1
|
Hancks DC. An Evolutionary Framework Exploiting Virologs and Their Host Origins to Inform Poxvirus Protein Functions. Methods Mol Biol 2025; 2860:257-272. [PMID: 39621273 DOI: 10.1007/978-1-0716-4160-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Poxviruses represent evolutionary successful infectious agents. As a family, poxviruses can infect a wide variety of species including humans, fish, and insects. While many other viruses are species-specific, an individual poxvirus species is often capable of infecting diverse hosts and cell types. For example, the prototypical poxvirus, vaccinia, is well known to infect numerous human cell types but can also infect cells from divergent hosts like frog neurons. Notably, poxvirus infections result in both detrimental human and animal diseases. The most infamous disease linked to a poxvirus is smallpox caused by variola virus. Poxviruses are large double-stranded DNA viruses, which uniquely replicate in the cytoplasm of cells. The model poxvirus genome encodes ~200 nonoverlapping protein-coding open reading frames (ORFs). Poxvirus gene products impact various biological processes like the production of virus particles, the host range of infectivity, and disease pathogenesis. In addition, poxviruses and their gene products have biomedical application with several species commonly engineered for use as vaccines and oncolytic virotherapy. Nevertheless, we still have an incomplete understanding of the functions associated with many poxvirus genes. In this chapter, we outline evolutionary insights that can complement ongoing studies of poxvirus gene functions and biology, which may serve to elucidate new molecular activities linked to this biomedically relevant class of viruses.
Collapse
Affiliation(s)
- Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
2
|
Zhao D, Wang N, Feng X, Zhang Z, Xu K, Zheng T, Yang Y, Li X, Ou X, Zhao R, Rao Z, Bu Z, Chen Y, Wang X. Transcription regulation of African swine fever virus: dual role of M1249L. Nat Commun 2024; 15:10058. [PMID: 39567541 PMCID: PMC11579359 DOI: 10.1038/s41467-024-54461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
African swine fever virus (ASFV), which poses significant risks to the global economy, encodes a unique host-independent transcription system. This system comprises an eight-subunit RNA polymerase (vRNAP), temporally expressed transcription factors and transcript associated proteins, facilitating cross-species transmission via intermediate host. The protein composition of the virion and the presence of transcription factors in virus genome suggest existence of distinct transcription systems during viral infection. However, the precise mechanisms of transcription regulation remain elusive. Through analyses of dynamic transcriptome, vRNAP-associated components and cell-based assay, the critical role of M1249L in viral transcription regulation has been highlighted. Atomic-resolution structures of vRNAP-M1249L supercomplex, exhibiting a variety of conformations, have uncovered the dual functions of M1249L. During early transcription, M1249L could serve as multiple temporary transcription factors with C-terminal domain acting as a switcher for activation/inactivation, while during late transcription it aids in the packaging of the transcription machinery. The structural and functional characteristics of M1249L underscore its vital roles in ASFV transcription, packaging, and capsid assembly, presenting novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Dongming Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Nan Wang
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoying Feng
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenjiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Kongen Xu
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Zheng
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunge Yang
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuemei Li
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xianjin Ou
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Rui Zhao
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zihe Rao
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Zhigao Bu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
| | - Yutao Chen
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Xiangxi Wang
- National Laboratory of Biomacromolecules, Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Zhou S, Liu N, Tian Y, Pan H, Han Y, Li Z, Zhang J, Guan S, Chen H, Song Y. Enzymatic characterization and dominant sites of foot-and-mouth disease virus 2C protein. Heliyon 2024; 10:e35449. [PMID: 39170175 PMCID: PMC11336754 DOI: 10.1016/j.heliyon.2024.e35449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024] Open
Abstract
Foot-and-mouth disease virus (FMDV) 2C protein is a conserved non-structural protein and crucial for replication of the virus. In this study, FMDV 2C protein was prepared and the enzymatic activities were investigated in detail. The protein could digest ssDNA or ssRNA into a small fragment at about 10 nt, indicating that the protein has nuclease activity. But it did not show digestion to blunt-end dsDNA or dsRNA. The nuclease activity of 2C protein could be inhibited in 2 mM Zn2+ or Ca2+ while enhanced by Mg2+ or Mn2+. FMDV 2C protein exhibited unwinding activity to all the three kinds of dsDNA and dsRNA (5' protruded, 3' protruded, and blunt-end). The unwinding velocity to 5' protruded dsRNA was higher than to the blunt-end dsRNA. 2C protein only showed unwinding activity in high concentration of Mg2+, but no unwinding activity in physiological concentrations of Mg2+ and Ca2+, as well as in cell lysate. The 2C protein could catalyze two structured ssRNA to form double strand, thus it was proved to have RNA chaperone activity. The Mg2+ and ATP in different concentrations did not show promotion to the RNA chaperone activity. Finally, six mutant proteins (K116A, D160A, D170A, N207A, R226A, and F316A) were constructed and the enzymatic activities were analyzed. All the six mutations reduced the ATPase activity, D170A and F361A could inactivate the nuclease activity, while the N207A and F316A could inactivate the helicase activity. Our study provides a comprehensive understanding of the enzymatic activities of FMDV 2C protein.
