1
|
Majewski S, Klein P, Boillée S, Clarke BE, Patani R. Towards an integrated approach for understanding glia in Amyotrophic Lateral Sclerosis. Glia 2025; 73:591-607. [PMID: 39318236 PMCID: PMC11784848 DOI: 10.1002/glia.24622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Substantial advances in technology are permitting a high resolution understanding of the salience of glia, and have helped us to transcend decades of predominantly neuron-centric research. In particular, recent advances in 'omic' technologies have enabled unique insights into glial biology, shedding light on the cellular and molecular aspects of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here, we review studies using omic techniques to attempt to understand the role of glia in ALS across different model systems and post mortem tissue. We also address caveats that should be considered when interpreting such studies, and how some of these may be mitigated through either using a multi-omic approach and/or careful low throughput, high fidelity orthogonal validation with particular emphasis on functional validation. Finally, we consider emerging technologies and their potential relevance in deepening our understanding of glia in ALS.
Collapse
Affiliation(s)
- Stanislaw Majewski
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Pierre Klein
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHPHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Benjamin E. Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| |
Collapse
|
2
|
Zou X, Zhao Z, Chen Y, Xiong K, Wang Z, Chen S, Chen H, Wei GH, Xu S, Li W, Ni T, Li L. Impact of rare non-coding variants on human diseases through alternative polyadenylation outliers. Nat Commun 2025; 16:682. [PMID: 39819850 PMCID: PMC11739498 DOI: 10.1038/s41467-024-55407-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 12/11/2024] [Indexed: 01/19/2025] Open
Abstract
Although rare non-coding variants (RVs) play crucial roles in complex traits and diseases, understanding their mechanisms and identifying disease-associated RVs continue to be major challenges. Here we constructed a comprehensive atlas of alternative polyadenylation (APA) outliers (aOutliers), including 1334 3' UTR and 200 intronic aOutliers, from 15,201 samples across 49 human tissues. These aOutliers exhibit unique characteristics from transcription or splicing outliers, with a pronounced RV enrichment. Mechanistically, aOutlier-RVs alter poly(A) signals and splicing sites, and perturbation indeed triggers APA events. Furthermore, we developed a Bayesian-based APA RV prediction model, which successfully pinpointed a specific set of 1799 RVs impacting 278 genes with significantly large disease effect sizes. Notably, we observed a convergence effect between rare and common cancer variants, exemplified by regulation in the DDX18 gene. Together, this study introduced an APA-enhanced framework for genome annotation, underscoring APA's role in uncovering functional RVs linked to complex traits and diseases.
Collapse
Affiliation(s)
- Xudong Zou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zhaozhao Zhao
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Chen
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
| | - Kewei Xiong
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Zeyang Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Shuxin Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Hui Chen
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Gong-Hong Wei
- Fudan University Shanghai Cancer Center & MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China
- Center for Evolutionary Biology, and Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Institutes of Biomedical Sciences, College of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Lei Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
3
|
Cheng J, Wu BT, Liu HP, Lin WY. Machine learning identified novel players in lipid metabolism, endosomal trafficking, and iron metabolism of the ALS spinal cord. Sci Rep 2025; 15:1564. [PMID: 39794401 PMCID: PMC11723943 DOI: 10.1038/s41598-024-81315-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting motor neurons. Although genes causing familial cases have been identified, those of sporadic ALS, which occupies the majority of patients, are still elusive. In this study, we adopted machine learning to build binary classifiers based on the New York Genome Center (NYGC) ALS Consortium's RNA-seq data of the postmortem spinal cord of ALS and non-neurological disease control. The accuracy of the classifiers was greater than 83% and 77% for the training set and the unseen test set, respectively. The classifiers contained 114 genes. Among them, 41 genes have been reported in previous ALS studies, and others are novel in this field. These genes are involved in mitochondrial respiration, lipid metabolism, endosomal trafficking, and iron metabolism, which may promote the progression of ALS pathology.
Collapse
Affiliation(s)
- Jack Cheng
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan
| | - Bor-Tsang Wu
- Department of Senior Citizen Service Management, National Taichung University of Science and Technology, Taichung, 40343, Taiwan
| | - Hsin-Ping Liu
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
| | - Wei-Yong Lin
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan.
- Department of Medical Research, China Medical University Hospital, Taichung, 40447, Taiwan.
| |
Collapse
|
4
|
Schmidt A, Casadei N, Brand F, Demidov G, Vojgani E, Abolhassani A, Aldisi R, Butler-Laporte G, Alawathurage TM, Augustin M, Bals R, Bellinghausen C, Berger MM, Bitzer M, Bode C, Boos J, Brenner T, Cornely OA, Eggermann T, Erber J, Feldt T, Fuchsberger C, Gagneur J, Göpel S, Haack T, Häberle H, Hanses F, Heggemann J, Hehr U, Hellmuth JC, Herr C, Hinney A, Hoffmann P, Illig T, Jensen BEO, Keitel V, Kim-Hellmuth S, Koehler P, Kurth I, Lanz AL, Latz E, Lehmann C, Luedde T, Maj C, Mian M, Miller A, Muenchhoff M, Pink I, Protzer U, Rohn H, Rybniker J, Scaggiante F, Schaffeldt A, Scherer C, Schieck M, Schmidt SV, Schommers P, Spinner CD, Vehreschild MJGT, Velavan TP, Volland S, Wilfling S, Winter C, Richards JB, Heimbach A, Becker K, Ossowski S, Schultze JL, Nürnberg P, Nöthen MM, Motameny S, Nothnagel M, Riess O, Schulte EC, Ludwig KU. Systematic assessment of COVID-19 host genetics using whole genome sequencing data. PLoS Pathog 2024; 20:e1012786. [PMID: 39715278 PMCID: PMC11706450 DOI: 10.1371/journal.ppat.1012786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 01/07/2025] [Accepted: 11/27/2024] [Indexed: 12/25/2024] Open
Abstract
Courses of SARS-CoV-2 infections are highly variable, ranging from asymptomatic to lethal COVID-19. Though research has shown that host genetic factors contribute to this variability, cohort-based joint analyses of variants from the entire allelic spectrum in individuals with confirmed SARS-CoV-2 infections are still lacking. Here, we present the results of whole genome sequencing in 1,220 mainly vaccine-naïve individuals with confirmed SARS-CoV-2 infection, including 827 hospitalized COVID-19 cases. We observed the presence of autosomal-recessive or likely compound heterozygous monogenic disorders in six individuals, all of which were hospitalized and significantly younger than the rest of the cohort. We did not observe any suggestive causal variants in or around the established risk gene TLR7. Burden testing in the largest population subgroup (i.e., Europeans) suggested nominal enrichments of rare variants in coding and non-coding regions of interferon immune response genes in the overall analysis and male subgroup. Case-control analyses of more common variants confirmed associations with previously reported risk loci, with the key locus at 3p21 reaching genome-wide significance. Polygenic scores accurately captured risk in an age-dependent manner. By enabling joint analyses of different types of variation across the entire frequency spectrum, this data will continue to contribute to the elucidation of COVID-19 etiology.
