1
|
Mayo-Muñoz D, Pinilla-Redondo R, Camara-Wilpert S, Birkholz N, Fineran PC. Inhibitors of bacterial immune systems: discovery, mechanisms and applications. Nat Rev Genet 2024; 25:237-254. [PMID: 38291236 DOI: 10.1038/s41576-023-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 02/01/2024]
Abstract
To contend with the diversity and ubiquity of bacteriophages and other mobile genetic elements, bacteria have developed an arsenal of immune defence mechanisms. Bacterial defences include CRISPR-Cas, restriction-modification and a growing list of mechanistically diverse systems, which constitute the bacterial 'immune system'. As a response, bacteriophages and mobile genetic elements have evolved direct and indirect mechanisms to circumvent or block bacterial defence pathways and ensure successful infection. Recent advances in methodological and computational approaches, as well as the increasing availability of genome sequences, have boosted the discovery of direct inhibitors of bacterial defence systems. In this Review, we discuss methods for the discovery of direct inhibitors, their diverse mechanisms of action and perspectives on their emerging applications in biotechnology and beyond.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
| | - Rafael Pinilla-Redondo
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | | | - Nils Birkholz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Peter C Fineran
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand.
- Genetics Otago, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Dunedin, New Zealand.
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Yu L, Marchisio MA. Saccharomyces cerevisiae Synthetic Transcriptional Networks Harnessing dCas12a and Type V-A anti-CRISPR Proteins. ACS Synth Biol 2021; 10:870-883. [PMID: 33819020 DOI: 10.1021/acssynbio.1c00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type V-A anti-CRISPR proteins (AcrVAs) represent the response from phages to the CRISPR-Cas12a prokaryotic immune system. CRISPR-Cas12a was repurposed, in high eukaryotes, to carry out gene editing and transcription regulation, the latter via a nuclease-dead Cas12a (dCas12a). Consequently, AcrVAs were adopted to regulate (d)Cas12a activity. However, the usage of both dCas12a-based transcription factors and AcrVAs in the yeast Saccharomyces cerevisiae has not been explored. In this work, we show that, in the baker's yeast, two dCas12a proteins (denAsCas12a and dLbCas12a) work both as activators (upon fusion to a strong activation domain) and repressors, whereas dMbCa12a is nonfunctional. The activation efficiency of dCas12a-ADs manifests a dependence on the number of crRNA binding sites, whereas it is not directly correlated to the amount of crRNA in the cells. Moreover, AcrVA1, AcrVA4, and AcrVA5 are able to inhibit dLbCa12a in yeast, and denAsCas12a is only inhibited by AcrVA1. However, AcrVA1 performs well at high concentration only. Coexpression of two or three AcrVAs does not enhance inhibition of dCas12a(-AD), suggesting a competition between different AcrVAs. Further, AcrVA4 significantly limits gene editing by LbCas12a. Overall, our results indicate that dCas12a:crRNA and AcrVA proteins are highly performant components in S. cerevisiae synthetic transcriptional networks.
Collapse
Affiliation(s)
- Lifang Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| |
Collapse
|
3
|
Abstract
Oral bacteriophages (or phages), especially periodontal ones, constitute a growing area of interest, but research on oral phages is still in its infancy. Phages are bacterial viruses that may persist as intracellular parasitic deoxyribonucleic acid (DNA) or use bacterial metabolism to replicate and cause bacterial lysis. The microbiomes of saliva, oral mucosa, and dental plaque contain active phage virions, bacterial lysogens (ie, carrying dormant prophages), and bacterial strains containing short fragments of phage DNA. In excess of 2000 oral phages have been confirmed or predicted to infect species of the phyla Actinobacteria (>300 phages), Bacteroidetes (>300 phages), Firmicutes (>1000 phages), Fusobacteria (>200 phages), and Proteobacteria (>700 phages) and three additional phyla (few phages only). This article assesses the current knowledge of the diversity of the oral phage population and the mechanisms by which phages may impact the ecology of oral biofilms. The potential use of phage-based therapy to control major periodontal pathogens is also discussed.
