1
|
Lunshof JE, Rijssenbeek J. Collaborative ethics: innovating collaboration between ethicists and life scientists. Nat Methods 2024; 21:1571-1574. [PMID: 38902517 DOI: 10.1038/s41592-024-02320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Affiliation(s)
- Jeantine E Lunshof
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
- Department of Genetics, Harvard Medical School, Boston, USA.
| | - Julia Rijssenbeek
- Philosophy Group, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
2
|
Xu Y, Zhai J, Wu H, Wang H. In vitro culture of cynomolgus monkey embryos from blastocyst to early organogenesis. Nat Protoc 2024:10.1038/s41596-024-01025-8. [PMID: 39060382 DOI: 10.1038/s41596-024-01025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/20/2024] [Indexed: 07/28/2024]
Abstract
Human early embryonic development is the cornerstone of a healthy baby. Abnormal early embryonic development may lead to developmental and pregnancy-related disorders. Accordingly, understanding the developmental events and mechanisms of human early embryonic development is very important. However, attempts to reveal these events and mechanisms are greatly hindered by the extreme inaccessibility of in vivo early human embryos. Fortunately, the emergence of in vitro culture (IVC) systems for mammalian embryos provides an alternative strategy. In recent years, different two-dimensional and three-dimensional IVC systems have been developed for human embryos. Ethical limitations restrict the IVC of human embryos beyond 14 days, which makes non-human primate embryos an ideal model for studying primate developmental events. Different culture systems have supported the development of monkey embryos to days postfertilization 14 and 25, respectively. The successful recapitulation of in vivo developmental events by these IVC embryos has greatly enriched our understanding of human early embryonic development, which undoubtedly helps us to develop possible strategies to predict or treat various gestation-related diseases and birth defects. In this protocol, we establish different two-dimensional and three-dimensional IVC systems for primate embryos, provide step-by-step culture procedures and notes, and summarize the advantages and limitations of different culture systems. Replicating this protocol requires a moderate level of experience in mammalian embryo IVC, and the embryo culture requires strict adherence to the procedures we have described.
Collapse
Affiliation(s)
- Yanhong Xu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| |
Collapse
|
3
|
Method of the Year 2023: methods for modeling development. Nat Methods 2023; 20:1831-1832. [PMID: 38057526 DOI: 10.1038/s41592-023-02134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
|