Collapse
Affiliation(s)
- Axel Schmidt
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- Department of Pediatric Neurology, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Nicolas Casadei
- DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Fabian Brand
- Institute of Genomic Statistics and Bioinformatics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Elaheh Vojgani
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Ayda Abolhassani
- Department of Psychiatry and Psychotherapy, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Rana Aldisi
- Institute of Genomic Statistics and Bioinformatics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Guillaume Butler-Laporte
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | | | | | - Max Augustin
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Robert Bals
- Department of Internal Medicine V, Saarland University, Homburg, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
| | - Carla Bellinghausen
- Department of Internal Medicine, Pneumology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Michael Bitzer
- Center for Personalized Medicine, University Hospital Tübingen, Tübingen, Germany
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Jannik Boos
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Oliver A. Cornely
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Clinical Trials Center Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Johanna Erber
- Department of Internal Medicine II, University Hospital rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | | | - Julien Gagneur
- Computational Health Center, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- School of Computation, Information and Technology, Technical University of Munich, Garching, Germany
| | - Siri Göpel
- Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Helene Häberle
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Tübingen, Tübingen, Germany
| | - Frank Hanses
- Department for Infection Control and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
- Emergency Department, University Hospital Regensburg, Regensburg, Germany
| | - Julia Heggemann
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Ute Hehr
- Center for Human Genetics Regensburg, Regensburg, Germany
| | - Johannes C. Hellmuth
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Christian Herr
- Department of Internal Medicine V, Saarland University, Homburg, Germany
| | - Anke Hinney
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Per Hoffmann
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Björn-Erik Ole Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | - Sarah Kim-Hellmuth
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital LMU Munich, Munich, Germany
- Institute of Translational Genomics, Helmholtz Munich, Neuherberg, Germany
| | - Philipp Koehler
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Anna-Lisa Lanz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital LMU Munich, Munich, Germany
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Clara Lehmann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Düsseldorf, Germany
| | - Carlo Maj
- Center for Human Genetics, Philipps University of Marburg, Marburg, Germany
| | - Michael Mian
- Service for Innovation, Research and Teaching, (SABES-ASDAA), Bolzano-Bozen, Italy; Teaching Hospital of Paracelsus Medical University
| | - Abigail Miller
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Maximilian Muenchhoff
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
- Max von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU Munich, Munich, Germany
| | - Isabell Pink
- Department of Pneumology, Hannover Medical School, Hannover, Germany
| | - Ulrike Protzer
- German Center for Infection research (DZIF), Partner Site Munich, Munich, Germany
- Institute of Virology, Technical University Munich/Helmholtz Munich, Munich, Germany
| | - Hana Rohn
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Jan Rybniker
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Federica Scaggiante
- Laboratorio di Patologia Clinica di Bressanone, Hospital of Bressanone (SABES-ASDAA), Bressanone-Brixen, Italy; Teaching Hospital of Paracelsus Medical University
| | - Anna Schaffeldt
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, LMU Munich, Munich, Germany
- Department of Medicine I, University Hospital, LMU Munich, Munich, Germany
| | | | | | - Philipp Schommers
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Christoph D. Spinner
- Department of Internal Medicine II, University Hospital rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Infection research (DZIF), Partner Site Munich, Munich, Germany
| | - Maria J. G. T. Vehreschild
- Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, Universitätsklinikum Tübingen, Tübingen, Germany
- Vietnamese-German Center for Medical Research (VG-CARE), Hanoi, Vietnam
| | - Sonja Volland
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Sibylle Wilfling
- Center for Human Genetics Regensburg, Regensburg, Germany
- Department of Neurology, Bezirksklinikum Regensburg, University of Regensburg, Regensburg, Germany
| | - Christof Winter
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Clinical Chemistry and Pathobiochemistry, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, Munich, Germany
| | - J. Brent Richards
- Lady Davis Institute, Jewish General Hospital, McGill University, Montréal, Québec, Canada
- 5 Prime Sciences Inc, Montréal, Québec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, Québec, Canada
- Department of Human Genetics, McGill University, Montréal, Québec, Canada
- Department of Twin Research, King’s College London, London, United Kingdom
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | | | - André Heimbach
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- NGS Core Facility Bonn, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Kerstin Becker
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- West German Genome Center ‐ Cologne, University of Cologne, Cologne, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Joachim L. Schultze
- Genomics and Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
- PRECISE Platform for Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Markus M. Nöthen
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
- West German Genome Center ‐ Cologne, University of Cologne, Cologne, Germany
| | - Michael Nothnagel
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Olaf Riess