Collapse
Affiliation(s)
- Szymon P Szafrański
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences and Dental Hygiene, Ostrow School of Dentistry of USC, University of Southern California, Los Angeles, California, USA
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Yu L, Marchisio MA. Types I and V Anti-CRISPR Proteins: From Phage Defense to Eukaryotic Synthetic Gene Circuits. Front Bioeng Biotechnol 2020; 8:575393. [PMID: 33102460 PMCID: PMC7556299 DOI: 10.3389/fbioe.2020.575393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/31/2020] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas (CRISPR-associated proteins), a prokaryotic RNA-mediated adaptive immune system, has been repurposed for gene editing and synthetic gene circuit construction both in bacterial and eukaryotic cells. In the last years, the emergence of the anti-CRISPR proteins (Acrs), which are natural OFF-switches for CRISPR-Cas, has provided a new means to control CRISPR-Cas activity and promoted a further development of CRISPR-Cas-based biotechnological toolkits. In this review, we focus on type I and type V-A anti-CRISPR proteins. We first narrate Acrs discovery and analyze their inhibitory mechanisms from a structural perspective. Then, we describe their applications in gene editing and transcription regulation. Finally, we discuss the potential future usage-and corresponding possible challenges-of these two kinds of anti-CRISPR proteins in eukaryotic synthetic gene circuits.
Collapse
|
5
|
Knott GJ, Cress BF, Liu JJ, Thornton BW, Lew RJ, Al-Shayeb B, Rosenberg DJ, Hammel M, Adler BA, Lobba MJ, Xu M, Arkin AP, Fellmann C, Doudna JA. Structural basis for AcrVA4 inhibition of specific CRISPR-Cas12a. eLife 2019; 8:e49110. [PMID: 31397669 PMCID: PMC6711708 DOI: 10.7554/elife.49110] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
CRISPR-Cas systems provide bacteria and archaea with programmable immunity against mobile genetic elements. Evolutionary pressure by CRISPR-Cas has driven bacteriophage to evolve small protein inhibitors, anti-CRISPRs (Acrs), that block Cas enzyme function by wide-ranging mechanisms. We show here that the inhibitor AcrVA4 uses a previously undescribed strategy to recognize the L. bacterium Cas12a (LbCas12a) pre-crRNA processing nuclease, forming a Cas12a dimer, and allosterically inhibiting DNA binding. The Ac. species Cas12a (AsCas12a) enzyme, widely used for genome editing applications, contains an ancestral helical bundle that blocks AcrVA4 binding and allows it to escape anti-CRISPR recognition. Using biochemical, microbiological, and human cell editing experiments, we show that Cas12a orthologs can be rendered either sensitive or resistant to AcrVA4 through rational structural engineering informed by evolution. Together, these findings explain a new mode of CRISPR-Cas inhibition and illustrate how structural variability in Cas effectors can drive opportunistic co-evolution of inhibitors by bacteriophage.
Collapse
Affiliation(s)
- Gavin J Knott
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Brady F Cress
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Jun-Jie Liu
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Brittney W Thornton
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | | | - Basem Al-Shayeb
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- Graduate Group in BiophysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Benjamin A Adler
- UC Berkeley-UCSF Graduate Program in BioengineeringUniversity of California, BerkeleyBerkeleyUnited States
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyUnited States
| | - Marco J Lobba
- Department of ChemistryUniversity of California, BerkeleyBerkeleyUnited States
| | - Michael Xu
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Adam P Arkin
- Department of BioengineeringUniversity of California, BerkeleyBerkeleyUnited States
- Environmental Genomics and Systems Biology DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Christof Fellmann
- Gladstone InstitutesSan FranciscoUnited States
- Department of Cellular and Molecular PharmacologyUniversity of California, San FranciscoSan FranciscoUnited States
| | - Jennifer A Doudna
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Gladstone InstitutesSan FranciscoUnited States
- Molecular Biophysics and Integrated Bioimaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of ChemistryUniversity of California, BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteUniversity of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biosciences (QB3)University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
6
|
Zhang F, Song G, Tian Y. Anti-CRISPRs: The natural inhibitors for CRISPR-Cas systems. Animal Model Exp Med 2019; 2:69-75. [PMID: 31392299 PMCID: PMC6600654 DOI: 10.1002/ame2.12069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/29/2019] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated protein) systems serve as the adaptive immune system by which prokaryotes defend themselves against phages. It has also been developed into a series of powerful gene-editing tools. As the natural inhibitors of CRISPR-Cas systems, anti-CRISPRs (Acrs) can be used as the "off-switch" for CRISPR-Cas systems to limit the off-target effects caused by Cas9. Since the discovery of CRISPR-Cas systems, much research has focused on the identification, mechanisms and applications of Acrs. In light of the rapid development and scientific significance of this field, this review summarizes the history and research status of Acrs, and considers future applications.
Collapse
Affiliation(s)
- Fei Zhang
- CAS Key Laboratory of RNA BiologyInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Guoxu Song
- CAS Key Laboratory of RNA BiologyInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
| | - Yong Tian
- CAS Key Laboratory of RNA BiologyInstitute of Biophysics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|