1
|
Hu Y, Rogers J, Duan Y, Velusamy A, Narum S, Al Abdullatif S, Salaita K. Quantifying T cell receptor mechanics at membrane junctions using DNA origami tension sensors. NATURE NANOTECHNOLOGY 2024; 19:1674-1685. [PMID: 39103452 DOI: 10.1038/s41565-024-01723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
The T cell receptor (TCR) is thought to be a mechanosensor, meaning that it transmits mechanical force to its antigen and leverages the force to amplify the specificity and magnitude of TCR signalling. Although a variety of molecular probes have been proposed to quantify TCR mechanics, these probes are immobilized on hard substrates, and thus fail to reveal fluid TCR-antigen interactions in the physiological context of cell membranes. Here we developed DNA origami tension sensors (DOTS) which bear force sensors on a DNA origami breadboard and allow mapping of TCR mechanotransduction at dynamic intermembrane junctions. We quantified the mechanical forces at fluid TCR-antigen bonds and observed their dependence on cell state, antigen mobility, antigen potency, antigen height and F-actin activity. The programmability of DOTS allows us to tether these to microparticles to mechanically screen antigens in high throughput using flow cytometry. Additionally, DOTS were anchored onto live B cells, allowing quantification of TCR mechanics at immune cell-cell junctions.
Collapse
Affiliation(s)
- Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | - Steven Narum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Peng Y, Wang W, Liu X, Li S, Zhang J, Ni X, Gui J. Characterization of HPV6/11-reactive T-cell subsets in papillomas of patients with juvenile-onset recurrent respiratory papillomatosis and identification of HPV11 E7-specific candidate TCR clonotypes. J Virol 2024; 98:e0067724. [PMID: 39258910 PMCID: PMC11495051 DOI: 10.1128/jvi.00677-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/20/2024] [Indexed: 09/12/2024] Open
Abstract
Juvenile-onset recurrent respiratory papillomatosis (JORRP) is caused by persistent infection of epithelial cells by low-risk human papillomavirus (HPV) types 6 and 11. While multiple infiltrated immune cells have been reported to mediate disease progress, knowledge of HPV-reactive T-cell subsets in papillomas remains elusive. Through single-cell RNA sequencing and RNA microarray, we found that CD8+ tissue-resident memory T (CD8+ TRM) cells with strong interferon-gamma (IFN-γ) production expanded, and were negatively correlated to the disease severity in the frequency of surgery. These IFN-γ+ CD8+ memory T cells were readily activated and expanded in vitro by autologous dendritic cells loaded with HPV11 E7 peptide pool. Moreover, T cell receptor (TCR) clonal expansion was observed in JORRP papilloma tissues, indicating a biased TCR repertoire toward HPV-specific recognition. Finally, we identified and characterized HPV11 E7-specific candidate TCR clonotypes from IFN-γ+ CD8+ memory T cells, suggesting their potential application in TCR-engineered T cells (TCR-T) therapy for HPV11-related diseases. Our findings provided insights into the specific local immune response to HPV6/11 infection and highlighted the importance of IFN-γ+ CD8+ TRM cells in anti-HPV6/11 T-cell immunity.IMPORTANCEThe persistent recurrence of human papillomavirus (HPV) 6/11 infection in papillomas underscores the failure of local immune responses in patients with juvenile-onset recurrent respiratory papillomatosis (JORRP). Our previous study demonstrated that T cells constitute the predominant immune cell population in JORRP papilloma tissues. Understanding the T-cell-mediated immune responses within JORRP papilloma tissues is crucial for disease control. In the present study, we characterized CD8+ tissue-resident memory T (CD8+ TRM) cells as the primary T-cell subset responsible for local anti-HPV6/11 immunity. Moreover, we identified two HPV11 E7-specific candidate T cell receptor (TCR) clonotypes out of IFN-γ+ CD8+ memory T cells. Overall, our findings provided insights into the local immune responses to HPV6/11 infection and offered information for developing more effective immunotherapeutic strategies against JORRP.