- DFG NGS Competence Center Tübingen (NCCT), University of Tübingen, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Eva C. Schulte
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
- Institute of Virology, Technical University Munich/Helmholtz Munich, Munich, Germany
- Department of Psychiatry & Psychotherapy, University of Munich, Munich, Germany
- Institute of Psychiatric Phenomics and Genomics, University of Munich, Munich, Germany
| | - Kerstin U. Ludwig
- Institute of Human Genetics, School of Medicine, University Bonn & University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
Guo J, You L, Zhou Y, Hu J, Li J, Yang W, Tang X, Sun Y, Gu Y, Dong Y, Chen X, Sato C, Zinman L, Rogaeva E, Wang J, Chen Y, Zhang M. Spatial enrichment and genomic analyses reveal the link of NOMO1 with amyotrophic lateral sclerosis. Brain 2024; 147:2826-2841. [PMID: 38643019 DOI: 10.1093/brain/awae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/22/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe motor neuron disease with uncertain genetic predisposition in most sporadic cases. The spatial architecture of cell types and gene expression are the basis of cell-cell interactions, biological function and disease pathology, but are not well investigated in the human motor cortex, a key ALS-relevant brain region. Recent studies indicated single nucleus transcriptomic features of motor neuron vulnerability in ALS motor cortex. However, the brain regional vulnerability of ALS-associated genes and the genetic link between region-specific genes and ALS risk remain largely unclear. Here, we developed an entropy-weighted differential gene expression matrix-based tool (SpatialE) to identify the spatial enrichment of gene sets in spatial transcriptomics. We benchmarked SpatialE against another enrichment tool (multimodal intersection analysis) using spatial transcriptomics data from both human and mouse brain tissues. To investigate regional vulnerability, we analysed three human motor cortex and two dorsolateral prefrontal cortex tissues for spatial enrichment of ALS-associated genes. We also used Cell2location to estimate the abundance of cell types in ALS-related cortex layers. To dissect the link of regionally expressed genes and ALS risk, we performed burden analyses of rare loss-of-function variants detected by whole-genome sequencing in ALS patients and controls, then analysed differential gene expression in the TargetALS RNA-sequencing dataset. SpatialE showed more accurate and specific spatial enrichment of regional cell type markers than multimodal intersection analysis in both mouse brain and human dorsolateral prefrontal cortex. Spatial transcriptomic analyses of human motor cortex showed heterogeneous cell types and spatial gene expression profiles. We found that 260 manually curated ALS-associated genes are significantly enriched in layer 5 of the motor cortex, with abundant expression of upper motor neurons and layer 5 excitatory neurons. Burden analyses of rare loss-of-function variants in Layer 5-associated genes nominated NOMO1 as a novel ALS-associated gene in a combined sample set of 6814 ALS patients and 3324 controls (P = 0.029). Gene expression analyses in CNS tissues revealed downregulation of NOMO1 in ALS, which is consistent with a loss-of-function disease mechanism. In conclusion, our integrated spatial transcriptomics and genomic analyses identified regional brain vulnerability in ALS and the association of a layer 5 gene (NOMO1) with ALS risk.
Collapse
Affiliation(s)
- Jingyan Guo
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Linya You
- Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Fudan University, 200032, Shanghai, China
- Key Laboratory of Medical Computing and Computer Assisted Intervention of Shanghai, 200032, Shanghai, China
| | - Yu Zhou
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Jiali Hu
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Jiahao Li
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
| | - Wanli Yang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
| | - Xuelin Tang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Yimin Sun
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yuqi Gu
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
| | - Yi Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xi Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
| | - Lorne Zinman
- Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON M5T 0S8, Canada
- Division of Neurology, University of Toronto, Toronto, ON M5S 3H2, Canada
| | - Jian Wang
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yan Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Ming Zhang
- The First Rehabilitation Hospital of Shanghai, Department of Medical Genetics, School of Medicine, Tongji University, 200090, Shanghai, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, 200120, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, 200331, Shanghai, China
- Institute for Advanced Study, Tongji University, 200092, Shanghai, China
| |
Collapse
|
6
|
Fu T, Amoah K, Chan TW, Bahn JH, Lee JH, Terrazas S, Chong R, Kosuri S, Xiao X. Massively parallel screen uncovers many rare 3' UTR variants regulating mRNA abundance of cancer driver genes. Nat Commun 2024; 15:3335. [PMID: 38637555 PMCID: PMC11026479 DOI: 10.1038/s41467-024-46795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/06/2024] [Indexed: 04/20/2024] Open
Abstract
Understanding the function of rare non-coding variants represents a significant challenge. Using MapUTR, a screening method, we studied the function of rare 3' UTR variants affecting mRNA abundance post-transcriptionally. Among 17,301 rare gnomAD variants, an average of 24.5% were functional, with 70% in cancer-related genes, many in critical cancer pathways. This observation motivated an interrogation of 11,929 somatic mutations, uncovering 3928 (33%) functional mutations in 155 cancer driver genes. Functional MapUTR variants were enriched in microRNA- or protein-binding sites and may underlie outlier gene expression in tumors. Further, we introduce untranslated tumor mutational burden (uTMB), a metric reflecting the amount of somatic functional MapUTR variants of a tumor and show its potential in predicting patient survival. Through prime editing, we characterized three variants in cancer-relevant genes (MFN2, FOSL2, and IRAK1), demonstrating their cancer-driving potential. Our study elucidates the function of tens of thousands of non-coding variants, nominates non-coding cancer driver mutations, and demonstrates their potential contributions to cancer.
