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024; 21:1354-1375. [PMID: 39406966 PMCID: PMC11607068 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
37
|
Fukushima CM, de Groot J. Updates for newly diagnosed and recurrent glioblastoma: a review of recent clinical trials. Curr Opin Neurol 2024; 37:666-671. [PMID: 39258745 PMCID: PMC11540275 DOI: 10.1097/wco.0000000000001320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
PURPOSE OF REVIEW Glioblastoma (GBM) is the most common and devastating primary malignant brain tumor. We summarize recent advances in radiotherapy, immunotherapy, and targeted therapy approaches for the treatment of newly diagnosed and recurrent glioblastoma. We also introduce ongoing clinical trials. RECENT FINDINGS Recent clinical trials have explored multiple novel strategies to treat GBM including the use of oncoviruses, chimeric antigen receptor (CAR) T cell therapy, vaccines, radiotherapy, and novel drug delivery techniques to improves drug penetrance across the blood brain barrier. Approaches to improve drug delivery to brain tumors have the potential to expand treatment options of existing therapies that otherwise have poor brain tumor penetrance. Immunotherapy has been of keen interest in both newly diagnosed and recurrent glioblastoma. Vaccines SurVaxM and DCVax-L have shown initial promise in phase II and III trials, respectively. CAR T cell therapy trials are in their early phases but hold promise in both newly diagnosed and recurrent glioblastoma. SUMMARY Although progress to improve outcomes for GBM patients has been modest, multiple novel strategies utilizing combination therapies, focused ultrasound to improve drug delivery, and novel immunotherapies are underway.
Collapse
Affiliation(s)
| | - John de Groot
- Department of Neurology and Neurosurgery, University of California, San Francisco, California, USA
| |
Collapse
|
38
|
Dolgin E. Cancer drug approvals and setbacks in 2024. NATURE CANCER 2024; 5:1756-1758. [PMID: 39690226 DOI: 10.1038/s43018-024-00873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
|
39
|
Trautmann T, Yakobian N, Nguyen R. CAR T-cells for pediatric solid tumors: where to go from here? Cancer Metastasis Rev 2024; 43:1445-1461. [PMID: 39317919 PMCID: PMC11554711 DOI: 10.1007/s10555-024-10214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Despite the great success that chimeric antigen receptor (CAR) T-cells have had in patients with B-cell malignancies and multiple myeloma, they continue to have limited efficacy against most solid tumors. Especially in the pediatric population, pre- and post-treatment biopsies are rarely performed due to ethical reasons, and thus, our understanding is still very limited regarding the mechanisms in the tumor microenvironment by which tumor cells exclude effectors and attract immune-suppressive cells. Nevertheless, based on the principles that are known, current T-cell engineering has leveraged some of these processes and created more potent CAR T-cells. The recent discovery of new oncofetal antigens and progress made in CAR design have expanded the potential pool of candidate antigens for therapeutic development. The most promising approaches to enhance CAR T-cells are novel CAR gating strategies, creative ways of cytokine delivery to the TME without enhancing systemic toxicity, and hijacking the chemokine axis of tumors for migratory purposes. With these new modifications, the next step in the era of CAR T-cell development will be the clinical validation of these promising preclinical findings.
Collapse
Affiliation(s)
- Tina Trautmann
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Natalia Yakobian
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA.