Collapse
Affiliation(s)
- Yun Peng
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Wei Wang
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xiangjun Liu
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Shilan Li
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xin Ni
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Jingang Gui
- Laboratory of Tumor Immunology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
3
|
Savinov A, Swanson S, Keating AE, Li GW. High-throughput discovery of inhibitory protein fragments with AlphaFold. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.19.572389. [PMID: 38187731 PMCID: PMC10769210 DOI: 10.1101/2023.12.19.572389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Peptides can bind to specific sites on larger proteins and thereby function as inhibitors and regulatory elements. Peptide fragments of larger proteins are particularly attractive for achieving these functions due to their inherent potential to form native-like binding interactions. Recently developed experimental approaches allow for high-throughput measurement of protein fragment inhibitory activity in living cells. However, it has thus far not been possible to predict de novo which of the many possible protein fragments bind to protein targets, let alone act as inhibitors. We have developed a computational method, FragFold, that employs AlphaFold to predict protein fragment binding to full-length proteins in a high-throughput manner. Applying FragFold to thousands of fragments tiling across diverse proteins revealed peaks of predicted binding along each protein sequence. Comparisons with experimental measurements establish that our approach is a sensitive predictor of fragment function: Evaluating inhibitory fragments from known protein-protein interaction interfaces, we find 87% are predicted by FragFold to bind in a native-like mode. Across full protein sequences, 68% of FragFold-predicted binding peaks match experimentally measured inhibitory peaks. Deep mutational scanning experiments support the predicted binding modes and uncover superior inhibitory peptides in high throughput. Further, FragFold is able to predict previously unknown protein binding modes, explaining prior genetic and biochemical data. The success rate of FragFold demonstrates that this computational approach should be broadly applicable for discovering inhibitory protein fragments across proteomes.
Collapse
Affiliation(s)
- Andrew Savinov
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sebastian Swanson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amy E. Keating
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Center for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
4
|
Zhang S, Ma Z. trans-Interacting Plasma Membrane Proteins and Binding Partner Identification. J Proteome Res 2024; 23:3322-3331. [PMID: 38937710 PMCID: PMC11533685 DOI: 10.1021/acs.jproteome.4c00289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Plasma membrane proteins (PMPs) play critical roles in a myriad of physiological and disease conditions. A unique subset of PMPs functions through interacting with each other in trans at the interface between two contacting cells. These trans-interacting PMPs (tiPMPs) include adhesion molecules and ligands/receptors that facilitate cell-cell contact and direct communication between cells. Among the tiPMPs, a significant number have apparent extracellular binding domains but remain orphans with no known binding partners. Identification of their potential binding partners is therefore important for the understanding of processes such as organismal development and immune cell activation. While a number of methods have been developed for the identification of protein binding partners in general, very few are applicable to tiPMPs, which interact in a two-dimensional fashion with low intrinsic binding affinities. In this review, we present the significance of tiPMP interactions, the challenges of identifying binding partners for tiPMPs, and the landscape of method development. We describe current avidity-based screening approaches for identifying novel tiPMP binding partners and discuss their advantages and limitations. We conclude by highlighting the importance of developing novel methods of identifying new tiPMP interactions for deciphering the complex protein interactome and developing targeted therapeutics for diseases.
Collapse
Affiliation(s)
- Shenyu Zhang
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Hospital, Wilmington, DE 19803, USA
| |
Collapse
|
5
|
Eliahoo P, Setayesh H, Hoffman T, Wu Y, Li S, Treweek JB. Viscoelasticity in 3D Cell Culture and Regenerative Medicine: Measurement Techniques and Biological Relevance. ACS MATERIALS AU 2024; 4:354-384. [PMID: 39006396 PMCID: PMC11240420 DOI: 10.1021/acsmaterialsau.3c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 07/16/2024]
Abstract
The field of mechanobiology is gaining prominence due to recent findings that show cells sense and respond to the mechanical properties of their environment through a process called mechanotransduction. The mechanical properties of cells, cell organelles, and the extracellular matrix are understood to be viscoelastic. Various technologies have been researched and developed for measuring the viscoelasticity of biological materials, which may provide insight into both the cellular mechanisms and the biological functions of mechanotransduction. Here, we explain the concept of viscoelasticity and introduce the major techniques that have been used to measure the viscoelasticity of various soft materials in different length- and timescale frames. The topology of the material undergoing testing, the geometry of the probe, the magnitude of the exerted stress, and the resulting deformation should be carefully considered to choose a proper technique for each application. Lastly, we discuss several applications of viscoelasticity in 3D cell culture and tissue models for regenerative medicine, including organoids, organ-on-a-chip systems, engineered tissue constructs, and tunable viscoelastic hydrogels for 3D bioprinting and cell-based therapies.