Collapse
Affiliation(s)
- Ting Fu
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kofi Amoah
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Tracey W Chan
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jae Hoon Bahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jae-Hyung Lee
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Life and Nanopharmaceutical Sciences & Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Sari Terrazas
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rockie Chong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Sriram Kosuri
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xinshu Xiao
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
7
|
Xu CZ, Huan X, Luo SS, Zhong HH, Zhao CB, Chen Y, Zou ZY, Chen S. Serum cytokines profile changes in amyotrophic lateral sclerosis. Heliyon 2024; 10:e28553. [PMID: 38596011 PMCID: PMC11002056 DOI: 10.1016/j.heliyon.2024.e28553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder, characterized by progressive limb weakness, dysphagia, dysphonia, and respiratory failure due to degeneration of upper and lower motor neurons. The pathogenesis of ALS is still unclear. Neuroinflammation has been found to be involved in its development and progression. Cytokines play a significant role in the inflammatory process. This study aims to identify novel biomarkers that may assist in the diagnosis of ALS. Methods In Fujian Medical University Union Hospital and Huashan Hospital Fudan University, two independent centers, we prospectively recruited 50 ALS patients, and 41 healthy controls (25 ALS and 26 controls in the first stage and 25 ALS and 15 controls in the validation stage). An 18-plex Luminex kit was used to screen the serum cytokines levels in the first stage. Commercial ELISA kits were used to measure the levels of target cytokines in the validation stage. A single-molecule array HD-X platform was applied to assess the levels of serum neurofilament light chain (NFL). Results The levels of serum IL-18 were markedly increased in patients with ALS in the first stage (p = 0.016). The ROC curve showed an area under the curve at 0.695 (95% CI 0.50-0.84) in distinguishing ALS patients from healthy controls. The IL-21 was decreased in elderly patients when grouped by 55 years old (the medium age). Furthermore, the IL-5, IL-13, IL-18, and NFL had a positive relationship with the disease progression of ALS. We also found that serum IL-18 was markedly increased in ALS patients in the validation stage (167.67 [148.25-175.59] vs 116.44 [102.43-122.19]pg/ml, p < 0.0015). Conclusion In this study, we identified systemic cytokine profile changes in the serum of ALS patients, especially the elevated IL-18, as well as the decreased IL-21 in elder patients. These changes in serum cytokine profiles may shed new light on an in-depth understanding of the immunopathogenic characteristics of ALS.
Collapse
Affiliation(s)
- Chun-Zuan Xu
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Xiao Huan
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Su-Shan Luo
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Hua-Hua Zhong
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Chong-Bo Zhao
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Yan Chen
- Department of Neurology, Fudan University Huashan Hospital, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
| | - Zhang-Yu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| | - Sheng Chen
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
- Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
9
|
Marriott H, Kabiljo R, Hunt GP, Khleifat AA, Jones A, Troakes C, Pfaff AL, Quinn JP, Koks S, Dobson RJ, Schwab P, Al-Chalabi A, Iacoangeli A. Unsupervised machine learning identifies distinct ALS molecular subtypes in post-mortem motor cortex and blood expression data. Acta Neuropathol Commun 2023; 11:208. [PMID: 38129934 PMCID: PMC10734072 DOI: 10.1186/s40478-023-01686-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) displays considerable clinical and genetic heterogeneity. Machine learning approaches have previously been utilised for patient stratification in ALS as they can disentangle complex disease landscapes. However, lack of independent validation in different populations and tissue samples have greatly limited their use in clinical and research settings. We overcame these issues by performing hierarchical clustering on the 5000 most variably expressed autosomal genes from motor cortex expression data of people with sporadic ALS from the KCL BrainBank (N = 112). Three molecular phenotypes linked to ALS pathogenesis were identified: synaptic and neuropeptide signalling, oxidative stress and apoptosis, and neuroinflammation. Cluster validation was achieved by applying linear discriminant analysis models to cases from TargetALS US motor cortex (N = 93), as well as Italian (N = 15) and Dutch (N = 397) blood expression datasets, for which there was a high assignment probability (80-90%) for each molecular subtype. The ALS and motor cortex specificity of the expression signatures were tested by mapping KCL BrainBank controls (N = 59), and occipital cortex (N = 45) and cerebellum (N = 123) samples from TargetALS to each cluster, before constructing case-control and motor cortex-region logistic regression classifiers. We found that the signatures were not only able to distinguish people with ALS from controls (AUC 0.88 ± 0.10), but also reflect the motor cortex-based disease process, as there was perfect discrimination between motor cortex and the other brain regions. Cell types known to be involved in the biological processes of each molecular phenotype were found in higher proportions, reinforcing their biological interpretation. Phenotype analysis revealed distinct cluster-related outcomes in both motor cortex datasets, relating to disease onset and progression-related measures. Our results support the hypothesis that different mechanisms underpin ALS pathogenesis in subgroups of patients and demonstrate potential for the development of personalised treatment approaches. Our method is available for the scientific and clinical community at https://alsgeclustering.er.kcl.ac.uk .
Collapse
Affiliation(s)
- Heather Marriott
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Renata Kabiljo
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Guy P Hunt
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
| | - Ashley Jones
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- MRC London Neurodegenerative Diseases Brain Bank, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Abigail L Pfaff
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
| | - John P Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 3BX, UK
| | - Sulev Koks
- Perron Institute for Neurological and Translational Science, Nedlands, WA, 6009, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA, 6150, Australia
| | - Richard J Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust and King's College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- NIHR Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Patrick Schwab
- GlaxoSmithKline, Artificial Intelligence and Machine Learning, Durham, NC, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK
- King's College Hospital, London, SE5 9RS, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King?s College London, London, SE5 9NU, UK.
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- NIHR Maudsley Biomedical Research Centre (BRC), South London and Maudsley NHS Foundation Trust and King's College London, London, UK.
| |
Collapse
|
10
|
Rifai OM, O’Shaughnessy J, Dando OR, Munro AF, Sewell MDE, Abrahams S, Waldron FM, Sibley CR, Gregory JM. Distinct neuroinflammatory signatures exist across genetic and sporadic amyotrophic lateral sclerosis cohorts. Brain 2023; 146:5124-5138. [PMID: 37450566 PMCID: PMC10690026 DOI: 10.1093/brain/awad243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/31/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower motor neurons. ALS is on a pathogenetic disease spectrum with frontotemporal dementia, referred to as ALS-frontotemporal spectrum disorder (ALS-FTSD). For mutations associated with ALS-FTSD, such as the C9orf72 hexanucleotide repeat expansion, the molecular factors associated with heterogeneity along this spectrum require further characterization. Here, using a targeted NanoString molecular barcoding approach, we interrogate neuroinflammatory dysregulation and heterogeneity at the level of gene expression in post-mortem motor cortex tissue from a cohort of clinically heterogeneous C9-ALS-FTSD cases. We identified 20 dysregulated genes in C9-ALS-FTSD, with enrichment of microglial and inflammatory response gene sets. Two genes with significant correlations to available clinical metrics were selected for validation: FKBP5, a correlate of cognitive function, and brain-derived neurotrophic factor (BDNF), a correlate of disease duration. FKBP5 and its signalling partner, NF-κB, appeared to have a cell type-specific staining distribution, with activated (i.e. nuclear) NF-κB immunoreactivity in C9-ALS-FTSD. Expression of BDNF, a correlate of disease duration, was confirmed to be higher in individuals with long compared to short disease duration using BaseScope™ in situ hybridization. Our analyses also revealed two distinct neuroinflammatory panel signatures (NPS), NPS1 and NPS2, delineated by the direction of expression of proinflammatory, axonal transport and synaptic signalling pathways. We compared NPS between C9-ALS-FTSD cases and those from sporadic ALS and SOD1-ALS cohorts and identified NPS1 and NPS2 across all cohorts. Moreover, a subset of NPS was also able to separate publicly available RNA sequencing data from independent C9-ALS and sporadic ALS cohorts into two inflammatory subgroups. Importantly, NPS subgroups did not clearly segregate with available demographic, genetic, clinical or pathological features, highlighting the value of molecular stratification in clinical trials for inflammatory subgroup identification. Our findings thus underscore the importance of tailoring therapeutic approaches based on distinct molecular signatures that exist between and within ALS-FTSD cohorts.
