1
|
Grewal EP, Nahed BV, Carter BS, Gerstner ER, Curry WT, Maus MV, Choi BD. Clinical progress in the development of CAR T cells to treat malignant glioma. J Neurooncol 2025; 171:571-579. [PMID: 39695004 DOI: 10.1007/s11060-024-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
CONTEXT Chimeric antigen receptor (CAR) T cell therapy is an exciting modality of immunotherapy that has revolutionized the treatment of hematologic malignancies. However, translating this success to malignant gliomas such as glioblastoma (GBM) and diffuse midline glioma (DMG) remains a formidable challenge due to multiple biologic, anatomic, and immunologic factors. Despite these hurdles, a number of clinical trials deployed over the last decade have increased optimism for the potential of CAR T cell therapy in glioma treatment. EVIDENCE SYNTHESIS We highlight historical and ongoing clinical trials of CAR T cell therapy in glioma, with a focus on key tumor-associated antigens such as IL-13Rα2, HER2, EGFR, EGFRvIII, EphA2, GD2, and B7-H3. Early studies established proof-of-concept for antigen-specific CAR T cell targeting, yet immune evasion mechanisms such as antigen downregulation and limited CAR T cell persistence remain significant obstacles. Recent approaches, including multiantigen targeting, alternative cell sources, and innovations in delivery routes offer promising strategies to overcome these challenges. CONCLUSIONS The rapid evolution of investigational CAR T cell therapies portends great potential for the future of glioma treatment. Future studies will need to refine antigen targeting strategies, optimize CAR T cell persistence, and integrate combinatorial approaches to fully harness the therapeutic potential of this modality and improve the therapeutic window against brain tumors.
Collapse
Affiliation(s)
- Eric P Grewal
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - William T Curry
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA
| | - Bryan D Choi
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA.
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA.
- Cellular Immunotherapy Program, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
2
|
Yang Y, Wang J, Zhong Y, Tian M, Zhang H. Advances in Radionuclide-Labeled Biological Carriers for Tumor Imaging and Treatment. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4316-4336. [PMID: 39792777 DOI: 10.1021/acsami.4c19059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Biological carriers have emerged as significant tools to deliver radionuclides in nuclear medicine, providing a meaningful perspective for tumor imaging and treatment. Various radionuclide-labeled biological carriers have been developed to meet the needs of biomedical applications. This review introduces the principles of radionuclide-mediated imaging and therapy and the selected criteria of them, as well as a comprehensive description of the characteristics and functions of representative biological carriers including bacteria, cells, viruses, and their biological derivatives, emphasizing the labeled strategies of biological carriers combined with radionuclides. Subsequently, we in-depth introduce the application of radionuclide-labeled biological carriers in tumor imaging and treatment, including the imaging of the behaviors of biological carriers in vivo and tumor metastasis and the tumor treatment by radionuclide therapy, plus other strategies and radiation-induced photodynamic therapy. Finally, the challenges and prospects of radionuclide-labeled biological carriers are discussed to improve the shortcomings of this innovative platform and promote clinical transformation in the field of medical imaging.
Collapse
Affiliation(s)
- Yaozhang Yang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- Human Phenome Institute, Fudan University, Shanghai 201203, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, Zhejiang 310009, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang 310009, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310014, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
3
|
Pearson AD, Mueller S, Filbin MG, Grill J, Hawkins C, Jones C, Donoghue M, Drezner N, Weiner S, Russo M, Dun MD, Allen JE, Alonso M, Benaim E, Buenger V, de Rojas T, Desserich K, Fox E, Friend J, Glade Bender J, Hargrave D, Jensen M, Kholmanskikh O, Kieran MW, Knoderer H, Koschmann C, Lesa G, Ligas F, Lipsman N, Ludwinski D, Marshall L, McDonough J, McNicholl AG, Mirsky D, Monje M, Nysom K, Pappo A, Rosenfield A, Scobie N, Slaughter J, Smith M, Souweidane M, Straathof K, Ward L, Weigel B, Zamoryakhin D, Karres D, Vassal G. Paediatric strategy forum for medicinal product development in diffuse midline gliomas in children and adolescents ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2025; 217:115230. [PMID: 39854822 DOI: 10.1016/j.ejca.2025.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025]
Abstract
Fewer than 10 % of children with diffuse midline glioma (DMG) survive 2 years from diagnosis. Radiation therapy remains the cornerstone of treatment and there are no medicinal products with regulatory approval. Although the biology of DMG is better characterized, this has not yet translated into effective treatments. H3K27-alterations initiate the disease but additional drivers are required for malignant growth. Hence, there is an urgent unmet need to develop new multi-modality therapeutic strategies, including alternative methods of drug delivery. ONC201 (DRD2 antagonist and mitochondrial ClpP agonist) is the most widely evaluated investigational drug. Encouraging early data is emerging for CAR T-cells and oncolytic viruses. GD2, B7-H3 and PI3K signalling are ubiquitous targets across all subtypes and therapeutics directed to these targets would potentially benefit the largest number of children. PI3K, ACVR1, MAPK and PDGFRA pathways should be targeted in rational biological combinations. Drug discovery is a very high priority. New specific and potent epigenetic modifiers (PROTACS e.g. SMARCA4 degraders), with blood-brain penetrance are needed. Cancer neuroscience therapeutics are in early development. Overall survival is the preferred regulatory endpoint. However, the evaluation of this can be influenced by the use of re-irradiation at the time of progression. An efficient clinical trial design fit for regulatory purposes for the evaluation of new therapeutics would aid industry and facilitate more efficient therapy development. Challenges in conducting clinical trials such as the need for comparator data and defining endpoints, could be addressed through an international, first-in-child, randomised, complex innovative design trial. To achieve progress: i) drug discovery; ii) new multi-modality, efficient, collaborative, pre-clinical approaches, possibly including artificial intelligence and, iii) efficient clinical trial designs fit for regulatory purposes are required.
Collapse
Affiliation(s)
| | - Sabine Mueller
- Departments of Neurological Surgery, Pediatrics and, Neurology University of California, San Francisco, California, USA. Department of Oncology, University Children's Hospital Zürich, Zürich, Switzerland
| | - Mariella G Filbin
- Broad Institute of Harvard and MIT, Cambridge, MA, USA; Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | | | - Cynthia Hawkins
- Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Chris Jones
- The Institute of Cancer Research, Sutton, Surrey, UK
| | | | - Nicole Drezner
- US Food and Drug Administration, Silver Springs, MD, USA
| | - Susan Weiner
- ACCELERATE, Europe; Children's Cancer Cause, Washington, DC, USA; Memorial Sloan Kettering Cancer Centre, New York, USA
| | | | - Matthew D Dun
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia; Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, Mark Hughes Foundation for Brain Cancer Research, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | | | - Marta Alonso
- Program of Solid Tumors, Center for the Applied Medical Research, Pamplona, Spain; Department of Pediatrics, Clinica Universidad de Navarra, Pamplona, Center for the Applied Medical Research, Pamplona, Spain
| | | | - Vickie Buenger
- Coalition Against Childhood Cancer (CAC2), Philadelphia, USA
| | | | | | | | | | | | - Darren Hargrave
- University College London Great Ormond Street Institute of Child Health, London, UK
| | | | | | | | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Nir Lipsman
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | | | - Lynley Marshall
- The Institute of Cancer Research, London, UK; The Royal Marsden Hospital, London, UK
| | | | | | - David Mirsky
- University of Colorado, School of Medicine, CO, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA, Howard Hughes Medical Institute, Stanford, CA, USA
| | | | | | | | | | | | | | | | - Karin Straathof
- University College London Cancer Institute, Great Ormond Street Biomedical Research Centre, London, UK
| | - Lisa Ward
- DIPG-DMG Research Funding Alliance DDRFA /Tough2gether, Manhattan, KS, USA
| | | | | | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency, The Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
4
|
Pherez-Farah A, Boncompagni G, Chudnovskiy A, Pasqual G. The bidirectional interplay between T cell-based immunotherapies and the tumor microenvironment. Cancer Immunol Res 2025:750976. [PMID: 39786986 PMCID: PMC7617322 DOI: 10.1158/2326-6066.cir-24-0857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/06/2024] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
T cell-based therapies, including Tumor Infiltrating Lymphocyte Therapy (TIL), T cell receptor engineered T cells (TCR T), and Chimeric Antigen Receptor T cells (CAR T), are powerful therapeutic approaches for cancer treatment. While these therapies are primarily known for their direct cytotoxic effects on cancer cells, accumulating evidence indicates that they also influence the tumor microenvironment (TME), by altering the cytokine milieu and recruiting additional effector populations to help orchestrate the antitumor immune response. Conversely, the TME itself can modulate the behaviour of these therapies within the host by either supporting or inhibiting their activity. In this review we provide an overview of clinical and preclinical data on the bidirectional influences between T cell therapies and the TME. Unravelling the interactions between T cell-based therapies and the TME is critical for a better understanding of their mechanisms of action, resistance, and toxicity, with the goal of optimizing efficacy and safety.
Collapse
Affiliation(s)
- Alfredo Pherez-Farah
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Gioia Boncompagni
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | | | - Giulia Pasqual
- Laboratory of Synthetic Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV IRCCS, Padua, Italy
| |
Collapse
|
5
|
Ismail FS, Gallus M, Meuth SG, Okada H, Hartung HP, Melzer N. Current and Future Roles of Chimeric Antigen Receptor T-Cell Therapy in Neurology: A Review. JAMA Neurol 2025; 82:93-103. [PMID: 39585688 DOI: 10.1001/jamaneurol.2024.3818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Importance Advancements in molecular engineering have facilitated the creation of engineered T cells that express synthetic receptors, termed chimeric antigen receptors (CARs). This is promising not only in cancer treatment but also in addressing a spectrum of other conditions. This review provides a comprehensive overview of the current approaches and future potential of CAR T-cell therapy in the field of neurology, particularly for primary brain tumors and autoimmune neurological disorders. Observations CAR T-cell therapy for glioblastoma is promising; however, first-in-human trials did not yield significant success or showed only limited success in a subset of patients. To date, the efficacy of CAR T-cell therapies has been demonstrated in animal models of multiple sclerosis, but larger human studies to corroborate the efficacy remain pending. CAR T cells showed efficacy in treatment of patients with relapsed or refractory aquaporin 4-immunoglobulin G-seropositive neuromyelitis optica spectrum disorders. Further studies with larger patient populations are needed to confirm these results. Success was reported also for treatment of cases with generalized myasthenia gravis using CAR T cells. Chimeric autoantibody receptor T cells, representing a modified form of CAR T cells directed against autoreactive B cells secreting autoantibodies, were used to selectively target autoreactive anti-N-methyl-d-aspartate B cells under in vitro and in vivo conditions, providing the basis for human studies and application to other types of autoimmune encephalitis associated with neuronal or glial antibodies. Conclusions and Relevance CAR T cells herald a new era in the therapeutic landscape of neurological disorders. While their application in solid tumors, such as glioblastoma, has not universally yielded robust success, emerging innovative strategies show promise, and there is optimism for their effectiveness in certain autoimmune neurological disorders.