| |
Collapse
|
40
|
Zhang J, Mu R, Liu F. Advances in brain tumor therapy: from molecular diagnostics to novel treatments. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2771-2773. [PMID: 39400873 DOI: 10.1007/s11427-024-2727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Ran Mu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
41
|
Palazzo L, Pieri V, Berzero G, Filippi M. CAR-T Cells for the Treatment of Central Nervous System Tumours: Known and Emerging Neurotoxicities. Brain Sci 2024; 14:1220. [PMID: 39766419 PMCID: PMC11727498 DOI: 10.3390/brainsci14121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025] Open
Abstract
The advent of chimeric antigen receptor (CAR)-T cells has recently changed the prognosis of relapsing/refractory diffuse large B-cell lymphomas, showing response rates as high as 60 to 80%. Common toxicities reported in the pivotal clinical trials include the cytokine release syndrome (CRS) and the Immune effector Cell-Associated Neurotoxicity Syndrome (ICANS), a stereotyped encephalopathy related to myeloid cell activation and blood-brain barrier dysfunction, presenting with a distinctive cascade of dysgraphia, aphasia, disorientation, attention deficits, vigilance impairment, motor symptoms, seizures, and diffuse brain oedema. The tremendous oncological efficacy of CAR-T cells observed in systemic B-cell malignancies is leading to their growing use in patients with primary or secondary central nervous system (CNS) lymphomas and in patients with solid tumours, including several CNS cancers. Early studies conducted in adult and paediatric patients with solid CNS tumours reported a distinct profile of neurotoxicity referred to as Tumour inflammation-associated neurotoxicity (TIAN), corresponding to local inflammation at the tumour site manifesting with focal neurological deficits or mechanical complications (e.g., obstructive hydrocephalus). The present review summarises available data on the efficacy and safety of CAR-T cells for solid and haematological CNS malignancies, emphasising known and emerging phenotypes, ongoing challenges, and future perspectives.
Collapse
Affiliation(s)
- Leonardo Palazzo
- Neurology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (V.P.); (M.F.)
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Pieri
- Neurology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (V.P.); (M.F.)
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giulia Berzero
- Neurology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (V.P.); (M.F.)
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (V.P.); (M.F.)
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurorehabilitation Unit, Neurophysiology Unit, Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
42
|
Liu X, Chen H, Tan G, Zhong L, Jiang H, Smith SM, Wang HZ. A comprehensive neuroimaging review of the primary and metastatic brain tumors treated with immunotherapy: current status, and the application of advanced imaging approaches and artificial intelligence. Front Immunol 2024; 15:1496627. [PMID: 39669560 PMCID: PMC11634813 DOI: 10.3389/fimmu.2024.1496627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel clinical therapeutic option for a variety of solid tumors over the past decades. The application of immunotherapy in primary and metastatic brain tumors continues to grow despite limitations due to the physiological characteristics of the immune system within the central nervous system (CNS) and distinct pathological barriers of malignant brain tumors. The post-immunotherapy treatment imaging is more complex. In this review, we summarize the clinical application of immunotherapies in solid tumors beyond the CNS. We provide an overview of current immunotherapies used in brain tumors, including immune checkpoint inhibitors (ICIs), oncolytic viruses, vaccines, and CAR T-cell therapies. We focus on the imaging criteria for the assessment of treatment response to immunotherapy, and post-immunotherapy treatment imaging patterns. We discuss advanced imaging techniques in the evaluation of treatment response to immunotherapy in brain tumors. The imaging characteristics of immunotherapy treatment-related complications in CNS are described. Lastly, future imaging challenges in this field are explored.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
- Advanced Neuroimaging Laboratory, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Hongyan Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guirong Tan
- Department of Radiology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
- Advanced Neuroimaging Laboratory, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Lijuan Zhong
- Department of Pathology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Stephen M. Smith
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Henry Z. Wang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
43
|
Meléndez-Vázquez NM, Gomez-Manzano C, Godoy-Vitorino F. Oncolytic Virotherapies and Adjuvant Gut Microbiome Therapeutics to Enhance Efficacy Against Malignant Gliomas. Viruses 2024; 16:1775. [PMID: 39599889 PMCID: PMC11599061 DOI: 10.3390/v16111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant brain tumor. Current standard-of-care treatments offer limited benefits for patient survival. Virotherapy is emerging as a novel strategy to use oncolytic viruses (OVs) for the treatment of GBM. These engineered and non-engineered viruses infect and lyse cancer cells, causing tumor destruction without harming healthy cells. Recent advances in genetic modifications to OVs have helped improve their targeting capabilities and introduce therapeutic genes, broadening the therapeutic window and minimizing potential side effects. The efficacy of oncolytic virotherapy can be enhanced by combining it with other treatments such as immunotherapy, chemotherapy, or radiation. Recent studies suggest that manipulating the gut microbiome to enhance immune responses helps improve the therapeutic efficacy of the OVs. This narrative review intends to explore OVs and their role against solid tumors, especially GBM while emphasizing the latest technologies used to enhance and improve its therapeutic and clinical responses.