Collapse
Affiliation(s)
- Payam Eliahoo
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Hesam Setayesh
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| | - Tyler Hoffman
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Yifan Wu
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Song Li
- Department of Bioengineering, University of California Los Angeles, Los Angeles, California 90095 United States
| | - Jennifer B Treweek
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089 United States
| |
Collapse
|
6
|
Pathni A, Wagh K, Rey-Suarez I, Upadhyaya A. Mechanical regulation of lymphocyte activation and function. J Cell Sci 2024; 137:jcs219030. [PMID: 38995113 PMCID: PMC11267459 DOI: 10.1242/jcs.219030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Mechanosensing, or how cells sense and respond to the physical environment, is crucial for many aspects of biological function, ranging from cell movement during development to cancer metastasis, the immune response and gene expression driving cell fate determination. Relevant physical stimuli include the stiffness of the extracellular matrix, contractile forces, shear flows in blood vessels, complex topography of the cellular microenvironment and membrane protein mobility. Although mechanosensing has been more widely studied in non-immune cells, it has become increasingly clear that physical cues profoundly affect the signaling function of cells of the immune system. In this Review, we summarize recent studies on mechanical regulation of immune cells, specifically lymphocytes, and explore how the force-generating cytoskeletal machinery might mediate mechanosensing. We discuss general principles governing mechanical regulation of lymphocyte function, spanning from the molecular scale of receptor activation to cellular responses to mechanical stimuli.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Kaustubh Wagh
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Rey-Suarez
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Microcore, Universidad de Los Andes, Bogota, DC 111711, USA
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Caselli N, García-Verdugo M, Calero M, Hernando-Ospina N, Santiago JA, Herráez-Aguilar D, Monroy F. Red blood cell flickering activity locally controlled by holographic optical tweezers. iScience 2024; 27:109915. [PMID: 38832008 PMCID: PMC11145342 DOI: 10.1016/j.isci.2024.109915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024] Open
Abstract
Red blood cells possess a singular mechanobiology, enabling efficient navigation through capillaries smaller than their own size. Their plasma membrane exhibits non-equilibrium shape fluctuation, often reported as enhanced flickering activity. Such active membrane motion is propelled by motor proteins that mediate interactions between the spectrin skeleton and the lipid bilayer. However, modulating the flickering in living red blood cells without permanently altering their mechanical properties represents a significant challenge. In this study, we developed holographic optical tweezers to generate a force field distributed along the equatorial membrane contour of individual red blood cells. In free-standing red blood cells, we observed heterogeneous flickering activity, attributed to localized membrane kickers. By employing holographic optical forces, these active kickers can be selectively halted under minimal invasion. Our findings shed light on the dynamics of membrane flickering and established a manipulation tool that could open new avenues for investigating mechanotransduction processes in living cells.
Collapse
Affiliation(s)
- Niccolò Caselli
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain
| | - Mario García-Verdugo
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Macarena Calero
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, Villanueva de la Cañada 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, Madrid, España
| | - Natalia Hernando-Ospina
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain
| | - José A. Santiago
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Cuajimalpa, Vasco de Quiroga 4871, Ciudad de México 05348, México
| | - Diego Herráez-Aguilar
- Instituto de Investigaciones Biosanitarias, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, Pozuelo de Alarcón, Madrid, Spain
| | - Francisco Monroy
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
- Translational Biophysics, Instituto de Investigación Sanitaria Hospital Doce de Octubre, 28041 Madrid, Spain
| |
Collapse
|
8
|
Investigating immunity. Nat Methods 2024; 21:737-738. [PMID: 38745074 DOI: 10.1038/s41592-024-02286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
|
9
|
Koo D, Mao Z, Dimatteo R, Noguchi M, Tsubamoto N, McLaughlin J, Tran W, Lee S, Cheng D, de Rutte J, Burton Sojo G, Witte ON, Di Carlo D. Defining T cell receptor repertoires using nanovial-based binding and functional screening. Proc Natl Acad Sci U S A 2024; 121:e2320442121. [PMID: 38536748 PMCID: PMC10998554 DOI: 10.1073/pnas.2320442121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 04/08/2024] Open
Abstract
The ability to selectively bind to antigenic peptides and secrete effector molecules can define rare and low-affinity populations of cells with therapeutic potential in emerging T cell receptor (TCR) immunotherapies. We leverage cavity-containing hydrogel microparticles, called nanovials, each coated with peptide-major histocompatibility complex (pMHC) monomers to isolate antigen-reactive T cells. T cells are captured and activated by pMHCs inducing the secretion of effector molecules including IFN-γ and granzyme B that are accumulated on nanovials, allowing sorting based on both binding and function. The TCRs of sorted cells on nanovials are sequenced, recovering paired αβ-chains using microfluidic emulsion-based single-cell sequencing. By labeling nanovials having different pMHCs with unique oligonucleotide-barcodes and secretions with oligo-barcoded detection antibodies, we could accurately link TCR sequences to specific targets and rank each TCR based on the corresponding cell's secretion level. Using the technique, we identified an expanded repertoire of functional TCRs targeting viral antigens with high specificity and found rare TCRs with activity against cancer-specific splicing-enhanced epitopes.