Collapse
Affiliation(s)
- Fatme Seval Ismail
- Department of Neurology, Klinikum Vest, Academic Teaching Hospital of the Ruhr University Bochum, Recklinghausen, Germany
| | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Sven G Meuth
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco
- Parker Institute for Cancer Immunotherapy, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Palacky University Olomouc, Olomouc, Czech Republic
| | - Nico Melzer
- Department of Neurology, Medical Faculty and University Hospital, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Mobark N, Hull CM, Maher J. Optimising CAR T therapy for the treatment of solid tumors. Expert Rev Anticancer Ther 2025; 25:9-25. [PMID: 39466110 DOI: 10.1080/14737140.2024.2421194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Adoptive immunotherapy using chimeric antigen receptor (CAR)-engineered T cells has proven transformative in the management of B cell and plasma cel derived malignancies. However, solid tumors have largely proven to be resistant to this therapeutic modality. Challenges include the paucity of safe target antigens, heterogeneity of target expression within the tumor, difficulty in delivery of CAR T cells to the site of disease, poor penetration within solid tumor deposits and inability to circumvent the array of immunosuppressive and biophysical barriers imposed by the solid tumor microenvironment. AREAS COVERED Literature was reviewed on the PubMed database, excluding occasional papers which were not available as open access publications or through other means. EXPERT OPINION Here, we have surveyed the large body of technological advances that have been made in the quest to bridge the gap toward successful deployment of CAR T cells for the treatment of solid tumors. These encompass the development of more sophisticated targeting strategies to engage solid tumor cells safely and comprehensively, improved drug delivery solutions, design of novel CAR architectures that achieve improved functional persistence and which resist physical, chemical and biological hurdles present in tumor deposits. Prospects for combination therapies that incorporate CAR T cells are also considered.
Collapse
Affiliation(s)
- Norhan Mobark
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK
- Leucid Bio Ltd., Guy's Hospital, London, UK
- Department of Immunology, Eastbourne Hospital, Eastbourne, East Sussex, UK
| |
Collapse
|
7
|
Agliardi G, Dias J, Rampotas A, Garcia J, Roddie C. Accelerating and optimising CAR T-cell manufacture to deliver better patient products. Lancet Haematol 2025; 12:e57-e67. [PMID: 39510106 DOI: 10.1016/s2352-3026(24)00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 11/15/2024]
Abstract
Autologous chimeric antigen receptor (CAR) T-cell therapy has transformed the management of B-cell leukaemia and lymphoma. However, current manufacturing processes present logistical hurdles, restricting broader application. As clinical outcomes can be heavily influenced by the quality of autologous starting materials and production processes, strategies to improve product phenotype are crucial. Short manufacturing processes have the advantage of bringing products to patients more quickly and, in parallel, avoiding the highly differentiated and exhausted CAR T-cell phenotypes associated with prolonged ex vivo manufacture. This Review examines advances in our understanding of what constitutes an effective CAR T-cell product and approaches to improve product quality. Historically, strategies have relied on adjustments in medium composition and selection of less differentiated cell subtypes. Since 2020, the field has been shifting towards reduced-expansion protocols, no-activation protocols, and point-of-care manufacturing. These approaches have the advantage of a rapid turnaround while maintaining a less differentiated and exhausted phenotype. These efforts are leading to ultrarapid production methods and even elimination of ex vivo manipulation with the use of in vivo manufacturing approaches. In this Review, we focus on the advances needed to accelerate CAR T-cell manufacture (including near-patient methods), with an emphasis on improved therapeutic efficacy and rapid turnaround time, and simplified quality control procedures required to fully realise the clinical potential of CAR T-cell therapies.
Collapse
Affiliation(s)
- Giulia Agliardi
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Juliana Dias
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Alexandros Rampotas
- Cancer Institute, University College London, London, UK; Department of Haematology, University College London Hospitals, London, UK
| | - John Garcia
- Cancer Institute, University College London, London, UK; Centre for Cell, Gene and Tissue Therapeutics, Royal Free Hospital London, NHS Foundation Trust, London, UK
| | - Claire Roddie
- Cancer Institute, University College London, London, UK; Department of Haematology, University College London Hospitals, London, UK.
| |
Collapse
|
8
|
Vignot S, Bellesoeur A, Bouleuc C, Cohen R, Courtier B, Crozier C, De Nonneville A, Delom F, Evrard S, Firmin N, Gandemer V, Khettab M, Magné N, Orbach D, Pellier I, Rodrigues M, Wislez M, Bay JO. [A 2024 inventory in oncology news]. Bull Cancer 2025; 112:19-34. [PMID: 39690092 DOI: 10.1016/j.bulcan.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
The editorial board of the Bulletin du cancer has compiled a summary of the news from 2024 in oncology, based on the main results presented at international congresses or published over the past year. After a year marked by the success of the Olympic Games, the selection of data is presented and discussed in podiums of three main results by topic. Emphasis is placed on studies that have an immediate impact on practice and on data that raise important questions for the year 2025.
Collapse
Affiliation(s)
- Stéphane Vignot
- UR7509 IRMAIC, université Reims Champagne Ardenne, 1, rue du Maréchal-Juin, 51100 Reims, France; Département d'oncologie médicale, institut Godinot, 1, rue du Général Koenig, 51100 Reims, France.
| | | | - Carole Bouleuc
- Département de soins de support, institut Curie, Paris, France
| | - Romain Cohen
- Service d'oncologie médicale, hôpital Saint-Antoine, AP-HP, Paris, France; Inserm, unité mixte de recherche scientifique 938 et SIRIC CURAMUS, centre de recherche Saint-Antoine, équipe instabilite des microsatellites et cancer, Paris, France
| | | | - Carolyne Crozier
- Département d'oncologie médicale, institut Paoli-Calmettes, Marseille, France
| | | | - Frédéric Delom
- ARTiSt Lab, Inserm U1312, université de Bordeaux, Bordeaux, France
| | - Serge Evrard
- Institut Bergonié, université de Bordeaux, Inserm BRIC 1312, Bordeaux, France
| | - Nelly Firmin
- ICM Montpellier et Inserm U1194, IRCM, université de Montpellier, Montpellier, France
| | - Virginie Gandemer
- Service d'onco-hématologie pédiatrie, CHU hôpital sud, université Rennes 1, 16, boulevard de Bulgarie, 35203 Rennes, France
| | - Mohamed Khettab
- Service d'hémato-oncologie, centre hospitalier universitaire de la Réunion, groupe hospitalier Sud Réunion, Saint-Pierre, France
| | - Nicolas Magné
- UMR CNRS5822/IP2I Cellular and Molecular Radiobiology Laboratory, université de Lyon, Lyon, France; Faculté de médecine Jacques-Lisfranc, université Jean Monnet, Saint-Étienne, France; Département de radiothérapie, institut Bergonie, Bordeaux, France
| | - Daniel Orbach
- Centre intégré de soins et de recherche en oncologie de l'enfant, adolescent et jeune adulte (SIREDO), université PSL, institut Curie, Paris, France
| | - Isabelle Pellier
- Unité d'onco-hématologie et immunologie pédiatrique, CHU d'Angers, Angers, France
| | - Manuel Rodrigues
- Département d'oncologie médicale, Institut Curie, PSL Research University, Paris, France
| | - Marie Wislez
- Service de pneumologie, unité d'oncologie thoracique, AP-HP centre, hôpital Cochin, Paris, France
| | - Jacques-Olivier Bay
- UE7453 CHELTER, Inserm CIC-501, site Estaing, service de thérapie cellulaire et d'hématologie clinique adulte, service d'oncologie médicale, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| |
Collapse
|
9
|
Monje M, Mahdi J, Majzner R, Yeom KW, Schultz LM, Richards RM, Barsan V, Song KW, Kamens J, Baggott C, Kunicki M, Rietberg SP, Lim AS, Reschke A, Mavroukakis S, Egeler E, Moon J, Patel S, Chinnasamy H, Erickson C, Jacobs A, Duh AK, Tunuguntla R, Klysz DD, Fowler C, Green S, Beebe B, Carr C, Fujimoto M, Brown AK, Petersen ALG, McIntyre C, Siddiqui A, Lepori-Bui N, Villar K, Pham K, Bove R, Musa E, Reynolds WD, Kuo A, Prabhu S, Rasmussen L, Cornell TT, Partap S, Fisher PG, Campen CJ, Grant G, Prolo L, Ye X, Sahaf B, Davis KL, Feldman SA, Ramakrishna S, Mackall C. Intravenous and intracranial GD2-CAR T cells for H3K27M + diffuse midline gliomas. Nature 2025; 637:708-715. [PMID: 39537919 PMCID: PMC11735388 DOI: 10.1038/s41586-024-08171-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
H3K27M-mutant diffuse midline gliomas (DMGs) express high levels of the disialoganglioside GD2 (ref. 1). Chimeric antigen receptor-modified T cells targeting GD2 (GD2-CART) eradicated DMGs in preclinical models1. Arm A of Phase I trial no. NCT04196413 (ref. 2) administered one intravenous (IV) dose of autologous GD2-CART to patients with H3K27M-mutant pontine (DIPG) or spinal DMG (sDMG) at two dose levels (DL1, 1 × 106 kg-1; DL2, 3 × 106 kg-1) following lymphodepleting chemotherapy. Patients with clinical or imaging benefit were eligible for subsequent intracerebroventricular (ICV) intracranial infusions (10-30 × 106 GD2-CART). Primary objectives were manufacturing feasibility, tolerability and the identification of maximally tolerated IV dose. Secondary objectives included preliminary assessments of benefit. Thirteen patients enroled, with 11 receiving IV GD2-CART on study (n = 3 DL1 (3 DIPG); n = 8 DL2 (6 DIPG, 2 sDMG)). GD2-CART manufacture was successful for all patients. No dose-limiting toxicities occurred on DL1, but three patients experienced dose-limiting cytokine release syndrome on DL2, establishing DL1 as the maximally tolerated IV dose. Nine patients received ICV infusions, with no dose-limiting toxicities. All patients exhibited tumour inflammation-associated neurotoxicity, safely managed with intensive monitoring and care. Four patients demonstrated major volumetric tumour reductions (52, 54, 91 and 100%), with a further three patients exhibiting smaller reductions. One patient exhibited a complete response ongoing for over 30 months since enrolment. Nine patients demonstrated neurological benefit, as measured by a protocol-directed clinical improvement score. Sequential IV, followed by ICV GD2-CART, induced tumour regressions and neurological improvements in patients with DIPG and those with sDMG.