Collapse
Affiliation(s)
- Saisai Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Nankun Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Tian
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hong Pan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yang Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhen Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinhua Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shuaiyin Guan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yunfeng Song
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
4
|
Cackett G, Sýkora M, Portugal R, Dulson C, Dixon L, Werner F. Transcription termination and readthrough in African swine fever virus. Front Immunol 2024; 15:1350267. [PMID: 38545109 PMCID: PMC10965686 DOI: 10.3389/fimmu.2024.1350267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/30/2024] [Indexed: 04/13/2024] Open
Abstract
Introduction African swine fever virus (ASFV) is a nucleocytoplasmic large DNA virus (NCLDV) that encodes its own host-like RNA polymerase (RNAP) and factors required to produce mature mRNA. The formation of accurate mRNA 3' ends by ASFV RNAP depends on transcription termination, likely enabled by a combination of sequence motifs and transcription factors, although these are poorly understood. The termination of any RNAP is rarely 100% efficient, and the transcriptional "readthrough" at terminators can generate long mRNAs which may interfere with the expression of downstream genes. ASFV transcriptome analyses reveal a landscape of heterogeneous mRNA 3' termini, likely a combination of bona fide termination sites and the result of mRNA degradation and processing. While short-read sequencing (SRS) like 3' RNA-seq indicates an accumulation of mRNA 3' ends at specific sites, it cannot inform about which promoters and transcription start sites (TSSs) directed their synthesis, i.e., information about the complete and unprocessed mRNAs at nucleotide resolution. Methods Here, we report a rigorous analysis of full-length ASFV transcripts using long-read sequencing (LRS). We systematically compared transcription termination sites predicted from SRS 3' RNA-seq with 3' ends mapped by LRS during early and late infection. Results Using in-vitro transcription assays, we show that recombinant ASFV RNAP terminates transcription at polyT stretches in the non-template strand, similar to the archaeal RNAP or eukaryotic RNAPIII, unaided by secondary RNA structures or predicted viral termination factors. Our results cement this T-rich motif (U-rich in the RNA) as a universal transcription termination signal in ASFV. Many genes share the usage of the same terminators, while genes can also use a range of terminators to generate transcript isoforms varying enormously in length. A key factor in the latter phenomenon is the highly abundant terminator readthrough we observed, which is more prevalent during late compared with early infection. Discussion This indicates that ASFV mRNAs under the control of late gene promoters utilize different termination mechanisms and factors to early promoters and/or that cellular factors influence the viral transcriptome landscape differently during the late stages of infection.
Collapse
Affiliation(s)
- Gwenny Cackett
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Michal Sýkora
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | | | - Christopher Dulson
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| | - Linda Dixon
- Pirbright Institute, Pirbright, Surrey, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, University College London, London, United Kingdom
| |
Collapse
|
5
|
Pilotto S, Sýkora M, Cackett G, Dulson C, Werner F. Structure of the recombinant RNA polymerase from African Swine Fever Virus. Nat Commun 2024; 15:1606. [PMID: 38383525 PMCID: PMC10881513 DOI: 10.1038/s41467-024-45842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
African Swine Fever Virus is a Nucleo-Cytoplasmic Large DNA Virus that causes an incurable haemorrhagic fever in pigs with a high impact on global food security. ASFV replicates in the cytoplasm of the infected cell and encodes its own transcription machinery that is independent of cellular factors, however, not much is known about how this system works at a molecular level. Here, we present methods to produce recombinant ASFV RNA polymerase, functional assays to screen for inhibitors, and high-resolution cryo-electron microscopy structures of the ASFV RNAP in different conformational states. The ASFV RNAP bears a striking resemblance to RNAPII with bona fide homologues of nine of its twelve subunits. Key differences include the fusion of the ASFV assembly platform subunits RPB3 and RPB11, and an unusual C-terminal domain of the stalk subunit vRPB7 that is related to the eukaryotic mRNA cap 2´-O-methyltransferase 1. Despite the high degree of structural conservation with cellular RNA polymerases, the ASFV RNAP is resistant to the inhibitors rifampicin and alpha-amanitin. The cryo-EM structures and fully recombinant RNAP system together provide an important tool for the design, development, and screening of antiviral drugs in a low biosafety containment environment.