Collapse
Affiliation(s)
- Doyeon Koo
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
| | - Miyako Noguchi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Natalie Tsubamoto
- Department of Bioengineering, University of California, Los Angeles, CA90095
| | - Jami McLaughlin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Wendy Tran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Sohyung Lee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA90095
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
| | - Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Partillion Bioscience, Pasadena, CA91107
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, CA90095
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA90095
- Partillion Bioscience, Pasadena, CA91107
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA90095
- California NanoSystems Institute, Los Angeles, CA90095
| |
Collapse
|
10
|
Mittelheisser V, Gensbittel V, Bonati L, Li W, Tang L, Goetz JG. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. NATURE NANOTECHNOLOGY 2024; 19:281-297. [PMID: 38286876 DOI: 10.1038/s41565-023-01535-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 09/26/2023] [Indexed: 01/31/2024]
Abstract
Disease progression is usually accompanied by changes in the biochemical composition of cells and tissues and their biophysical properties. For instance, hallmarks of cancer include the stiffening of tissues caused by extracellular matrix remodelling and the softening of individual cancer cells. In this context, accumulating evidence has shown that immune cells sense and respond to mechanical signals from the environment. However, the mechanisms regulating these mechanical aspects of immune surveillance remain partially understood. The growing appreciation for the 'mechano-immunology' field has urged researchers to investigate how immune cells sense and respond to mechanical cues in various disease settings, paving the way for the development of novel engineering strategies that aim at mechanically modulating and potentiating immune cells for enhanced immunotherapies. Recent pioneer developments in this direction have laid the foundations for leveraging 'mechanical immunoengineering' strategies to treat various diseases. This Review first outlines the mechanical changes occurring during pathological progression in several diseases, including cancer, fibrosis and infection. We next highlight the mechanosensitive nature of immune cells and how mechanical forces govern the immune responses in different diseases. Finally, we discuss how targeting the biomechanical features of the disease milieu and immune cells is a promising strategy for manipulating therapeutic outcomes.
Collapse
Affiliation(s)
- Vincent Mittelheisser
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Valentin Gensbittel
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France
| | - Lucia Bonati
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Weilin Li
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
- Institute of Materials Science and Engineering, EPFL, Lausanne, Switzerland.
| | - Jacky G Goetz
- Tumor Biomechanics, INSERM UMR_S1109, Strasbourg, France.
- Université de Strasbourg, Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
- Equipe Labellisée Ligue Contre le Cancer, Strasbourg, France.