Collapse
Affiliation(s)
- Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| | - Jasia Mahdi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Robbie Majzner
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Kristen W Yeom
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Division of Neuroradiology, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Liora M Schultz
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Rebecca M Richards
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Valentin Barsan
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Kun-Wei Song
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Jen Kamens
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Christina Baggott
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Michael Kunicki
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Skyler P Rietberg
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Alexandria Sung Lim
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Agnes Reschke
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Sharon Mavroukakis
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Emily Egeler
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Jennifer Moon
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Shabnum Patel
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Harshini Chinnasamy
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Courtney Erickson
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Ashley Jacobs
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Allison K Duh
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Ramya Tunuguntla
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Dorota Danuta Klysz
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Carley Fowler
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Sean Green
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
| | - Barbara Beebe
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Casey Carr
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Michelle Fujimoto
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Annie Kathleen Brown
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Ann-Louise G Petersen
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | | | - Aman Siddiqui
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Nadia Lepori-Bui
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Katlin Villar
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Kymhuynh Pham
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Rachel Bove
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Eric Musa
- Cellular Therapy Facility, Stanford Health Care, Palo Alto, CA, USA
| | - Warren D Reynolds
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Adam Kuo
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Snehit Prabhu
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Lindsey Rasmussen
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Stanford University, Stanford, CA, US
| | - Timothy T Cornell
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, Stanford University, Stanford, CA, US
| | - Sonia Partap
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Paul G Fisher
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Cynthia J Campen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Gerald Grant
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Laura Prolo
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Xiaobu Ye
- Department of Neurosurgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Bita Sahaf
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Kara L Davis
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Steven A Feldman
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Sneha Ramakrishna
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| | - Crystal Mackall
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Stanford Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Division of Stem Cell Transplantation and Cell Therapy, Department of Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
10
|
Ellis R, Weiss A. Human vaccines and immunotherapeutics: News March 2024. Hum Vaccin Immunother 2024; 20:2340950. [PMID: 39836726 PMCID: PMC11005794 DOI: 10.1080/21645515.2024.2340950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Affiliation(s)
| | - Adam Weiss
- Acquisitions Editor, Taylor & Francis Group
| |
Collapse
|
11
|
Erickson SM, Manning BM, Kumar A, Patel MR. Engineered Cellular Therapies for the Treatment of Thoracic Cancers. Cancers (Basel) 2024; 17:35. [PMID: 39796666 PMCID: PMC11718842 DOI: 10.3390/cancers17010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Thoracic malignancies (lung cancers and malignant pleural mesothelioma) are prevalent worldwide and are associated with high morbidity and mortality. Effective treatments are needed for patients with advanced disease. Cell therapies are a promising approach to the treatment of advanced cancers that make use of immune effector cells that have the ability to mediate antitumor immune responses. In this review, we discuss the prospect of chimeric antigen receptor-T (CAR-T) cells, natural killer (NK) cells, T cell receptor-engineered (TCR-T) cells, and tumor-infiltrating lymphocytes (TILs) as treatments for thoracic malignancies. CAR-T cells and TILs have proven successful in several hematologic cancers and advanced melanoma, respectively, but outside of melanoma, results have thus far been unsuccessful in most other solid tumors. NK cells and TCR-T cells are additional cell therapy platforms with their own unique advantages and challenges. Obstacles that must be overcome to develop effective cell therapy for these malignancies include selecting an appropriate target antigen, combating immunosuppressive cells and signaling molecules present in the tumor microenvironment, persistence, and delivering a sufficient quantity of antitumor immune cells to the tumor. Induced pluripotent stem cells (iPSCs) offer great promise as a source for both NK and T cell-based therapies due to their unlimited expansion potential. Here, we review clinical trial data, as well as recent basic scientific advances that offer insight into how we may overcome these obstacles, and provide an overview of ongoing trials testing novel strategies to overcome these obstacles.
Collapse
Affiliation(s)
- Spencer M. Erickson
- Internal Medicine Residency Program, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Benjamin M. Manning
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Akhilesh Kumar
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| | - Manish R. Patel
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA (A.K.)
| |
Collapse
|
12
|
Wang X, Fan R, Mu M, Zhou L, Zou B, Tong A, Guo G. Harnessing nanoengineered CAR-T cell strategies to advance solid tumor immunotherapy. Trends Cell Biol 2024:S0962-8924(24)00252-6. [PMID: 39721923 DOI: 10.1016/j.tcb.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The efficacy and safety of chimeric antigen receptor (CAR) T cell therapy is still inconclusive in solid tumor treatment. Recently, nanotechnology has emerged as a potent strategy to reshape CAR-T cell therapy with promising outcomes. This review aims to discuss the significant potential of nano-engineered CAR-T cell therapy in addressing existing challenges, including CAR-T cell engineering evolution, tumor microenvironment (TME) modulation, and precise CAR-T cell therapy (precise targeting, monitoring, and activation), under the main consideration of clinical translation. It also focuses on the growing trend of technological convergence within this domain, such as mRNA therapeutics, organoids, neoantigen, and artificial intelligence. Moreover, safety management of nanomedicine is seriously emphasized to facilitate clinical translation.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; West China School of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Rangrang Fan
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Min Mu
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bingwen Zou
- Department of Radiation Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Guo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Park S, Maus MV, Choi BD. CAR-T cell therapy for the treatment of adult high-grade gliomas. NPJ Precis Oncol 2024; 8:279. [PMID: 39702579 DOI: 10.1038/s41698-024-00753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 10/30/2024] [Indexed: 12/21/2024] Open
Abstract
Treatment for malignant primary brain tumors, including glioblastoma, remains a significant challenge despite advances in therapy. CAR-T cell immunotherapy represents a promising alternative to conventional treatments. This review discusses the landscape of clinical trials for CAR-T cell therapy targeting brain tumors, highlighting key advancements like novel target antigens and combinatorial strategies designed to address tumor heterogeneity and immunosuppression, with the goal of improving outcomes for patients with these aggressive cancers.
Collapse
Affiliation(s)
- Sangwoo Park
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bryan D Choi
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Zhou S, Lin W, Jin X, Niu R, Yuan Z, Chai T, Zhang Q, Guo M, Kim SS, Liu M, Deng Y, Park JB, Choi SI, Shi B, Yin J. CD97 maintains tumorigenicity of glioblastoma stem cells via mTORC2 signaling and is targeted by CAR Th9 cells. Cell Rep Med 2024; 5:101844. [PMID: 39637858 PMCID: PMC11722114 DOI: 10.1016/j.xcrm.2024.101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/19/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Glioblastoma (GBM) stem cells (GSCs) contribute to poor prognosis in patients with GBM. Identifying molecular markers is crucial for developing targeted therapies. Here, we identify cluster of differentiation 97 (CD97) as an optimal GSC surface antigen for potential targeting by chimeric antigen receptor (CAR) T cell therapy through in vitro antibody screening. CD97 is consistently expressed in all validated patient-derived GSCs and positively correlated with known intracellular GSC markers. Silencing CD97 reduces GSC tumorigenicity-related activities, including self-renewal, proliferation, and tumor progression. Transcriptome analysis reveals that CD97 activates mTORC2, leading to AKT S473 phosphorylation and enhanced expression of the downstream genes ARHGAP1, BZW1, and BZW2. Inhibiting mTORC2 with JR-AB2-011 suppresses GSC tumorigenicity and downstream gene expression. We develop CD97-CAR T helper (Th) 9 cells, which exhibit potent cytotoxic effects in vitro and extend survival in mice. These findings suggest that CD97 is a promising GSC-enriched antigen and that targeting it with CAR Th9 cells offers a potential therapeutic strategy for GBM.
Collapse
MESH Headings
- Glioblastoma/pathology
- Glioblastoma/metabolism
- Glioblastoma/immunology
- Glioblastoma/genetics
- Humans
- Animals
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Neoplastic Stem Cells/immunology
- Signal Transduction
- Mice
- Mechanistic Target of Rapamycin Complex 2/metabolism
- Mechanistic Target of Rapamycin Complex 2/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- Antigens, CD/metabolism
- Antigens, CD/genetics
- Carcinogenesis/pathology
- Carcinogenesis/genetics
- Cell Proliferation
- Cell Line, Tumor
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Brain Neoplasms/pathology
- Brain Neoplasms/immunology
- Brain Neoplasms/metabolism
- Brain Neoplasms/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Mice, Inbred NOD
- Immunotherapy, Adoptive/methods
- Gene Expression Regulation, Neoplastic
- GTPase-Activating Proteins/metabolism
- GTPase-Activating Proteins/genetics
- Proto-Oncogene Proteins c-akt/metabolism
Collapse
Affiliation(s)
- Shuchang Zhou
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Weiwei Lin
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China; Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea
| | - Xiong Jin
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; School of Pharmacy, Henan University, Kaifeng, Henan 475004, China
| | - Rui Niu
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zheng Yuan
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tianran Chai
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Qi Zhang
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meixia Guo
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Sung Soo Kim
- Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Meichen Liu
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Yilin Deng
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Jong Bae Park
- Research Institute, National Cancer Center, Goyang, Gyeonggi 10408, Republic of Korea; Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang 10408, Republic of Korea
| | - Sun Il Choi
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; School of Pharmacy, Henan University, Kaifeng, Henan 475004, China.
| | - Bingyang Shi
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Jinlong Yin
- The Zhongzhou Laboratory for Integrative Biology, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie University Joint Centre for Biomedical Innovation, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
15
|
Seblani M, Zannikou M, Duffy J, Levine R, Thakur A, Puigdelloses-Vallcorba M, Horbinski C, Miska J, Hambardzumyan D, Becher O, Balyasnikova I. IL13RA2-integrated genetically engineered mouse model allows for CAR T cells targeting pediatric high-grade gliomas. RESEARCH SQUARE 2024:rs.3.rs-5398280. [PMID: 39711568 PMCID: PMC11661357 DOI: 10.21203/rs.3.rs-5398280/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Pediatric high-grade gliomas (pHGG) and pediatric diffuse midline gliomas (pDMG) are devastating diseases without durable and curative options. Although targeted immunotherapy has shown promise, the field lacks immunocompetent animal models to study these processes in detail. To achieve this, we developed a fully immunocompetent, genetically engineered mouse model (GEMM) for pDMG and pHGG that incorporates the glioma-associated antigen, interleukin 13 receptor alpha 2 (IL13RA2). Utilizing the RCAS-Tva delivery system in Nestin-Tva mice, we induced gliomagenesis by overexpressing PDGFB and deleting p53 (p53fl/fl) or both p53 and PTEN (p53fl/fl PTENfl/fl), with or without IL13RA2 in neonatal mice. De novo tumors developed in models with and without IL13RA2, showing no statistical difference in onset (n = 33, 38 days, p = 0.62). The p53fl/fl PTENfl/fl tumors displayed more aggressive characteristics (n = 12, 31 days). Tumors exhibited features typical of high-grade glioma, including infiltration, pseudopalisading necrosis, and microvascular proliferation. They also showed a high Ki-67 index, variable IL13RA2 expression, a high frequency of CD11b + macrophages, and a low proportion of CD3 + T cells. The model proved effective for evaluating IL13RA2-targeted immunotherapies, with a significant response to CAR T-cell treatment that extended survival (46 days vs. 28 days control; p < 0.0001) and achieved 25% long-term survival in mice. This model facilitates the preclinical assessment of IL13RA2-directed therapies and holds potential for clinical application.