Collapse
Affiliation(s)
- Olivia M Rifai
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
| | - Judi O’Shaughnessy
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Owen R Dando
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XF, UK
| | - Alison F Munro
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael D E Sewell
- Translational Neuroscience PhD Programme, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Sharon Abrahams
- Human Cognitive Neuroscience-Psychology, School of Philosophy, Psychology and Language Sciences, University of Edinburgh, Edinburgh, EH8 9AD, UK
| | - Fergal M Waldron
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Christopher R Sibley
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, EH8 9XF, UK
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FF, UK
| | - Jenna M Gregory
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
11
|
Gao C, Jiang J, Tan Y, Chen S. Microglia in neurodegenerative diseases: mechanism and potential therapeutic targets. Signal Transduct Target Ther 2023; 8:359. [PMID: 37735487 PMCID: PMC10514343 DOI: 10.1038/s41392-023-01588-0] [Citation(s) in RCA: 209] [Impact Index Per Article: 104.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/11/2023] [Accepted: 08/03/2023] [Indexed: 09/23/2023] Open
Abstract
Microglia activation is observed in various neurodegenerative diseases. Recent advances in single-cell technologies have revealed that these reactive microglia were with high spatial and temporal heterogeneity. Some identified microglia in specific states correlate with pathological hallmarks and are associated with specific functions. Microglia both exert protective function by phagocytosing and clearing pathological protein aggregates and play detrimental roles due to excessive uptake of protein aggregates, which would lead to microglial phagocytic ability impairment, neuroinflammation, and eventually neurodegeneration. In addition, peripheral immune cells infiltration shapes microglia into a pro-inflammatory phenotype and accelerates disease progression. Microglia also act as a mobile vehicle to propagate protein aggregates. Extracellular vesicles released from microglia and autophagy impairment in microglia all contribute to pathological progression and neurodegeneration. Thus, enhancing microglial phagocytosis, reducing microglial-mediated neuroinflammation, inhibiting microglial exosome synthesis and secretion, and promoting microglial conversion into a protective phenotype are considered to be promising strategies for the therapy of neurodegenerative diseases. Here we comprehensively review the biology of microglia and the roles of microglia in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, multiple system atrophy, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies and Huntington's disease. We also summarize the possible microglia-targeted interventions and treatments against neurodegenerative diseases with preclinical and clinical evidence in cell experiments, animal studies, and clinical trials.
Collapse
Affiliation(s)
- Chao Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jingwen Jiang
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
12
|
Akçimen F, Lopez ER, Landers JE, Nath A, Chiò A, Chia R, Traynor BJ. Amyotrophic lateral sclerosis: translating genetic discoveries into therapies. Nat Rev Genet 2023; 24:642-658. [PMID: 37024676 PMCID: PMC10611979 DOI: 10.1038/s41576-023-00592-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2023] [Indexed: 04/08/2023]
Abstract
Recent advances in sequencing technologies and collaborative efforts have led to substantial progress in identifying the genetic causes of amyotrophic lateral sclerosis (ALS). This momentum has, in turn, fostered the development of putative molecular therapies. In this Review, we outline the current genetic knowledge, emphasizing recent discoveries and emerging concepts such as the implication of distinct types of mutation, variability in mutated genes in diverse genetic ancestries and gene-environment interactions. We also propose a high-level model to synthesize the interdependent effects of genetics, environmental and lifestyle factors, and ageing into a unified theory of ALS. Furthermore, we summarize the current status of therapies developed on the basis of genetic knowledge established for ALS over the past 30 years, and we discuss how developing treatments for ALS will advance our understanding of targeting other neurological diseases.
Collapse
Affiliation(s)
- Fulya Akçimen
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Elia R Lopez
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute for Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Adriano Chiò
- Rita Levi Montalcini Department of Neuroscience, University of Turin, Turin, Italy
- Institute of Cognitive Sciences and Technologies, C.N.R, Rome, Italy
- Azienda Ospedaliero Universitaria Citta' della Salute e della Scienza, Turin, Italy
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Therapeutic Development Branch, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
13
|
Mann JR, McKenna ED, Mawrie D, Papakis V, Alessandrini F, Anderson EN, Mayers R, Ball HE, Kaspi E, Lubinski K, Baron DM, Tellez L, Landers JE, Pandey UB, Kiskinis E. Loss of function of the ALS-associated NEK1 kinase disrupts microtubule homeostasis and nuclear import. SCIENCE ADVANCES 2023; 9:eadi5548. [PMID: 37585529 PMCID: PMC10431718 DOI: 10.1126/sciadv.adi5548] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
Loss-of-function variants in NIMA-related kinase 1 (NEK1) constitute a major genetic cause of amyotrophic lateral sclerosis (ALS), accounting for 2 to 3% of all cases. However, how NEK1 mutations cause motor neuron (MN) dysfunction is unknown. Using mass spectrometry analyses for NEK1 interactors and NEK1-dependent expression changes, we find functional enrichment for proteins involved in the microtubule cytoskeleton and nucleocytoplasmic transport. We show that α-tubulin and importin-β1, two key proteins involved in these processes, are phosphorylated by NEK1 in vitro. NEK1 is essential for motor control and survival in Drosophila models in vivo, while using several induced pluripotent stem cell (iPSC)-MN models, including NEK1 knockdown, kinase inhibition, and a patient mutation, we find evidence for disruptions in microtubule homeostasis and nuclear import. Notably, stabilizing microtubules with two distinct classes of drugs restored NEK1-dependent deficits in both pathways. The capacity of NEK1 to modulate these processes that are critically involved in ALS pathophysiology renders this kinase a formidable therapeutic candidate.