Collapse
Affiliation(s)
- Natalie M. Meléndez-Vázquez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| |
Collapse
|
44
|
Zhou D, Zhu X, Xiao Y. Advances in CAR-T therapy for central nervous system tumors. Biomark Res 2024; 12:132. [PMID: 39506843 PMCID: PMC11539471 DOI: 10.1186/s40364-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The application of chimeric antigen receptor T-cell therapy in central nervous system tumors has significantly advanced; however, challenges pertaining to the blood-brain barrier, immunosuppressive microenvironment, and antigenic heterogeneity continue to be encountered, unlike its success in hematological malignancies such as acute lymphoblastic leukemia and diffuse large B-cell lymphomas. This review examined the research progress of chimeric antigen receptor T-cell therapy in gliomas, medulloblastomas, and lymphohematopoietic tumors of the central nervous system, focusing on chimeric antigen receptor T-cells targeting antigens such as EGFRvIII, HER2, B7H3, GD2, and CD19 in preclinical and clinical studies. It synthesized current research findings to offer valuable insights for future chimeric antigen receptor T-cell therapeutic strategies for central nervous system tumors and advance the development and application of this therapeutic modality in this domain.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
45
|
Del Baldo G, Carai A, Mastronuzzi A. Chimeric antigen receptor adoptive immunotherapy in central nervous system tumors: state of the art on clinical trials, challenges, and emerging strategies to addressing them. Curr Opin Oncol 2024; 36:545-553. [PMID: 38989708 PMCID: PMC11460750 DOI: 10.1097/cco.0000000000001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW Central nervous system (CNS) tumors represent a significant unmet medical need due to their enduring burden of high mortality and morbidity. Chimeric antigen receptor (CAR) T-cell therapy emerges as a groundbreaking approach, offering hope for improved treatment outcomes. However, despite its successes in hematological malignancies, its efficacy in solid tumors, including CNS tumors, remains limited. Challenges such as the intricate tumor microenvironment (TME), antigenic heterogeneity, and CAR T-cell exhaustion hinder its effectiveness. This review aims to explore the current landscape of CAR T-cell therapy for CNS tumors, highlighting recent advancements and addressing challenges in achieving therapeutic efficacy. RECENT FINDINGS Innovative strategies aim to overcome the barriers posed by the TME and antigen diversity, prevent CAR T-cell exhaustion through engineering approaches and combination therapies with immune checkpoint inhibitors to improving treatment outcomes. SUMMARY Researchers have been actively working to address these challenges. Moreover, addressing the unique challenges associated with neurotoxicity in CNS tumors requires specialized management strategies. These may include the development of grading systems, monitoring devices, alternative cell platforms and incorporation of suicide genes. Continued research efforts and clinical advancements are paramount to overcoming the existing challenges and realizing the full potential of CAR T-cell therapy in treating CNS tumors.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
- Department of Experimental Medicine, Sapienza University of Rome
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
| |
Collapse
|
46
|