Collapse
|
16
|
Yao CD, Davis KL. Correlative studies reveal factors contributing to successful CAR-T cell therapies in cancer. Cancer Metastasis Rev 2024; 44:15. [PMID: 39625613 DOI: 10.1007/s10555-024-10232-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
Cellular and targeted immunotherapies have revolutionized cancer treatments in the last several decades. Successful cellular therapies require both effective and durable cytotoxic activity from the immune cells as well as an accessible and susceptible response from targeted cancer cells. Correlative studies from clinical trials as well as real-world data from FDA-approved therapies have revealed invaluable insights about immune cell factors and cancer cell factors that impact rates of response and relapse to cellular therapies. This review focuses on the flagship cellular therapy of engineered chimeric antigen receptor T-cells (CAR-T cells). Within the CAR-T cell compartment, we discuss discoveries about T-cell phenotype, transcriptome, epigenetics, cytokine signaling, and metabolism that inform the cell manufacturing process to produce the most effective and durable CAR-T cells. Within the cancer cell compartment, we discuss mechanisms of resistance and relapse caused by mutations, alternative splicing, post-transcriptional modifications, and cellular reprogramming. Continued correlative and mechanistic studies are required to help us further optimize cellular therapies in a variety of malignancies.
Collapse
Affiliation(s)
- Catherine D Yao
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Kara L Davis
- Department of Pediatrics, Division of Hematology, Oncology, Stem Cell Transplant and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
17
|
Song KW, Scott BJ. CAR T-cell therapy for gliomas. Curr Opin Neurol 2024; 37:672-681. [PMID: 39498846 DOI: 10.1097/wco.0000000000001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
PURPOSE OF REVIEW To review the landscape of chimeric antigen receptor T-cell (CAR T) therapy for gliomas as seen in recently published trials and discuss on-going challenges with new cancer immunotherapy treatments. RECENT FINDINGS Given how CAR T therapy has revolutionized the treatment of several hematologic malignancies, there has been increasing interest in using immunotherapy, and particularly CAR T therapy for gliomas. Within the past decade, several first in human trials have published early patient experiences showing treatment is generally well tolerated but with limited efficacy, which may be improving with newer evolutions in CAR T design to overcome known resistance mechanisms in glioma treatment. SUMMARY CAR T therapy is a promising avenue of treatment for high-grade gliomas, which have a universally poor prognosis as well as limited therapeutics. There are a growing number of CAR T clinical trials for CNS tumors and thus, an understanding of their treatment strategies, toxicity management, and overcoming resistance mechanisms will be important for both clinical practice and to identify areas for future research.
Collapse
Affiliation(s)
- Kun-Wei Song
- Department of Neurology, Stanford University School of Medicine
- Stanford Neuro-Immuno-Oncology (NIO) Program, Stanford, California, USA
| | - Brian J Scott
- Department of Neurology, Stanford University School of Medicine
- Stanford Neuro-Immuno-Oncology (NIO) Program, Stanford, California, USA
| |
Collapse
|
18
|
Liu Y, Zhou F, Ali H, Lathia JD, Chen P. Immunotherapy for glioblastoma: current state, challenges, and future perspectives. Cell Mol Immunol 2024; 21:1354-1375. [PMID: 39406966 DOI: 10.1038/s41423-024-01226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive and lethal type of brain tumor in human adults. The standard of care offers minimal clinical benefit, and most GBM patients experience tumor recurrence after treatment. In recent years, significant advancements have been made in the development of novel immunotherapies or other therapeutic strategies that can overcome immunotherapy resistance in many advanced cancers. However, the benefit of immune-based treatments in GBM is limited because of the unique brain immune profiles, GBM cell heterogeneity, and immunosuppressive tumor microenvironment. In this review, we present a detailed overview of current immunotherapeutic strategies and discuss the challenges and potential molecular mechanisms underlying immunotherapy resistance in GBM. Furthermore, we provide an in-depth discussion regarding the strategies that can overcome immunotherapy resistance in GBM, which will likely require combination therapies.
Collapse
Affiliation(s)
- Yang Liu
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Fei Zhou
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Heba Ali
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
- Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
- Rose Ella Burkhardt Brain Tumor & Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, 44195, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA
| | - Peiwen Chen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44195, USA.
| |
Collapse
|
19
|
Fukushima CM, de Groot J. Updates for newly diagnosed and recurrent glioblastoma: a review of recent clinical trials. Curr Opin Neurol 2024; 37:666-671. [PMID: 39258745 PMCID: PMC11540275 DOI: 10.1097/wco.0000000000001320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
PURPOSE OF REVIEW Glioblastoma (GBM) is the most common and devastating primary malignant brain tumor. We summarize recent advances in radiotherapy, immunotherapy, and targeted therapy approaches for the treatment of newly diagnosed and recurrent glioblastoma. We also introduce ongoing clinical trials. RECENT FINDINGS Recent clinical trials have explored multiple novel strategies to treat GBM including the use of oncoviruses, chimeric antigen receptor (CAR) T cell therapy, vaccines, radiotherapy, and novel drug delivery techniques to improves drug penetrance across the blood brain barrier. Approaches to improve drug delivery to brain tumors have the potential to expand treatment options of existing therapies that otherwise have poor brain tumor penetrance. Immunotherapy has been of keen interest in both newly diagnosed and recurrent glioblastoma. Vaccines SurVaxM and DCVax-L have shown initial promise in phase II and III trials, respectively. CAR T cell therapy trials are in their early phases but hold promise in both newly diagnosed and recurrent glioblastoma. SUMMARY Although progress to improve outcomes for GBM patients has been modest, multiple novel strategies utilizing combination therapies, focused ultrasound to improve drug delivery, and novel immunotherapies are underway.
Collapse
Affiliation(s)
| | - John de Groot
- Department of Neurology and Neurosurgery, University of California, San Francisco, California, USA
| |
Collapse
|
20
|
Dolgin E. Cancer drug approvals and setbacks in 2024. NATURE CANCER 2024; 5:1756-1758. [PMID: 39690226 DOI: 10.1038/s43018-024-00873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
|
21
|
Trautmann T, Yakobian N, Nguyen R. CAR T-cells for pediatric solid tumors: where to go from here? Cancer Metastasis Rev 2024; 43:1445-1461. [PMID: 39317919 PMCID: PMC11554711 DOI: 10.1007/s10555-024-10214-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
Despite the great success that chimeric antigen receptor (CAR) T-cells have had in patients with B-cell malignancies and multiple myeloma, they continue to have limited efficacy against most solid tumors. Especially in the pediatric population, pre- and post-treatment biopsies are rarely performed due to ethical reasons, and thus, our understanding is still very limited regarding the mechanisms in the tumor microenvironment by which tumor cells exclude effectors and attract immune-suppressive cells. Nevertheless, based on the principles that are known, current T-cell engineering has leveraged some of these processes and created more potent CAR T-cells. The recent discovery of new oncofetal antigens and progress made in CAR design have expanded the potential pool of candidate antigens for therapeutic development. The most promising approaches to enhance CAR T-cells are novel CAR gating strategies, creative ways of cytokine delivery to the TME without enhancing systemic toxicity, and hijacking the chemokine axis of tumors for migratory purposes. With these new modifications, the next step in the era of CAR T-cell development will be the clinical validation of these promising preclinical findings.
Collapse
Affiliation(s)
- Tina Trautmann
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Natalia Yakobian
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, NCI, NIH, NCI, 10 Center Drive, 1W-5832, Bethesda, MD, 20892, USA.
| |
Collapse
|
22
|
Zhang J, Mu R, Liu F. Advances in brain tumor therapy: from molecular diagnostics to novel treatments. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2771-2773. [PMID: 39400873 DOI: 10.1007/s11427-024-2727-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 10/15/2024]
Affiliation(s)
- Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Ran Mu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical Institute, Capital Medical University, Beijing, 100070, China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
23
|
Palazzo L, Pieri V, Berzero G, Filippi M. CAR-T Cells for the Treatment of Central Nervous System Tumours: Known and Emerging Neurotoxicities. Brain Sci 2024; 14:1220. [PMID: 39766419 PMCID: PMC11727498 DOI: 10.3390/brainsci14121220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/15/2025] Open
Abstract
The advent of chimeric antigen receptor (CAR)-T cells has recently changed the prognosis of relapsing/refractory diffuse large B-cell lymphomas, showing response rates as high as 60 to 80%. Common toxicities reported in the pivotal clinical trials include the cytokine release syndrome (CRS) and the Immune effector Cell-Associated Neurotoxicity Syndrome (ICANS), a stereotyped encephalopathy related to myeloid cell activation and blood-brain barrier dysfunction, presenting with a distinctive cascade of dysgraphia, aphasia, disorientation, attention deficits, vigilance impairment, motor symptoms, seizures, and diffuse brain oedema. The tremendous oncological efficacy of CAR-T cells observed in systemic B-cell malignancies is leading to their growing use in patients with primary or secondary central nervous system (CNS) lymphomas and in patients with solid tumours, including several CNS cancers. Early studies conducted in adult and paediatric patients with solid CNS tumours reported a distinct profile of neurotoxicity referred to as Tumour inflammation-associated neurotoxicity (TIAN), corresponding to local inflammation at the tumour site manifesting with focal neurological deficits or mechanical complications (e.g., obstructive hydrocephalus). The present review summarises available data on the efficacy and safety of CAR-T cells for solid and haematological CNS malignancies, emphasising known and emerging phenotypes, ongoing challenges, and future perspectives.
Collapse
Affiliation(s)
- Leonardo Palazzo
- Neurology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (V.P.); (M.F.)
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Valentina Pieri
- Neurology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (V.P.); (M.F.)
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Giulia Berzero
- Neurology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (V.P.); (M.F.)
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Massimo Filippi
- Neurology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (L.P.); (V.P.); (M.F.)
- Faculty of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurorehabilitation Unit, Neurophysiology Unit, Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| |
Collapse
|
24
|
Liu X, Chen H, Tan G, Zhong L, Jiang H, Smith SM, Wang HZ. A comprehensive neuroimaging review of the primary and metastatic brain tumors treated with immunotherapy: current status, and the application of advanced imaging approaches and artificial intelligence. Front Immunol 2024; 15:1496627. [PMID: 39669560 PMCID: PMC11634813 DOI: 10.3389/fimmu.2024.1496627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel clinical therapeutic option for a variety of solid tumors over the past decades. The application of immunotherapy in primary and metastatic brain tumors continues to grow despite limitations due to the physiological characteristics of the immune system within the central nervous system (CNS) and distinct pathological barriers of malignant brain tumors. The post-immunotherapy treatment imaging is more complex. In this review, we summarize the clinical application of immunotherapies in solid tumors beyond the CNS. We provide an overview of current immunotherapies used in brain tumors, including immune checkpoint inhibitors (ICIs), oncolytic viruses, vaccines, and CAR T-cell therapies. We focus on the imaging criteria for the assessment of treatment response to immunotherapy, and post-immunotherapy treatment imaging patterns. We discuss advanced imaging techniques in the evaluation of treatment response to immunotherapy in brain tumors. The imaging characteristics of immunotherapy treatment-related complications in CNS are described. Lastly, future imaging challenges in this field are explored.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Radiology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
- Advanced Neuroimaging Laboratory, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Hongyan Chen
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guirong Tan
- Department of Radiology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
- Advanced Neuroimaging Laboratory, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Lijuan Zhong
- Department of Pathology, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong, China
| | - Haihui Jiang
- Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing, China
| | - Stephen M. Smith
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Henry Z. Wang
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
25
|
Meléndez-Vázquez NM, Gomez-Manzano C, Godoy-Vitorino F. Oncolytic Virotherapies and Adjuvant Gut Microbiome Therapeutics to Enhance Efficacy Against Malignant Gliomas. Viruses 2024; 16:1775. [PMID: 39599889 PMCID: PMC11599061 DOI: 10.3390/v16111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Glioblastoma (GBM) is the most prevalent malignant brain tumor. Current standard-of-care treatments offer limited benefits for patient survival. Virotherapy is emerging as a novel strategy to use oncolytic viruses (OVs) for the treatment of GBM. These engineered and non-engineered viruses infect and lyse cancer cells, causing tumor destruction without harming healthy cells. Recent advances in genetic modifications to OVs have helped improve their targeting capabilities and introduce therapeutic genes, broadening the therapeutic window and minimizing potential side effects. The efficacy of oncolytic virotherapy can be enhanced by combining it with other treatments such as immunotherapy, chemotherapy, or radiation. Recent studies suggest that manipulating the gut microbiome to enhance immune responses helps improve the therapeutic efficacy of the OVs. This narrative review intends to explore OVs and their role against solid tumors, especially GBM while emphasizing the latest technologies used to enhance and improve its therapeutic and clinical responses.