Collapse
Affiliation(s)
- Jacob R. Mann
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elizabeth D. McKenna
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Darilang Mawrie
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Vasileios Papakis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Francesco Alessandrini
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Eric N. Anderson
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Ryan Mayers
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hannah E. Ball
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Evan Kaspi
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Katherine Lubinski
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Desiree M. Baron
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Liana Tellez
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John E. Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Udai B. Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
14
|
De Marchi F, Franjkic T, Schito P, Russo T, Nimac J, Chami AA, Mele A, Vidatic L, Kriz J, Julien JP, Apic G, Russell RB, Rogelj B, Cannon JR, Baralle M, Agosta F, Hecimovic S, Mazzini L, Buratti E, Munitic I. Emerging Trends in the Field of Inflammation and Proteinopathy in ALS/FTD Spectrum Disorder. Biomedicines 2023; 11:1599. [PMID: 37371694 PMCID: PMC10295684 DOI: 10.3390/biomedicines11061599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Proteinopathy and neuroinflammation are two main hallmarks of neurodegenerative diseases. They also represent rare common events in an exceptionally broad landscape of genetic, environmental, neuropathologic, and clinical heterogeneity present in patients. Here, we aim to recount the emerging trends in amyotrophic lateral sclerosis (ALS) and frontotemporal degeneration (FTD) spectrum disorder. Our review will predominantly focus on neuroinflammation and systemic immune imbalance in ALS and FTD, which have recently been highlighted as novel therapeutic targets. A common mechanism of most ALS and ~50% of FTD patients is dysregulation of TAR DNA-binding protein 43 (TDP-43), an RNA/DNA-binding protein, which becomes depleted from the nucleus and forms cytoplasmic aggregates in neurons and glia. This, in turn, via both gain and loss of function events, alters a variety of TDP-43-mediated cellular events. Experimental attempts to target TDP-43 aggregates or manipulate crosstalk in the context of inflammation will be discussed. Targeting inflammation, and the immune system in general, is of particular interest because of the high plasticity of immune cells compared to neurons.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Toni Franjkic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
- Metisox, Cambridge CB24 9NL, UK;
| | - Paride Schito
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Tommaso Russo
- Department of Neurology & Neuropathology Unit, Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy; (P.S.); (T.R.)
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Anna A. Chami
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Angelica Mele
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Lea Vidatic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Jasna Kriz
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | - Jean-Pierre Julien
- CERVO Research Centre, Laval University, Quebec City, QC G1J 2G3, Canada; (A.A.C.); (J.K.); (J.-P.J.)
| | | | | | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia; (J.N.); (B.R.)
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| | - Jason R. Cannon
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
| | | | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
| | - Silva Hecimovic
- Laboratory for Neurodegenerative Disease Research, Division of Molecular Medicine, Ruder Boskovic Institute, 10000 Zagreb, Croatia; (L.V.); (S.H.)
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, 28100 Novara, Italy; (F.D.M.); (A.M.)
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia;
| |
Collapse
|
15
|
Boraschi D, Italiani P, Migliorini P, Bossù P. Cause or consequence? The role of IL-1 family cytokines and receptors in neuroinflammatory and neurodegenerative diseases. Front Immunol 2023; 14:1128190. [PMID: 37223102 PMCID: PMC10200871 DOI: 10.3389/fimmu.2023.1128190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/11/2023] [Indexed: 05/25/2023] Open
Abstract
Cytokines and receptors of the IL-1 family are key mediators in innate immune and inflammatory reactions in physiological defensive conditions, but are also significantly involved in immune-mediated inflammatory diseases. Here, we will address the role of cytokines of the IL-1 superfamily and their receptors in neuroinflammatory and neurodegenerative diseases, in particular Multiple Sclerosis and Alzheimer's disease. Notably, several members of the IL-1 family are present in the brain as tissue-specific splice variants. Attention will be devoted to understanding whether these molecules are involved in the disease onset or are effectors of the downstream degenerative events. We will focus on the balance between the inflammatory cytokines IL-1β and IL-18 and inhibitory cytokines and receptors, in view of future therapeutic approaches.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Italiani
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Naples, Italy
- Stazione Zoologica Anton Dohrn (SZN), Napoli, Italy
- China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation, Shenzhen, China
| | - Paola Migliorini
- Clinical Immunology and Allergy Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuro-psychobiology, Department of Clinical and Behavioral Neurology, Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
16
|
Fisher EM, Greensmith L, Malaspina A, Fratta P, Hanna MG, Schiavo G, Isaacs AM, Orrell RW, Cunningham TJ, Arozena AA. Opinion: more mouse models and more translation needed for ALS. Mol Neurodegener 2023; 18:30. [PMID: 37143081 PMCID: PMC10161557 DOI: 10.1186/s13024-023-00619-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 04/11/2023] [Indexed: 05/06/2023] Open
Abstract
Amyotrophic lateral sclerosis is a complex disorder most of which is 'sporadic' of unknown origin but approximately 10% is familial, arising from single mutations in any of more than 30 genes. Thus, there are more than 30 familial ALS subtypes, with different, often unknown, molecular pathologies leading to a complex constellation of clinical phenotypes. We have mouse models for many genetic forms of the disorder, but these do not, on their own, necessarily show us the key pathological pathways at work in human patients. To date, we have no models for the 90% of ALS that is 'sporadic'. Potential therapies have been developed mainly using a limited set of mouse models, and through lack of alternatives, in the past these have been tested on patients regardless of aetiology. Cancer researchers have undertaken therapy development with similar challenges; they have responded by producing complex mouse models that have transformed understanding of pathological processes, and they have implemented patient stratification in multi-centre trials, leading to the effective translation of basic research findings to the clinic. ALS researchers have successfully adopted this combined approach, and now to increase our understanding of key disease pathologies, and our rate of progress for moving from mouse models to mechanism to ALS therapies we need more, innovative, complex mouse models to address specific questions.