| |
Collapse
|
11
|
Jeffreys N, Brockman JM, Zhai Y, Ingber DE, Mooney DJ. Mechanical forces amplify TCR mechanotransduction in T cell activation and function. APPLIED PHYSICS REVIEWS 2024; 11:011304. [PMID: 38434676 PMCID: PMC10848667 DOI: 10.1063/5.0166848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 12/08/2023] [Indexed: 03/05/2024]
Abstract
Adoptive T cell immunotherapies, including engineered T cell receptor (eTCR) and chimeric antigen receptor (CAR) T cell immunotherapies, have shown efficacy in treating a subset of hematologic malignancies, exhibit promise in solid tumors, and have many other potential applications, such as in fibrosis, autoimmunity, and regenerative medicine. While immunoengineering has focused on designing biomaterials to present biochemical cues to manipulate T cells ex vivo and in vivo, mechanical cues that regulate their biology have been largely underappreciated. This review highlights the contributions of mechanical force to several receptor-ligand interactions critical to T cell function, with central focus on the TCR-peptide-loaded major histocompatibility complex (pMHC). We then emphasize the role of mechanical forces in (i) allosteric strengthening of the TCR-pMHC interaction in amplifying ligand discrimination during T cell antigen recognition prior to activation and (ii) T cell interactions with the extracellular matrix. We then describe approaches to design eTCRs, CARs, and biomaterials to exploit TCR mechanosensitivity in order to potentiate T cell manufacturing and function in adoptive T cell immunotherapy.
Collapse
Affiliation(s)
| | | | - Yunhao Zhai
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
12
|
Hu Y, Duan Y, Velusamy A, Narum S, Rogers J, Salaita K. DNA Origami Tension Sensors (DOTS) to study T cell receptor mechanics at membrane junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.548279. [PMID: 37503090 PMCID: PMC10369911 DOI: 10.1101/2023.07.09.548279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The T cell receptor (TCR) is thought to be a mechanosensor, meaning that it transmits mechanical force to its antigen and leverages the force to amplify the specificity and magnitude of TCR signaling. The past decade has witnessed the development of molecular probes which have revealed many aspects of receptor mechanotransduction. However, most force probes are immobilized on hard substrates, thus failing to reveal mechanics in the physiological context of cell membranes. In this report, we developed DNA origami tension sensors (DOTS) which bear force sensors on a DNA origami breadboard and allow mapping of TCR mechanotransduction at dynamic intermembrane junctions. We demonstrate that TCR-antigen bonds experience 5-10 pN forces, and the mechanical events are dependent on cell state, antigen mobility, antigen potency, antigen height and F-actin activity. We tethered DOTS onto a microparticle to mechanically screen antigen in high throughput using flow cytometry. Finally, DOTS were anchored onto live B cell membranes thus producing the first quantification of TCR mechanics at authentic immune cell-cell junctions.
Collapse
Affiliation(s)
- Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Arventh Velusamy
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Steven Narum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| |
Collapse
|
13
|
Westphal T, Mader M, Karsten H, Cords L, Knapp M, Schulte S, Hermanussen L, Peine S, Ditt V, Grifoni A, Addo MM, Huber S, Sette A, Lütgehetmann M, Pischke S, Kwok WW, Sidney J, Schulze zur Wiesch J. Evidence for broad cross-reactivity of the SARS-CoV-2 NSP12-directed CD4 + T-cell response with pre-primed responses directed against common cold coronaviruses. Front Immunol 2023; 14:1182504. [PMID: 37215095 PMCID: PMC10196118 DOI: 10.3389/fimmu.2023.1182504] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction The nonstructural protein 12 (NSP12) of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) has a high sequence identity with common cold coronaviruses (CCC). Methods Here, we comprehensively assessed the breadth and specificity of the NSP12-specific T-cell response after in vitro T-cell expansion with 185 overlapping 15-mer peptides covering the entire SARS-CoV-2 NSP12 at single-peptide resolution in a cohort of 27 coronavirus disease 2019 (COVID-19) patients. Samples of nine uninfected seronegative individuals, as well as five pre-pandemic controls, were also examined to assess potential cross-reactivity with CCCs. Results Surprisingly, there was a comparable breadth of individual NSP12 peptide-specific CD4+ T-cell responses between COVID-19 patients (mean: 12.82 responses; range: 0-25) and seronegative controls including pre-pandemic samples (mean: 12.71 responses; range: 0-21). However, the NSP12-specific T-cell responses detected in acute COVID-19 patients were on average of a higher magnitude. The most frequently detected CD4+ T-cell peptide specificities in COVID-19 patients were aa236-250 (37%) and aa246-260 (44%), whereas the peptide specificities aa686-700 (50%) and aa741-755 (36%), were the most frequently detected in seronegative controls. In CCC-specific peptide-expanded T-cell cultures of seronegative individuals, the corresponding SARS-CoV-2 NSP12 peptide specificities also elicited responses in vitro. However, the NSP12 peptide-specific CD4+ T-cell response repertoire only partially overlapped in patients analyzed longitudinally before and after a SARS-CoV-2 infection. Discussion The results of the current study indicate the presence of pre-primed, cross-reactive CCC-specific T-cell responses targeting conserved regions of SARS-CoV-2, but they also underline the complexity of the analysis and the limited understanding of the role of the SARS-CoV-2 specific T-cell response and cross-reactivity with the CCCs.