Collapse
Affiliation(s)
- Natalie M. Meléndez-Vázquez
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, University of Puerto Rico-Medical Sciences Campus, San Juan, PR 00918, USA;
| |
Collapse
|
26
|
Uslu U, June CH. Beyond the blood: expanding CAR T cell therapy to solid tumors. Nat Biotechnol 2024:10.1038/s41587-024-02446-2. [PMID: 39533105 DOI: 10.1038/s41587-024-02446-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy stands as a transformative advancement in immunotherapy, triumphing against hematological malignancies and, increasingly, autoimmune disorders. After a decade of relatively modest results for solid tumors, recent clinical trials and patient reports have also started to yield promising outcomes in glioblastoma and other challenging solid tumor entities. This Perspective seeks to explore the reasons behind these latest achievements and discusses how they can be sustained and expanded through different strategies involving CAR engineering and synthetic biology. Furthermore, we critically analyze how these breakthroughs can be leveraged to maintain momentum and broaden the therapeutic impact of CAR T cells across a variety of solid tumor landscapes.
Collapse
Affiliation(s)
- Ugur Uslu
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Zhou D, Zhu X, Xiao Y. Advances in CAR-T therapy for central nervous system tumors. Biomark Res 2024; 12:132. [PMID: 39506843 PMCID: PMC11539471 DOI: 10.1186/s40364-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The application of chimeric antigen receptor T-cell therapy in central nervous system tumors has significantly advanced; however, challenges pertaining to the blood-brain barrier, immunosuppressive microenvironment, and antigenic heterogeneity continue to be encountered, unlike its success in hematological malignancies such as acute lymphoblastic leukemia and diffuse large B-cell lymphomas. This review examined the research progress of chimeric antigen receptor T-cell therapy in gliomas, medulloblastomas, and lymphohematopoietic tumors of the central nervous system, focusing on chimeric antigen receptor T-cells targeting antigens such as EGFRvIII, HER2, B7H3, GD2, and CD19 in preclinical and clinical studies. It synthesized current research findings to offer valuable insights for future chimeric antigen receptor T-cell therapeutic strategies for central nervous system tumors and advance the development and application of this therapeutic modality in this domain.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
28
|
Del Baldo G, Carai A, Mastronuzzi A. Chimeric antigen receptor adoptive immunotherapy in central nervous system tumors: state of the art on clinical trials, challenges, and emerging strategies to addressing them. Curr Opin Oncol 2024; 36:545-553. [PMID: 38989708 PMCID: PMC11460750 DOI: 10.1097/cco.0000000000001076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
PURPOSE OF REVIEW Central nervous system (CNS) tumors represent a significant unmet medical need due to their enduring burden of high mortality and morbidity. Chimeric antigen receptor (CAR) T-cell therapy emerges as a groundbreaking approach, offering hope for improved treatment outcomes. However, despite its successes in hematological malignancies, its efficacy in solid tumors, including CNS tumors, remains limited. Challenges such as the intricate tumor microenvironment (TME), antigenic heterogeneity, and CAR T-cell exhaustion hinder its effectiveness. This review aims to explore the current landscape of CAR T-cell therapy for CNS tumors, highlighting recent advancements and addressing challenges in achieving therapeutic efficacy. RECENT FINDINGS Innovative strategies aim to overcome the barriers posed by the TME and antigen diversity, prevent CAR T-cell exhaustion through engineering approaches and combination therapies with immune checkpoint inhibitors to improving treatment outcomes. SUMMARY Researchers have been actively working to address these challenges. Moreover, addressing the unique challenges associated with neurotoxicity in CNS tumors requires specialized management strategies. These may include the development of grading systems, monitoring devices, alternative cell platforms and incorporation of suicide genes. Continued research efforts and clinical advancements are paramount to overcoming the existing challenges and realizing the full potential of CAR T-cell therapy in treating CNS tumors.
Collapse
Affiliation(s)
- Giada Del Baldo
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
- Department of Experimental Medicine, Sapienza University of Rome
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Haematology and Oncology, and Cell and Gene Therapy Bambino Gesù Children's Hospital, IRCCS
| |
Collapse
|
29
|
Frederico SC, Raphael I, Nisnboym M, Huq S, Schlegel BT, Sneiderman CT, Jackson SA, Jain A, Olin MR, Rood BR, Pollack IF, Hwang EI, Rajasundaram D, Kohanbash G. Transcriptomic observations of intra and extracellular immunotherapy targets for pediatric brain tumors. Expert Rev Clin Immunol 2024; 20:1411-1420. [PMID: 39114885 DOI: 10.1080/1744666x.2024.2390023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES Despite surgical resection, chemoradiation, and targeted therapy, brain tumors remain a leading cause of cancer-related death in children. Immunotherapy has shown some promise and is actively being investigated for treating childhood brain tumors. However, a critical step in advancing immunotherapy for these patients is to uncover targets that can be effectively translated into therapeutic interventions. METHODS In this study, our team performed a transcriptomic analysis across pediatric brain tumor types to identify potential targets for immunotherapy. Additionally, we assessed components that may impact patient response to immunotherapy, including the expression of genes essential for antigen processing and presentation, inhibitory ligands and receptors, interferon signature, and overall predicted T cell infiltration. RESULTS We observed distinct expression patterns across tumor types. These included elevated expression of antigen genes and antigen processing machinery in some tumor types while other tumors had elevated inhibitory checkpoint receptors, known to be associated with response to checkpoint inhibitor immunotherapy. CONCLUSION These findings suggest that pediatric brain tumors exhibit distinct potential for specific immunotherapies. We believe our findings can guide investigators in their assessment of appropriate immunotherapy classes and targets in pediatric brain tumors.
Collapse
Affiliation(s)
- Stephen C Frederico
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Itay Raphael
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michal Nisnboym
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- Department of Neurology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Sakibul Huq
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brent T Schlegel
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chaim T Sneiderman
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sydney A Jackson
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anya Jain
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Brian R Rood
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | - Ian F Pollack
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eugene I Hwang
- Division of Oncology, Children's National Medical Center, Washington, DC, USA
| | | | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Zhuo S, Yang S, Chen S, Ding Y, Cheng H, Yang L, Wang K, Yang K. Unveiling the significance of cancer-testis antigens and their implications for immunotherapy in glioma. Discov Oncol 2024; 15:602. [PMID: 39472405 PMCID: PMC11522268 DOI: 10.1007/s12672-024-01449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
Glioma has a poor prognosis, which is attributable to its inherent characteristics and lack of specific treatments. Immunotherapy plays a pivotal role in the contemporary management of malignancies. Despite the initiation of numerous immunotherapy-based clinical trials, their effects on enhancing glioma prognosis remain limited, highlighting the need for innovative and effective therapeutic targets and strategies to address this challenge. Since the 1990s, there has been a growing interest in cancer-testis antigens (CTAs) present in normal mammalian testicular germ cells and placental trophoblast cells, which exhibit reactivated expression in various tumor types. Mechanisms such as DNA methylation, histone modification, transcriptional regulation, and alternative splicing influence the expression of CTAs in tumors. The distinct expression patterns and robust immunogenicity of CTAs are promising tumor biomarkers and optimal targets for immunotherapy. Previous reports have shown that multiple CTAs are present in gliomas and are closely related to prognosis. The expression of these antigens is also associated with the immune response in gliomas and the effectiveness of immunotherapy. Significantly, numerous clinical trials, with IL13RA2 as a representative CTA member, have assessed the immunotherapeutic potential of gliomas and have shown favorable clinical efficacy. This review provides a comprehensive overview of the regulation and function of CTAs, summarizes their expression and role in gliomas, emphasizes their importance as immunotherapy targets in gliomas, and discusses related challenges and future interventions.
Collapse
Affiliation(s)
- Shenghua Zhuo
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| | - Shuo Yang
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Shenbo Chen
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Yueju Ding
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Honglei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Liangwang Yang
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China
| | - Kai Wang
- International Center for Aging and Cancer, Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| | - Kun Yang
- Department of Neurosurgery, the First Affiliated Hospital of Hainan Medical University (Hainan Academy of Medical Sciences), Haikou, China.
| |
Collapse
|
31
|
Gallus M, Young JS, Cook Quackenbush S, Khasraw M, de Groot J, Okada H. Chimeric antigen receptor T-cell therapy in patients with malignant glioma-From neuroimmunology to clinical trial design considerations. Neuro Oncol 2024:noae203. [PMID: 39450490 DOI: 10.1093/neuonc/noae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
Clinical trials evaluating chimeric antigen receptor (CAR) T-cell therapy in patients with malignant gliomas have shown some early promise in pediatric and adult patients. However, the long-term benefits and safety for patients remain to be established. The ultimate success of CAR T-cell therapy for malignant glioma will require the integration of an in-depth understanding of the immunology of the central nervous system (CNS) parenchyma with strategies to overcome the paucity and heterogeneous expression of glioma-specific antigens. We also need to address the cold (immunosuppressive) microenvironment, exhaustion of the CAR T-cells, as well as local and systemic immunosuppression. Here, we discuss the basics and scientific considerations for CAR T-cell therapies and highlight recent clinical trials. To help identify optimal CAR T-cell administration routes, we summarize our current understanding of CNS immunology and T-cell homing to the CNS. We also discuss challenges and opportunities related to clinical trial design and patient safety/monitoring. Finally, we provide our perspective on future prospects in CAR T-cell therapy for malignant gliomas by discussing combinations and novel engineering strategies to overcome immuno-regulatory mechanisms. We hope this review will serve as a basis for advancing the field in a multiple discipline-based and collaborative manner.