Collapse
Affiliation(s)
- Elizabeth M.C. Fisher
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Linda Greensmith
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Michael G. Hanna
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Giampietro Schiavo
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT UK
| | - Adrian M. Isaacs
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Richard W. Orrell
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, WC1N 3BG UK
| | - Thomas J. Cunningham
- MRC Prion Unit at UCL, Courtauld Building, 33 Cleveland Street, London, W1W 7FF UK
| | - Abraham Acevedo Arozena
- Research Unit, Hospital Universitario de Canarias, ITB-ULL and CIBERNED, La Laguna, 38320 Spain
| |
Collapse
|
17
|
Du H, Huo Z, Chen Y, Zhao Z, Meng F, Wang X, Liu S, Zhang H, Zhou F, Liu J, Zhang L, Zhou S, Guan Y, Wang X. Induced Pluripotent Stem Cells and Their Applications in Amyotrophic Lateral Sclerosis. Cells 2023; 12:cells12060971. [PMID: 36980310 PMCID: PMC10047679 DOI: 10.3390/cells12060971] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that results in the loss of motor function in the central nervous system (CNS) and ultimately death. The mechanisms underlying ALS pathogenesis have not yet been fully elucidated, and ALS cannot be treated effectively. Most studies have applied animal or single-gene intervention cell lines as ALS disease models, but they cannot accurately reflect the pathological characteristics of ALS. Induced pluripotent stem cells (iPSCs) can be reprogrammed from somatic cells, possessing the ability to self-renew and differentiate into a variety of cells. iPSCs can be obtained from ALS patients with different genotypes and phenotypes, and the genetic background of the donor cells remains unchanged during reprogramming. iPSCs can differentiate into neurons and glial cells related to ALS. Therefore, iPSCs provide an excellent method to evaluate the impact of diseases on ALS patients. Moreover, patient-derived iPSCs are obtained from their own somatic cells, avoiding ethical concerns and posing only a low risk of immune rejection. The iPSC technology creates new hope for ALS treatment. Here, we review recent studies on iPSCs and their applications in disease modeling, drug screening and cell therapy in ALS, with a particular focus on the potential for ALS treatment.
Collapse
Affiliation(s)
- Hongmei Du
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zijun Huo
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Yanchun Chen
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Zhenhan Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Fandi Meng
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Xuemei Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Shiyue Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
- Department of Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Lingyun Zhang
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Shuanhu Zhou
- Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA
| | - Yingjun Guan
- Department of Histology and Embryology, School of Basic Medical Sciences, Weifang Medical University, Weifang 261053, China
- Neurologic Disorders and Regenerative Repair Laboratory, Weifang Medical University, Weifang 261053, China
| | - Xin Wang
- Harvard Medical School and Harvard Stem Cell Institute, Harvard University, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
18
|
de Carvalho M. Advances in amyotrophic lateral sclerosis research in 2022. Lancet Neurol 2023; 22:21-22. [PMID: 36517160 DOI: 10.1016/s1474-4422(22)00490-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Mamede de Carvalho
- Institute of Physiology, Institute of Molecular Medicine, Egas Moniz Study Centre, Faculty of Medicine, University of Lisbon, Lisbon 1648-028, Portugal; Department of Neurosciences and Mental Health, Lisbon North University Hospital Center, Lisbon, Portugal.
| |
Collapse
|
19
|
Warden AS, Han C, Hansen E, Trescott S, Nguyen C, Kim R, Schafer D, Johnson A, Wright M, Ramirez G, Lopez-Sanchez M, Coufal NG. Tools for studying human microglia: In vitro and in vivo strategies. Brain Behav Immun 2023; 107:369-382. [PMID: 36336207 PMCID: PMC9810377 DOI: 10.1016/j.bbi.2022.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/11/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Microglia may only represent 10% of central nervous system (CNS) cells but they perform critical roles in development, homeostasis and neurological disease. Microglia are also environmentally regulated, quickly losing their transcriptomic and epigenetic signature after leaving the CNS. This facet of microglia biology is both fascinating and technically challenging influencing the study of the genetics and function of human microglia in a manner that recapitulates the CNS environment. In this review we provide a comprehensive overview of existing in vitro and in vivo methodology to study human microglia, such as immortalized cells lines, stem cell-derived microglia, cerebral organoids and xenotransplantation. Since there is currently no single method that completely recapitulates all hallmarks of human ex vivo adult homeostatic microglia, we also discuss the advantages and limitations of each existing model as a practical guide for researchers.