Frederico SC, Raphael I, Nisnboym M, Huq S, Schlegel BT, Sneiderman CT, Jackson SA, Jain A, Olin MR, Rood BR, Pollack IF, Hwang EI, Rajasundaram D, Kohanbash G. Transcriptomic observations of intra and extracellular immunotherapy targets for pediatric brain tumors. Expert Rev Clin Immunol 2024; 20:1411-1420. [PMID: 39114885 DOI: 10.1080/1744666x.2024.2390023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES Despite surgical resection, chemoradiation, and targeted therapy, brain tumors remain a leading cause of cancer-related death in children. Immunotherapy has shown some promise and is actively being investigated for treating childhood brain tumors. However, a critical step in advancing immunotherapy for these patients is to uncover targets that can be effectively translated into therapeutic interventions. METHODS In this study, our team performed a transcriptomic analysis across pediatric brain tumor types to identify potential targets for immunotherapy. Additionally, we assessed components that may impact patient response to immunotherapy, including the expression of genes essential for antigen processing and presentation, inhibitory ligands and receptors, interferon signature, and overall predicted T cell infiltration. RESULTS We observed distinct expression patterns across tumor types. These included elevated expression of antigen genes and antigen processing machinery in some tumor types while other tumors had elevated inhibitory checkpoint receptors, known to be associated with response to checkpoint inhibitor immunotherapy. CONCLUSION These findings suggest that pediatric brain tumors exhibit distinct potential for specific immunotherapies. We believe our findings can guide investigators in their assessment of appropriate immunotherapy classes and targets in pediatric brain tumors.
Collapse
Affiliation(s)
- Stephen C Frederico
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michal Nisnboym
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brent T Schlegel
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sydney A Jackson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anya Jain
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Brian R Rood
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eugene I Hwang
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | | | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
47
|
Zhuo S, Yang S, Chen S, Ding Y, Cheng H, Yang L, Wang K, Yang K. Unveiling the significance of cancer-testis antigens and their implications for immunotherapy in glioma. Discov Oncol 2024; 15:602. [PMID: 39472405 PMCID: PMC11522268 DOI: 10.1007/s12672-024-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Glioma has a poor prognosis, which is attributable to its inherent characteristics and lack of specific treatments. Immunotherapy plays a pivotal role in the contemporary management of malignancies. Despite the initiation of numerous immunotherapy-based clinical trials, their effects on enhancing glioma prognosis remain limited, highlighting the need for innovative and effective therapeutic targets and strategies to address this challenge. Since the 1990s, there has been a growing interest in cancer-testis antigens (CTAs) present in normal mammalian testicular germ cells and placental trophoblast cells, which exhibit reactivated expression in various tumor types. Mechanisms such as DNA methylation, histone modification, transcriptional regulation, and alternative splicing influence the expression of CTAs in tumors. The distinct expression patterns and robust immunogenicity of CTAs are promising tumor biomarkers and optimal targets for immunotherapy. Previous reports have shown that multiple CTAs are present in gliomas and are closely related to prognosis. The expression of these antigens is also associated with the immune response in gliomas and the effectiveness of immunotherapy. Significantly, numerous clinical trials, with IL13RA2 as a representative CTA member, have assessed the immunotherapeutic potential of gliomas and have shown favorable clinical efficacy. This review provides a comprehensive overview of the regulation and function of CTAs, summarizes their expression and role in gliomas, emphasizes their importance as immunotherapy targets in gliomas, and discusses related challenges and future interventions.