Collapse
Affiliation(s)
- Marco Gallus
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | | | - Mustafa Khasraw
- The Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - John de Groot
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| | - Hideho Okada
- The Parker Institute for Cancer Immunotherapy, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, San Francisco, California, USA
- Department of Neurological Surgery, Unversity of California San Fracisco, San Francisco, California, USA
| |
Collapse
|
32
|
Noor L, Upadhyay A, Joshi V. Role of T Lymphocytes in Glioma Immune Microenvironment: Two Sides of a Coin. BIOLOGY 2024; 13:846. [PMID: 39452154 PMCID: PMC11505600 DOI: 10.3390/biology13100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024]
Abstract
Glioma is known for its immunosuppressive microenvironment, which makes it challenging to target through immunotherapies. Immune cells like macrophages, microglia, myeloid-derived suppressor cells, and T lymphocytes are known to infiltrate the glioma tumor microenvironment and regulate immune response distinctively. Among the variety of immune cells, T lymphocytes have highly complex and multifaceted roles in the glioma immune landscape. T lymphocytes, which include CD4+ helper and CD8+ cytotoxic T cells, are known for their pivotal roles in anti-tumor responses. However, these cells may behave differently in the highly dynamic glioma microenvironment, for example, via an immune invasion mechanism enforced by tumor cells. Therefore, T lymphocytes play dual roles in glioma immunity, firstly by their anti-tumor responses, and secondly by exploiting gliomas to promote immune invasion. As an immunosuppression strategy, glioma induces T-cell exhaustion and suppression of effector T cells by regulatory T cells (Tregs) or by altering their signaling pathways. Further, the expression of immune checkpoint inhibitors on the glioma cell surface leads to T cell anergy and dysfunction. Overall, this dynamic interplay between T lymphocytes and glioma is crucial for designing more effective immunotherapies. The current review provides detailed knowledge on the roles of T lymphocytes in the glioma immune microenvironment and helps to explore novel therapeutic approaches to reinvigorate T lymphocytes.
Collapse
Affiliation(s)
- Laiba Noor
- Department of Biotechnology, Bennett University, Greater Noida 201310, Uttar Pradesh, India
| | - Arun Upadhyay
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Durg 491002, Chhattisgarh, India
| | - Vibhuti Joshi
- Department of Biotechnology, Bennett University, Greater Noida 201310, Uttar Pradesh, India
| |
Collapse
|
33
|
Hou AJ, Shih RM, Uy BR, Shafer A, Chang ZL, Comin-Anduix B, Guemes M, Galic Z, Phyu S, Okada H, Grausam KB, Breunig JJ, Brown CE, Nathanson DA, Prins RM, Chen YY. IL-13Rα2/TGF-β bispecific CAR-T cells counter TGF-β-mediated immune suppression and potentiate anti-tumor responses in glioblastoma. Neuro Oncol 2024; 26:1850-1866. [PMID: 38982561 PMCID: PMC11449012 DOI: 10.1093/neuonc/noae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-β). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-β-mediated immune suppression in the TME. METHODS We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-β, which programs tumor-specific T cells to convert TGF-β from an immunosuppressant to an immunostimulant. Bispecific IL-13Rα2/TGF-β CAR-T cells were evaluated for efficacy and safety against both patient-derived GBM xenografts and syngeneic models of murine glioma. RESULTS Treatment with IL-13Rα2/TGF-β CAR-T cells leads to greater T-cell infiltration and reduced suppressive myeloid cell presence in the tumor-bearing brain compared to treatment with conventional IL-13Rα2 CAR-T cells, resulting in improved survival in both patient-derived GBM xenografts and syngeneic models of murine glioma. CONCLUSIONS Our findings demonstrate that by reprogramming tumor-specific T-cell responses to TGF-β, bispecific IL-13Rα2/TGF-β CAR-T cells resist and remodel the immunosuppressive TME to drive potent anti-tumor responses in GBM.
Collapse
Affiliation(s)
- Andrew J Hou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Ryan M Shih
- Department of Molecular Biology, University of California, Los Angeles, California, USA
| | - Benjamin R Uy
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Amanda Shafer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - ZeNan L Chang
- Department of Molecular Biology, University of California, Los Angeles, California, USA
| | - Begonya Comin-Anduix
- Department of Surgery, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Miriam Guemes
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, California, USA
| | - Zoran Galic
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, California, USA
| | - Su Phyu
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy Center at UCSF, San Francisco, California, USA
| | - Katie B Grausam
- Board of Governor’s Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joshua J Breunig
- Board of Governor’s Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California, USA
| | - David A Nathanson
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Robert M Prins
- Department of Neurosurgery, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, California, USA
| |
Collapse
|
34
|
Discovering and targeting vulnerabilities in invasive brain cancer using ROBO1 CAR T cells. Nat Med 2024; 30:2733-2734. [PMID: 39179857 DOI: 10.1038/s41591-024-03229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
35
|
Chokshi CR, Shaikh MV, Brakel B, Rossotti MA, Tieu D, Maich W, Anand A, Chafe SC, Zhai K, Suk Y, Kieliszek AM, Miletic P, Mikolajewicz N, Chen D, McNicol JD, Chan K, Tong AHY, Kuhlmann L, Liu L, Alizada Z, Mobilio D, Tatari N, Savage N, Aghaei N, Grewal S, Puri A, Subapanditha M, McKenna D, Ignatchenko V, Salamoun JM, Kwiecien JM, Wipf P, Sharlow ER, Provias JP, Lu JQ, Lazo JS, Kislinger T, Lu Y, Brown KR, Venugopal C, Henry KA, Moffat J, Singh SK. Targeting axonal guidance dependencies in glioblastoma with ROBO1 CAR T cells. Nat Med 2024; 30:2936-2946. [PMID: 39095594 DOI: 10.1038/s41591-024-03138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 06/18/2024] [Indexed: 08/04/2024]
Abstract
Resistance to genotoxic therapies and tumor recurrence are hallmarks of glioblastoma (GBM), an aggressive brain tumor. In this study, we investigated functional drivers of post-treatment recurrent GBM through integrative genomic analyses, genome-wide genetic perturbation screens in patient-derived GBM models and independent lines of validation. Specific genetic dependencies were found consistent across recurrent tumor models, accompanied by increased mutational burden and differential transcript and protein expression compared to its primary GBM predecessor. Our observations suggest a multi-layered genetic response to drive tumor recurrence and implicate PTP4A2 (protein tyrosine phosphatase 4A2) as a modulator of self-renewal, proliferation and tumorigenicity in recurrent GBM. Genetic perturbation or small-molecule inhibition of PTP4A2 acts through a dephosphorylation axis with roundabout guidance receptor 1 (ROBO1) and its downstream molecular players, exploiting a functional dependency on ROBO signaling. Because a pan-PTP4A inhibitor was limited by poor penetrance across the blood-brain barrier in vivo, we engineered a second-generation chimeric antigen receptor (CAR) T cell therapy against ROBO1, a cell surface receptor enriched across recurrent GBM specimens. A single dose of ROBO1-targeted CAR T cells doubled median survival in cell-line-derived xenograft (CDX) models of recurrent GBM. Moreover, in CDX models of adult lung-to-brain metastases and pediatric relapsed medulloblastoma, ROBO1 CAR T cells eradicated tumors in 50-100% of mice. Our study identifies a promising multi-targetable PTP4A-ROBO1 signaling axis that drives tumorigenicity in recurrent GBM, with potential in other malignant brain tumors.
Collapse
Affiliation(s)
- Chirayu R Chokshi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Muhammad Vaseem Shaikh
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Benjamin Brakel
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Martin A Rossotti
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
| | - David Tieu
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - William Maich
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Alisha Anand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Shawn C Chafe
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kui Zhai
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Yujin Suk
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Agata M Kieliszek
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Petar Miletic
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Nicholas Mikolajewicz
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - David Chen
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Jamie D McNicol
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Katherine Chan
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Amy H Y Tong
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Laura Kuhlmann
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lina Liu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Zahra Alizada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Daniel Mobilio
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Nazanin Tatari
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Neil Savage
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Nikoo Aghaei
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Shan Grewal
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Anish Puri
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | | | - Dillon McKenna
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | | | - Joseph M Salamoun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jacek M Kwiecien
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - John P Provias
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Jian-Qiang Lu
- Department of Pathology and Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - John S Lazo
- Department of Pharmacology, Fiske Drug Discovery Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Thomas Kislinger
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yu Lu
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
| | - Kevin R Brown
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada
| | - Chitra Venugopal
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Kevin A Henry
- Human Health Therapeutics Research Centre, Life Sciences Division, National Research Council Canada, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Program for Genetics and Genome Biology, The Hospital for Sick Children, Peter Gilgan Centre for Research & Learning, Toronto, ON, Canada.
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
- Centre for Discovery in Cancer Research (CDCR), McMaster University, Hamilton, ON, Canada.
- Department of Surgery, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
36
|
Owens K, Rahman A, Bozic I. Spatiotemporal dynamics of tumor - CAR T-cell interaction following local administration in solid cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610392. [PMID: 39257746 PMCID: PMC11384001 DOI: 10.1101/2024.08.29.610392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The success of chimeric antigen receptor (CAR) T-cell therapy in treating hematologic malignancies has generated widespread interest in translating this technology to solid cancers. However, issues like tumor infiltration, the immunosuppressive tumor microenvironment, and tumor heterogeneity limit its efficacy in the solid tumor setting. Recent experimental and clinical studies propose local administration directly into the tumor or at the tumor site to increase CAR T-cell infiltration and improve treatment outcomes. Characteristics of the types of solid tumors that may be the most receptive to this treatment approach remain unclear. In this work, we develop a spatiotemporal model for CAR T-cell treatment of solid tumors, and use numerical simulations to compare the effect of introducing CAR T cells via intratumoral injection versus intracavitary administration in diverse cancer types. We demonstrate that the model can recapitulate tumor and CAR T-cell data from imaging studies of local administration of CAR T cells in mouse models. Our results suggest that locally administered CAR T cells will be most successful against slowly proliferating, highly diffusive tumors, which have the lowest average tumor cell density. These findings affirm the clinical observation that CAR T cells will not perform equally across different types of solid tumors, and suggest that measuring tumor density may be helpful when considering the feasibility of CAR T-cell therapy and planning dosages for a particular patient. We additionally find that local delivery of CAR T cells can result in deep tumor responses, provided that the initial CAR T-cell dose does not contain a significant fraction of exhausted cells.
Collapse
Affiliation(s)
- Katherine Owens
- Department of Applied Mathematics, University of Washington, Seattle WA
- Fred Hutchinson Cancer Center, Seattle WA
| | - Aminur Rahman
- Fred Hutchinson Cancer Center, Seattle WA
- Artificial Intelligence Institute in Dynamic Systems, University of Washington, Seattle WA
| | - Ivana Bozic
- Department of Applied Mathematics, University of Washington, Seattle WA
- Fred Hutchinson Cancer Center, Seattle WA
| |
Collapse
|
37
|
Dobersalske C, Rauschenbach L, Hua Y, Berliner C, Steinbach A, Grüneboom A, Kokkaliaris KD, Heiland DH, Berger P, Langer S, Tan CL, Stenzel M, Landolsi S, Weber F, Darkwah Oppong M, Werner RA, Gull H, Schröder T, Linsenmann T, Buck AK, Gunzer M, Stuschke M, Keyvani K, Forsting M, Glas M, Kipnis J, Steindler DA, Reinhardt HC, Green EW, Platten M, Tasdogan A, Herrmann K, Rambow F, Cima I, Sure U, Scheffler B. Cranioencephalic functional lymphoid units in glioblastoma. Nat Med 2024; 30:2947-2956. [PMID: 39085419 PMCID: PMC11485206 DOI: 10.1038/s41591-024-03152-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The ecosystem of brain tumors is considered immunosuppressed, but our current knowledge may be incomplete. Here we analyzed clinical cell and tissue specimens derived from patients presenting with glioblastoma or nonmalignant intracranial disease to report that the cranial bone (CB) marrow, in juxtaposition to treatment-naive glioblastoma tumors, harbors active lymphoid populations at the time of initial diagnosis. Clinical and anatomical imaging, single-cell molecular and immune cell profiling and quantification of tumor reactivity identified CD8+ T cell clonotypes in the CB that were also found in the tumor. These were characterized by acute and durable antitumor response rooted in the entire T cell developmental spectrum. In contrast to distal bone marrow, the CB niche proximal to the tumor showed increased frequencies of tumor-reactive CD8+ effector types expressing the lymphoid egress marker S1PR1. In line with this, cranial enhancement of CXCR4 radiolabel may serve as a surrogate marker indicating focal association with improved progression-free survival. The data of this study advocate preservation and further exploitation of these cranioencephalic units for the clinical care of glioblastoma.