Collapse
Affiliation(s)
- Anna S Warden
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Claudia Han
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emily Hansen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Samantha Trescott
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Celina Nguyen
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Roy Kim
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle Schafer
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Avalon Johnson
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Madison Wright
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gabriela Ramirez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mark Lopez-Sanchez
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nicole G Coufal
- Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA; Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
Brusati A, Ratti A, Pensato V, Peverelli S, Gentilini D, Dalla Bella E, Sorce MN, Meneri M, Gagliardi D, Corti S, Gellera C, Lauria Pinter G, Ticozzi N, Silani V. Analysis of miRNA rare variants in amyotrophic lateral sclerosis and in silico prediction of their biological effects. Front Genet 2022; 13:1055313. [PMID: 36568378 PMCID: PMC9768194 DOI: 10.3389/fgene.2022.1055313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting upper and/or lower motor neurons and characterized by complex etiology. Familial cases show high genetic heterogeneity and sporadic cases (90%) are associated with several genetic and environmental risk factors. Among the genetic risk factors, the contribution of non-coding elements, such as microRNAs (miRNAs), to ALS disease susceptibility remains largely unexplored. Aim: This work aims to identify rare variants in miRNA genes in sporadic ALS (sALS) patients which may cause a defective miRNA maturation or altered target gene recognition by changing miRNA secondary structure or seed sequence, respectively. Methods: Rare variants located in miRNA loci with a minor allele frequency (MAF) < 0.01 were extracted from whole genome sequencing (WGS) data of 100 sALS patients. The secondary pre-miRNA structures were predicted using MiRVas to evaluate the impact of the variants on RNA folding process. Human TargetScan was used to retrieve all the potential target genes of miRNAs with variants in the seed region. Over Representation Analysis (ORA) was conducted to compare the lists of target genes for the reference and mutated miRNAs in the seed sequence. Results: Our analysis identified 86 rare variants in 77 distinct miRNAs and distributed in different parts of the miRNA precursors. The presence of these variants changed miRNA secondary structures in ∼70% of MiRVas predictions. By focusing on the 6 rare variants mapping within the seed sequence, the predicted target genes increased in number compared to the reference miRNA and included novel targets in a proportion ranging from 30 to 82%. Interestingly, ORA revealed significant changes in gene set enrichment only for mutated miR-509-1 and miR-941-3 for which the Gene Ontology term related to "nervous system development" was absent and present, respectively, compared to target lists of the reference miRNA. Conclusion: We here developed a workflow to study miRNA rare variants from WGS data and to predict their biological effects on miRNA folding, maturation and target gene recognition. Although this in silico approach certainly needs functional validation in vitro and in vivo, it may help define the role of miRNA variability in ALS and complex diseases.
Collapse
Affiliation(s)
- Alberto Brusati
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy,Department Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Antonia Ratti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy,Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy,*Correspondence: Antonia Ratti,
| | - Viviana Pensato
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Silvia Peverelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Davide Gentilini
- Department Brain and Behavioral Sciences, University of Pavia, Pavia, Italy,Bioinformatics and Statistical Genomics Unit,IRCCS Istituto Auxologico Italiano,Milan,Italy
| | | | - Marta Nice Sorce
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Megi Meneri
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Delia Gagliardi
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Stefania Corti
- Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milano, Italy,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Cinzia Gellera
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giuseppe Lauria Pinter
- Department Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy,Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy
| |
Collapse
|
21
|
Kuksa PP, Greenfest-Allen E, Cifello J, Ionita M, Wang H, Nicaretta H, Cheng PL, Lee WP, Wang LS, Leung YY. Scalable approaches for functional analyses of whole-genome sequencing non-coding variants. Hum Mol Genet 2022; 31:R62-R72. [PMID: 35943817 PMCID: PMC9585666 DOI: 10.1093/hmg/ddac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Non-coding genetic variants outside of protein-coding genome regions play an important role in genetic and epigenetic regulation. It has become increasingly important to understand their roles, as non-coding variants often make up the majority of top findings of genome-wide association studies (GWAS). In addition, the growing popularity of disease-specific whole-genome sequencing (WGS) efforts expands the library of and offers unique opportunities for investigating both common and rare non-coding variants, which are typically not detected in more limited GWAS approaches. However, the sheer size and breadth of WGS data introduce additional challenges to predicting functional impacts in terms of data analysis and interpretation. This review focuses on the recent approaches developed for efficient, at-scale annotation and prioritization of non-coding variants uncovered in WGS analyses. In particular, we review the latest scalable annotation tools, databases and functional genomic resources for interpreting the variant findings from WGS based on both experimental data and in silico predictive annotations. We also review machine learning-based predictive models for variant scoring and prioritization. We conclude with a discussion of future research directions which will enhance the data and tools necessary for the effective functional analyses of variants identified by WGS to improve our understanding of disease etiology.
Collapse
Affiliation(s)
- Pavel P Kuksa
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Greenfest-Allen
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeffrey Cifello
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matei Ionita
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Heather Nicaretta
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Po-Liang Cheng
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wan-Ping Lee
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li-San Wang
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuk Yee Leung
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Ihim SA, Abubakar SD, Zian Z, Sasaki T, Saffarioun M, Maleknia S, Azizi G. Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front Immunol 2022; 13:919973. [PMID: 36032110 PMCID: PMC9410767 DOI: 10.3389/fimmu.2022.919973] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
Interleukin-18 (IL-18) is a potent pro-inflammatory cytokine involved in host defense against infections and regulates the innate and acquired immune response. IL-18 is produced by both hematopoietic and non-hematopoietic cells, including monocytes, macrophages, keratinocytes and mesenchymal cell. IL-18 could potentially induce inflammatory and cytotoxic immune cell activities leading to autoimmunity. Its elevated levels have been reported in the blood of patients with some immune-related diseases, including rheumatoid arthritis, systemic lupus erythematosus, type I diabetes mellitus, atopic dermatitis, psoriasis, and inflammatory bowel disease. In the present review, we aimed to summarize the biological properties of IL-18 and its pathological role in different autoimmune diseases. We also reported some monoclonal antibodies and drugs targeting IL-18. Most of these monoclonal antibodies and drugs have only produced partial effectiveness or complete ineffectiveness in vitro, in vivo and human studies. The ineffectiveness of these drugs targeting IL-18 may be largely due to the loophole caused by the involvement of other cytokines and proteins in the signaling pathway of many inflammatory diseases besides the involvement of IL-18. Combination drug therapies, that focus on IL-18 inhibition, in addition to other cytokines, are highly recommended to be considered as an important area of research that needs to be explored.
Collapse
Affiliation(s)
- Stella Amarachi Ihim
- Department of Molecular and Cellular Pharmacology, University of Shizuoka, Shizuoka, Japan
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Nigeria
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Nigeria
| | - Sharafudeen Dahiru Abubakar
- Division of Molecular Pathology, Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
- Department of Medical Laboratory Science, College of Medical Science, Ahmadu Bello University, Zaria, Nigeria
| | - Zeineb Zian
- Biomedical Genomics and Oncogenetics Research Laboratory, Faculty of Sciences and Techniques of Tangier, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Takanori Sasaki
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mohammad Saffarioun
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
- *Correspondence: Gholamreza Azizi,
| |
Collapse
|