Collapse
Affiliation(s)
- Shenghua Zhuo
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| | - Shuo Yang
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Shenbo Chen
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Yueju Ding
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Honglei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Liangwang Yang
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Kai Wang
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| | - Kun Yang
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| |
Collapse
|
48
|
Noor L, Upadhyay A, Joshi V. Role of T Lymphocytes in Glioma Immune Microenvironment: Two Sides of a Coin. BIOLOGY 2024; 13:846. [PMID: 39452154 PMCID: PMC11505600 DOI: 10.3390/biology13100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Glioma is known for its immunosuppressive microenvironment, which makes it challenging to target through immunotherapies. Immune cells like macrophages, microglia, myeloid-derived suppressor cells, and T lymphocytes are known to infiltrate the glioma tumor microenvironment and regulate immune response distinctively. Among the variety of immune cells, T lymphocytes have highly complex and multifaceted roles in the glioma immune landscape. T lymphocytes, which include CD4+ helper and CD8+ cytotoxic T cells, are known for their pivotal roles in anti-tumor responses. However, these cells may behave differently in the highly dynamic glioma microenvironment, for example, via an immune invasion mechanism enforced by tumor cells. Therefore, T lymphocytes play dual roles in glioma immunity, firstly by their anti-tumor responses, and secondly by exploiting gliomas to promote immune invasion. As an immunosuppression strategy, glioma induces T-cell exhaustion and suppression of effector T cells by regulatory T cells (Tregs) or by altering their signaling pathways. Further, the expression of immune checkpoint inhibitors on the glioma cell surface leads to T cell anergy and dysfunction. Overall, this dynamic interplay between T lymphocytes and glioma is crucial for designing more effective immunotherapies. The current review provides detailed knowledge on the roles of T lymphocytes in the glioma immune microenvironment and helps to explore novel therapeutic approaches to reinvigorate T lymphocytes.
Collapse
Affiliation(s)
- Laiba Noor
- Department of Biotechnology, Bennett University, Greater Noida 201310, Uttar Pradesh, India
| | - Arun Upadhyay
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
49
|
Hou AJ, Shih RM, Uy BR, Shafer A, Chang ZL, Comin-Anduix B, Guemes M, Galic Z, Phyu S, Okada H, Grausam KB, Breunig JJ, Brown CE, Nathanson DA, Prins RM, Chen YY. IL-13Rα2/TGF-β bispecific CAR-T cells counter TGF-β-mediated immune suppression and potentiate anti-tumor responses in glioblastoma. Neuro Oncol 2024; 26:1850-1866. [PMID: 38982561 PMCID: PMC11449012 DOI: 10.1093/neuonc/noae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-β). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-β-mediated immune suppression in the TME. METHODS We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-β, which programs tumor-specific T cells to convert TGF-β from an immunosuppressant to an immunostimulant. Bispecific IL-13Rα2/TGF-β CAR-T cells were evaluated for efficacy and safety against both patient-derived GBM xenografts and syngeneic models of murine glioma. RESULTS Treatment with IL-13Rα2/TGF-β CAR-T cells leads to greater T-cell infiltration and reduced suppressive myeloid cell presence in the tumor-bearing brain compared to treatment with conventional IL-13Rα2 CAR-T cells, resulting in improved survival in both patient-derived GBM xenografts and syngeneic models of murine glioma. CONCLUSIONS Our findings demonstrate that by reprogramming tumor-specific T-cell responses to TGF-β, bispecific IL-13Rα2/TGF-β CAR-T cells resist and remodel the immunosuppressive TME to drive potent anti-tumor responses in GBM.
Collapse
Affiliation(s)
- Andrew J Hou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Ryan M Shih
- Department of Molecular Biology, University of California, Los Angeles, California, USA
| | - Benjamin R Uy
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Amanda Shafer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - ZeNan L Chang
- Department of Molecular Biology, University of California, Los Angeles, California, USA
| | - Begonya Comin-Anduix
- Department of Surgery, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Miriam Guemes
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, California, USA
| | - Zoran Galic
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, California, USA
| | - Su Phyu
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy Center at UCSF, San Francisco, California, USA
| | - Katie B Grausam
- Board of Governor’s Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joshua J Breunig
- Board of Governor’s Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California, USA
| | - David A Nathanson
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Robert M Prins
- Department of Neurosurgery, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, California, USA
| |
Collapse
|
50
|
Discovering and targeting vulnerabilities in invasive brain cancer using ROBO1 CAR T cells. Nat Med 2024; 30:2733-2734. [PMID: 39179857 DOI: 10.1038/s41591-024-03229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|