Collapse
Affiliation(s)
- Celia Dobersalske
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Laurèl Rauschenbach
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Yichao Hua
- Department of Applied Computational Cancer Research, IKIM, University Hospital Essen, Essen, Germany
| | - Christoph Berliner
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Anita Steinbach
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Konstantinos D Kokkaliaris
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- DKTK, German Cancer Consortium, partner site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Dieter H Heiland
- DKTK, German Cancer Consortium, partner site Freiburg, Translational Neurosurgery, Microenvironment and Immunology Research Laboratory, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, University Clinic Erlangen, Erlangen, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pia Berger
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Sarah Langer
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Chin L Tan
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- DKTK, German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Somaya Landolsi
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Frankfurt am Main, Germany
- DKTK, German Cancer Consortium, partner site Frankfurt/Mainz, Quantitative Spatial Cancer Biology Laboratory, University Hospital Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Flora Weber
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Rudolf A Werner
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
- University Hospital Frankfurt, Department of Nuclear Medicine, Clinic for Radiology and Nuclear Medicine, Frankfurt am Main, Germany
- The Russell H. Morgan Department of Radiology, Division of Nuclear Medicine and Molecular Imaging, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanah Gull
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Thomas Schröder
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
| | - Thomas Linsenmann
- Department of Neurosurgery, University Hospital Würzburg, Würzburg, Germany
| | - Andreas K Buck
- Department of Nuclear Medicine, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Gunzer
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund, Germany
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Martin Stuschke
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Radiation Oncology, University Hospital Essen, Essen, Germany
| | - Kathy Keyvani
- Institute of Neuropathology, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Martin Glas
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
- Department of Neurology, Division of Neurooncology, University Hospital Essen, Essen, Germany
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University School of Medicine in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, MO, USA
| | - Dennis A Steindler
- Steindler Consulting, Boston, MA, USA
- The Eshelman Institute for Innovation, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hans Christian Reinhardt
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Edward W Green
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- DKTK, German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center, Heidelberg, Germany
- DKTK, German Cancer Consortium, Core Center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neuroscience, Heidelberg University, Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology, Mainz, Germany
- German Cancer Research Center-Hector Cancer Institute at the Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Alpaslan Tasdogan
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Florian Rambow
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Department of Applied Computational Cancer Research, IKIM, University Hospital Essen, Essen, Germany
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany
| | - Igor Cima
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany
| | - Ulrich Sure
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuroscience and Behavioral Science (C-TNBS), University of Duisburg-Essen, Essen, Germany
| | - Björn Scheffler
- German Cancer Consortium (DKTK), partner site Essen/Düsseldorf, a partnership between DKFZ and University Hospital Essen, University Duisburg-Essen, Essen, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- DKFZ Division Translational Neurooncology at the WTZ, University Medicine Essen, Essen, Germany.
- West German Cancer Center (WTZ), University Hospital Essen, Essen, Germany.
- Center of Medical Biotechnology (ZMB), University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
38
|
Ju A, Choi S, Jeon Y, Kim K. Lymphodepletion in Chimeric Antigen Receptor T-Cell Therapy for Solid Tumors: A Focus on Brain Tumors. Brain Tumor Res Treat 2024; 12:208-220. [PMID: 39542517 PMCID: PMC11570086 DOI: 10.14791/btrt.2024.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 11/17/2024] Open
Abstract
Chimeric antigen receptor (CAR)-T cell therapy, which has demonstrated remarkable efficacy in hematologic malignancies, is being extended to the treatment of refractory solid tumors, including brain tumors. Lymphodepletion (LD) is an essential preconditioning process that enhances CAR-T efficacy by promoting CAR-T cell expansion and persistence in the body, and has become a standard regimen for hematologic cancers. Recent clinical results of CAR-T therapy for solid tumors, including brain tumors, have shown that cyclophosphamide/fludarabine-based preconditioning has potential benefits and is gradually becoming adopted in solid tumor CAR-T trials. Furthermore, some CAR-T trials for solid tumors are attempting to develop LD regimens optimized specifically for solid tumors, distinct from the standard LD regimens used in hematologic cancers. In contrast, CAR-T therapy targeting brain tumors frequently employs locoregionally repeated administration in tumors or cerebrospinal fluid, resulting in less frequent use of LD compared to other solid tumors. Nevertheless, several clinical studies suggest that LD may still provide potential benefits for CAR-T expansion and improvement in clinical responses in systemic CAR-T administration. The studies presented in this review suggest that while LD can be beneficial for enhancing CAR-T efficacy, considerations must be made regarding its compatibility with the CAR-T administration route, potential excessive activation based on CAR-T structural characteristics, and target expression in normal organs. Additionally, given the unique characteristics of brain tumors, optimized selection of LD agents, as well as dosing and regimens, may be required, highlighting the need for further research.
Collapse
Affiliation(s)
- Anna Ju
- R&D Center, CellabMED Inc., Seoul, Korea
| | | | | | - Kiwan Kim
- R&D Center, CellabMED Inc., Seoul, Korea.
| |
Collapse
|
39
|
Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cell Mol Immunol 2024; 21:1089-1108. [PMID: 39134804 PMCID: PMC11442786 DOI: 10.1038/s41423-024-01207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/22/2024] [Indexed: 10/02/2024] Open
Abstract
In the past decade, chimeric antigen receptor (CAR)-T cell therapy has emerged as a promising immunotherapeutic approach for combating cancers, demonstrating remarkable efficacy in relapsed/refractory hematological malignancies in both pediatric and adult patients. CAR-natural killer (CAR-NK) cell complements CAR-T cell therapy by offering several distinct advantages. CAR-NK cells do not require HLA compatibility and exhibit low safety concerns. Moreover, CAR-NK cells are conducive to "off-the-shelf" therapeutics, providing significant logistic advantages over CAR-T cells. Both CAR-T and CAR-NK cells have shown consistent and promising results in hematological malignancies. However, their efficacy against solid tumors remains limited due to various obstacles including limited tumor trafficking and infiltration, as well as an immuno-suppressive tumor microenvironment. In this review, we discuss the recent advances and current challenges of CAR-T and CAR-NK cell immunotherapies, with a specific focus on the obstacles to their application in solid tumors. We also analyze in depth the advantages and drawbacks of CAR-NK cells compared to CAR-T cells and highlight CAR-NK CAR optimization. Finally, we explore future perspectives of these adoptive immunotherapies, highlighting the increasing contribution of cutting-edge biotechnological tools in shaping the next generation of cellular immunotherapy.
Collapse
Affiliation(s)
- Lei Peng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
| | - Giacomo Sferruzza
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
| | - Luojia Yang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA
| | - Liqun Zhou
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- System Biology Institute, Yale University, West Haven, CT, USA
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
- Immunobiology Program, Yale University, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- System Biology Institute, Yale University, West Haven, CT, USA.
- Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA.
- Molecular Cell Biology, Genetics, and Development Program, Yale University, New Haven, CT, USA.
- Immunobiology Program, Yale University, New Haven, CT, USA.
- Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for RNA Science and Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
40
|
Tapescu I, Madsen PJ, Lowenstein PR, Castro MG, Bagley SJ, Fan Y, Brem S. The transformative potential of mRNA vaccines for glioblastoma and human cancer: technological advances and translation to clinical trials. Front Oncol 2024; 14:1454370. [PMID: 39399167 PMCID: PMC11466887 DOI: 10.3389/fonc.2024.1454370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 10/15/2024] Open
Abstract
Originally devised for cancer control, mRNA vaccines have risen to the forefront of medicine as effective instruments for control of infectious disease, notably their pivotal role in combating the COVID-19 pandemic. This review focuses on fundamental aspects of the development of mRNA vaccines, e.g., tumor antigens, vector design, and precise delivery methodologies, - highlighting key technological advances. The recent, promising success of personalized mRNA vaccines against pancreatic cancer and melanoma illustrates the potential value for other intractable, immunologically resistant, solid tumors, such as glioblastoma, as well as the potential for synergies with a combinatorial, immunotherapeutic approach. The impact and progress in human cancer, including pancreatic cancer, head and neck cancer, bladder cancer are reviewed, as are lessons learned from first-in-human CAR-T cell, DNA and dendritic cell vaccines targeting glioblastoma. Going forward, a roadmap is provided for the transformative potential of mRNA vaccines to advance cancer immunotherapy, with a particular focus on the opportunities and challenges of glioblastoma. The current landscape of glioblastoma immunotherapy and gene therapy is reviewed with an eye to combinatorial approaches harnessing RNA science. Preliminary preclinical and clinical data supports the concept that mRNA vaccines could be a viable, novel approach to prolong survival in patients with glioblastoma.
Collapse
Affiliation(s)
- Iulia Tapescu
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter J. Madsen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, The University of Michigan, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Stephen J. Bagley
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Fan
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, United States
| | - Steven Brem
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, United States
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
41
|
Lopez CB, Ruijgrok E, van Eijck CHJ. A new era with advanced immunotherapy. Transl Gastroenterol Hepatol 2024; 9:60. [PMID: 39503024 PMCID: PMC11535801 DOI: 10.21037/tgh-24-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/06/2024] [Indexed: 11/08/2024] Open
Affiliation(s)
| | | | - Casper H. J. van Eijck
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Surgery, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Sterner RC, Sterner RM. EGFRVIII and EGFR targeted chimeric antigen receptor T cell therapy in glioblastoma. Front Oncol 2024; 14:1434495. [PMID: 39364321 PMCID: PMC11446898 DOI: 10.3389/fonc.2024.1434495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 10/05/2024] Open
Abstract
Glioblastoma is the most common primary brain tumor. Although there have been significant advances in surgical techniques, chemo and immunotherapies, and radiation therapy, outcomes continue to be devastating for these patients with minimal improvements in survival. Chimeric antigen receptor T cell therapy is a revolutionary approach that is a new pillar in the treatment of cancer. CAR T cell therapy has produced remarkable results in hematological malignancies; however, multiple limitations currently prevent it from being a first-line therapy, especially for solid tumors. Epidermal growth factor receptor is classically amplified in glioblastoma, and a variant, EGFR variant III, is expressed on glioblastoma, making it an exciting potential target for CAR T cell therapy. Although preclinical has exciting potential, clinical data has been heterogeneous. In this review, we assess the state of field of EGFR-targeted CAR T cells.