Collapse
Affiliation(s)
- Tim Westphal
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Maria Mader
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hendrik Karsten
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leon Cords
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Knapp
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sophia Schulte
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lennart Hermanussen
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Peine
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Ditt
- Institute of Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Marylyn Martina Addo
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Institute of Infection Research and Vaccine Development, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Samuel Huber
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Marc Lütgehetmann
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sven Pischke
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - William W. Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA, United States
| | - John Sidney
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Julian Schulze zur Wiesch
- Infectious Diseases Unit I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research Deutsches Zentrum für Infektionsforschung (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
14
|
Koo D, Mao Z, Dimatteo R, Tsubamoto N, Noguchi M, McLaughlin J, Tran W, Lee S, Cheng D, de Rutte J, Sojo GB, Witte ON, Di Carlo D. Defining T cell receptor repertoires using nanovial-based affinity and functional screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.17.524440. [PMID: 36711524 PMCID: PMC9882161 DOI: 10.1101/2023.01.17.524440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The ability to selectively bind to antigenic peptides and secrete cytokines can define populations of cells with therapeutic potential in emerging T cell receptor (TCR) immunotherapies. We leverage cavity-containing hydrogel microparticles, called nanovials, each coated with millions of peptide-major histocompatibility complex (pMHC) monomers to isolate antigen-reactive T cells. T cells are captured and activated by pMHCs and secrete cytokines on nanovials, allowing sorting based on both affinity and function. The TCRs of sorted cells on nanovials are sequenced, recovering paired αβ-chains using microfluidic emulsion-based single-cell sequencing. By labeling nanovials having different pMHCs with unique oligonucleotide-barcodes we could link TCR sequence to targets with 100% accuracy. We identified with high specificity an expanded repertoire of functional TCRs targeting viral antigens compared to standard techniques.
Collapse
Affiliation(s)
- Doyeon Koo
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Robert Dimatteo
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Natalie Tsubamoto
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Miyako Noguchi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Jami McLaughlin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Wendy Tran
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Sohyung Lee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Joseph de Rutte
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Partillion Bioscience; Los Angeles, CA 90095, USA
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA 90095, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
- Partillion Bioscience; Los Angeles, CA 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles; Los Angeles, CA 90095, USA
- California NanoSystems Institute; Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023; 8:9. [PMID: 36604431 PMCID: PMC9816309 DOI: 10.1038/s41392-022-01270-x] [Citation(s) in RCA: 232] [Impact Index Per Article: 232.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/14/2022] [Accepted: 11/27/2022] [Indexed: 01/07/2023] Open
Abstract
Recent advances in neoantigen research have accelerated the development and regulatory approval of tumor immunotherapies, including cancer vaccines, adoptive cell therapy and antibody-based therapies, especially for solid tumors. Neoantigens are newly formed antigens generated by tumor cells as a result of various tumor-specific alterations, such as genomic mutation, dysregulated RNA splicing, disordered post-translational modification, and integrated viral open reading frames. Neoantigens are recognized as non-self and trigger an immune response that is not subject to central and peripheral tolerance. The quick identification and prediction of tumor-specific neoantigens have been made possible by the advanced development of next-generation sequencing and bioinformatic technologies. Compared to tumor-associated antigens, the highly immunogenic and tumor-specific neoantigens provide emerging targets for personalized cancer immunotherapies, and serve as prospective predictors for tumor survival prognosis and immune checkpoint blockade responses. The development of cancer therapies will be aided by understanding the mechanism underlying neoantigen-induced anti-tumor immune response and by streamlining the process of neoantigen-based immunotherapies. This review provides an overview on the identification and characterization of neoantigens and outlines the clinical applications of prospective immunotherapeutic strategies based on neoantigens. We also explore their current status, inherent challenges, and clinical translation potential.
Collapse
|