Collapse
Affiliation(s)
- Robert C Sterner
- Department of Neurosurgery, Inova Fairfax Medical Campus, Fairfax, VA, United States
| | - Rosalie M Sterner
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
43
|
Ali A, DiPersio JF. ReCARving the future: bridging CAR T-cell therapy gaps with synthetic biology, engineering, and economic insights. Front Immunol 2024; 15:1432799. [PMID: 39301026 PMCID: PMC11410633 DOI: 10.3389/fimmu.2024.1432799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematologic malignancies, offering remarkable remission rates in otherwise refractory conditions. However, its expansion into broader oncological applications faces significant hurdles, including limited efficacy in solid tumors, safety concerns related to toxicity, and logistical challenges in manufacturing and scalability. This review critically examines the latest advancements aimed at overcoming these obstacles, highlighting innovations in CAR T-cell engineering, novel antigen targeting strategies, and improvements in delivery and persistence within the tumor microenvironment. We also discuss the development of allogeneic CAR T cells as off-the-shelf therapies, strategies to mitigate adverse effects, and the integration of CAR T cells with other therapeutic modalities. This comprehensive analysis underscores the synergistic potential of these strategies to enhance the safety, efficacy, and accessibility of CAR T-cell therapies, providing a forward-looking perspective on their evolutionary trajectory in cancer treatment.
Collapse
Affiliation(s)
- Alaa Ali
- Stem Cell Transplant and Cellular Immunotherapy Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - John F DiPersio
- Center for Gene and Cellular Immunotherapy, Washington University in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
44
|
Feng F, Shen J, Qi Q, Zhang Y, Ni S. Empowering brain tumor management: chimeric antigen receptor macrophage therapy. Theranostics 2024; 14:5725-5742. [PMID: 39310093 PMCID: PMC11413779 DOI: 10.7150/thno.98290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Brain tumors pose formidable challenges in oncology due to the intricate biology and the scarcity of effective treatment modalities. The emergence of immunotherapy has opened new avenues for innovative therapeutic strategies. Chimeric antigen receptor, originally investigated in T cell-based therapy, has now expanded to encompass macrophages, presenting a compelling avenue for augmenting anti-tumor immune surveillance. This emerging frontier holds promise for advancing the repertoire of therapeutic options against brain tumors, offering potential breakthroughs in combating the formidable malignancies of the central nervous system. Tumor-associated macrophages constitute a substantial portion, ranging from 30% to 50%, of the tumor tissue and exhibit tumor-promoting phenotypes within the immune-compromised microenvironment. Constructing CAR-macrophages can effectively repolarize M2-type macrophages towards an M1-type phenotype, thereby eliciting potent anti-tumor effects. CAR-macrophages can recruit T cells to the brain tumor site, thereby orchestrating a remodeling of the immune niche to effectively inhibit tumor growth. In this review, we explore the potential limitations as well as strategies for optimizing CAR-M therapy, offering insights into the future direction of this innovative therapeutic approach.
Collapse
Affiliation(s)
| | | | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| |
Collapse
|
45
|
Bernstock JD, Gerstl JVE, Valdés PA, Friedman GK, Chiocca E. Next-generation CAR T cell therapies for glioblastoma. Sci Transl Med 2024; 16:eadp2660. [PMID: 39196960 DOI: 10.1126/scitranslmed.adp2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 08/30/2024]
Abstract
Interim results from two phase 1 trials demonstrate progress in the use of chimeric antigen receptor (CAR) T cell therapy for recurrent glioblastoma (GBM).
Collapse
Affiliation(s)
- Joshua D Bernstock
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jakob V E Gerstl
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Pablo A Valdés
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Gregory K Friedman
- Division of Pediatrics, Neuro-Oncology Section, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - E Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
46
|
Testa U, Castelli G, Pelosi E. CAR-T Cells in the Treatment of Nervous System Tumors. Cancers (Basel) 2024; 16:2913. [PMID: 39199683 PMCID: PMC11352247 DOI: 10.3390/cancers16162913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024] Open
Abstract
Chimeric antigen receptor T cells (CAR-Ts) have shown a remarkable efficacy in hematological malignancies but limited responses in solid tumors. Among solid tumors, CAR-T cell therapy has been particularly explored in brain tumors. CAR-T cells have shown a limited clinical efficacy in various types of brain tumors due to several factors that have hampered their activity, including tumor antigen heterogeneity, the limited access of CAR-T cells to brain tumor cells, limited CAR-T cell trafficking and in vivo persistence and the presence of a highly immunosuppressive tumor microenvironment. Despite these considerations, some recent studies have shown promising antitumor activity of GD2-CAR-T cells on diffuse midline gliomas and neuroblastomas and of CARv3-TEAM-E cells in glioblastomas. However, strategies are required to improve the effect of CAR-T cells in brain tumors, including advanced CAR-T cell design with multiple antigenic targeting and incorporation of combination therapies.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (G.C.); (E.P.)
| | | | | |
Collapse
|
47
|
Wittling MC, Cole AC, Brammer B, Diatikar KG, Schmitt NC, Paulos CM. Strategies for Improving CAR T Cell Persistence in Solid Tumors. Cancers (Basel) 2024; 16:2858. [PMID: 39199630 PMCID: PMC11352972 DOI: 10.3390/cancers16162858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
CAR T cells require optimization to be effective in patients with solid tumors. There are many barriers affecting their ability to succeed. One barrier is persistence, as to achieve an optimal antitumor response, infused CAR T cells must engraft and persist. This singular variable is impacted by a multitude of factors-the CAR T cell design, lymphodepletion regimen used, expansion method to generate the T cell product, and more. Additionally, external agents can be utilized to augment CAR T cells, such as the addition of novel cytokines, pharmaceutical drugs that bolster memory formation, or other agents during either the ex vivo expansion process or after CAR T cell infusion to support them in the oppressive tumor microenvironment. This review highlights many strategies being used to optimize T cell persistence as well as future directions for improving the persistence of infused cells.
Collapse
Affiliation(s)
- Megen C. Wittling
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
- School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Anna C. Cole
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Brianna Brammer
- School of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Kailey G. Diatikar
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| | - Nicole C. Schmitt
- Department of Otolaryngology, Emory University, Atlanta, GA 30322, USA
| | - Chrystal M. Paulos
- Department of Surgery/Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
48
|
Huntington ND. When playing the NK cell therapy card in glioblastoma, you can't beat interleukin-21. Cancer Cell 2024; 42:1333-1335. [PMID: 39137725 DOI: 10.1016/j.ccell.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 08/15/2024]
Abstract
Glioblastoma is the most common brain cancer, with a 5-year survival rate of less than 10%. This grim prognosis highlights the urgent need for novel therapeutic approaches. In this issue of Cancer Cell, Shanley et al.1 report an innovative engineering strategy to supercharge NK cell immunity against glioblastoma.
Collapse
Affiliation(s)
- Nicholas D Huntington
- Biomedicine Discovery Institute and the Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia; oNKo-Innate Pty. Ltd, Moonee Ponds, VIC 3039, Australia.
| |
Collapse
|
49
|
Lertsumitkul L, Iliopoulos M, Wang SS, McArthur SJ, Ebert LM, Davenport AJ, Endersby R, Hansford JR, Drummond KJ, Cross R, Jenkins MR. EphA3-targeted chimeric antigen receptor T cells are effective in glioma and generate curative memory T cell responses. J Immunother Cancer 2024; 12:e009486. [PMID: 39111833 PMCID: PMC11308882 DOI: 10.1136/jitc-2024-009486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND High-grade gliomas including glioblastoma (GBM) and diffuse midline gliomas (DMG) represent the most lethal and aggressive brain cancers where current treatment modalities offer limited efficacy. Chimeric antigen receptor (CAR) T cell therapies have emerged as a promising strategy, boasting tumor-specific targeting and the unique ability to penetrate the blood-brain barrier. However, the effective clinical application hinges on the optimal choice of antigen, with a limited number, currently under investigation. METHODS We employed cell surface proteomic analysis of primary human high-grade glioma samples from both adult and pediatric patients. This led to the identification of Ephrin type-A receptor 3 (EphA3) as a prevalently expressed target. We engineered a second-generation EphA3-targeted CAR T cell and assessed function using in vitro and in vivo models of GBM and DMG. RESULTS EphA3-targeted CAR T cells demonstrated robust antigen-specific killing of human GBM and DMG cell lines in vitro. In an orthotopic xenograft NSG mouse model, EphA3-targeted CAR T cells not only effectively eradicated tumors but also established a functional T cell population protective on rechallenge. Remarkably, mice rechallenged with a second contralateral orthotopic tumor implantation achieved complete tumor clearance and maintained a sustained complete response 6 months following initial treatment. CONCLUSION Building on the proven safety profile of EphA3 antibodies in clinical settings, our study provides compelling preclinical evidence supporting the efficacy of EphA3-targeted CAR T cells against high-grade gliomas. These findings underscore the potential for transitioning this innovative therapy into clinical trials, aiming to revolutionize the treatment landscape for patients afflicted with these formidable brain cancers.
Collapse
Affiliation(s)
- Leesa Lertsumitkul
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Melinda Iliopoulos
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Stacie S Wang
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- The Royal Children's Hospital Melbourne, Melbourne, Victoria, Australia
| | - Sarah J McArthur
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Lisa M Ebert
- Translational Oncology, Centre for Cancer Biology, Adelaide, South Australia, Australia
- The University of Adelaide Adelaide Medical School, Adelaide, South Australia, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Alexander J Davenport
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Institute, Perth, Western Australia, Australia
| | - Jordan R Hansford
- Michael Rice Children’s Hematology and Oncology Center, Women’s and Children’s Hospital; South Australia Health and Medical Research Institute; South Australia ImmmunoGenomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Katharine J Drummond
- Department of Neurosurgery, Royal Melbourne Hospital Department of Surgery, Parkville, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| | - Ryan Cross
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Chemistry, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Posey AD, Young RM, June CH. Future perspectives on engineered T cells for cancer. Trends Cancer 2024; 10:687-695. [PMID: 38853073 DOI: 10.1016/j.trecan.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has emerged as a revolutionary treatment for hematological malignancies, but its adaptation to solid tumors is impeded by multiple challenges, particularly T cell dysfunction and exhaustion. The heterogeneity and inhospitableness of the solid tumor microenvironment (TME) contribute to diminished CAR T cell efficacy exhibited by reduced cytotoxicity, proliferation, cytokine secretion, and the upregulation of inhibitory receptors, similar to the phenotype of tumor-infiltrating lymphocytes (TILs). In this review, we highlight recent advances in T cell therapy for solid tumors, particularly brain cancer. Innovative strategies, including locoregional delivery and 'armoring' CAR T cells with cytokines such as interleukin (IL)-18, are under investigation to improve efficacy and safety. We also highlight emerging issues with toxicity management of CAR T cell adverse events. This review discusses the obstacles associated with CAR T cell therapy in the context of solid tumors and outlines current and future strategies to overcome these challenges.
Collapse
MESH Headings
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/adverse effects
- Neoplasms/immunology
- Neoplasms/therapy
- Neoplasms/genetics
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/immunology
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
Collapse
Affiliation(s)
- Avery D Posey
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, USA
| | - Regina M Young
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|