Collapse
Affiliation(s)
- Simona Pilotto
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Michal Sýkora
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Gwenny Cackett
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Christopher Dulson
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Finn Werner
- Institute for Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
6
|
Lv P, Fang Z, Guan J, Lv L, Xu M, Liu X, Li Z, Lan Y, Li Z, Lu H, Song D, He W, Gao F, Wang D, Zhao K. Genistein is effective in inhibiting Orf virus infection in vitro by targeting viral RNA polymerase subunit RPO30 protein. Front Microbiol 2024; 15:1336490. [PMID: 38389526 PMCID: PMC10882098 DOI: 10.3389/fmicb.2024.1336490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/16/2024] [Indexed: 02/24/2024] Open
Abstract
Orf virus (ORFV), a typical member of the genus Parapoxvirus, Poxvirus family, causes a contagious pustular dermatitis in sheep, goats, and humans. Poxviruses encode a multisubunit DNA-dependent RNA polymerase (vRNAP) that carries out viral gene expression in the host cytoplasm, which is a viral factor essential to poxvirus replication. Due to its vital role in viral life, vRNAP has emerged as one of the potential drug targets. In the present study, we investigated the antiviral effect of genistein against ORFV infection. We provided evidence that genistein exerted antiviral effect through blocking viral genome DNA transcription/replication and viral protein synthesis and reducing viral progeny, which were dosedependently decreased in genistein-treated cells. Furthermore, we identified that genistein interacted with the vRNAP RPO30 protein by CETSA, molecular modeling and Fluorescence quenching, a novel antiviral target for ORFV. By blocking vRNAP RPO30 protein using antibody against RPO30, we confirmed that the inhibitory effect exerted by genistein against ORFV infection is mediated through the interaction with RPO30. In conclusion, we demonstrate that genistein effectively inhibits ORFV transcription in host cells by targeting vRNAP RPO30, which might be a promising drug candidate against poxvirus infection.
Collapse
Affiliation(s)
- Pin Lv
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Science, Jilin University, Changchun, China
| | - Ziyu Fang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lijun Lv
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mengshi Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xingyuan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhuomei Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Huijun Lu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Deguang Song
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Feng Gao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dacheng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Science, Jilin University, Changchun, China
| | - Kui Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
7
|
Abduljalil JM, Elfiky AA, Elgohary AM. Exploration of natural compounds against the human mpox virus DNA-dependent RNA polymerase in silico. J Infect Public Health 2023; 16:996-1003. [PMID: 37167647 PMCID: PMC10148721 DOI: 10.1016/j.jiph.2023.04.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Last year, the human monkeypox virus (hMPXV) emerged as an alarming threat to the community, with a detectable outbreak outside the African continent for the first time. According to The American Centers for Disease Control and Prevention (CDC), the virus is reported globally, with 86,746 confirmed cases (until April 08, 2023). DNA-dependent RNA polymerase (DdRp) is an essential protein for viral replication; hence it is a promising drug target for developing antiviral drugs against DNA viruses. Therefore, this study was conducted to search for natural compounds that could provide scaffolds for RNA polymerase inhibitors. METHODS In this study, the DdRp structure of hMPXV was modeled and used to screen the natural compounds database (COCONUT). The virtual screening revealed 15 compounds able to tightly bind to the active site of the DdRp (binding energies less than -7.0 kcal/mol) compared to the physiological nucleotide, guanosine triphosphate (GTP). Molecular dynamics simulation was then performed on the top four hits and compared to GTP RESULTS: The results revealed the potential of four compounds (comp289, comp295, comp441, and comp449) in binding the hMPXV DdRp active site with a comparable binding affinity (-17.06 ± 2.96, -11.6 ± 5.34, -14.85 ± 2.66, and -10.79 ± 4.49 kcal/mol) with GTP (-21.03 ± 7.55 kcal/mol) CONCLUSION: These findings may also pave the way for developing new hMPXV inhibitors based on natural product scaffolds. These results need further experimental validation but promising as it was validated by unbiased all-atom MD simulations and binding free energy calculations.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, Dhamar, Yemen
| | - Abdo A Elfiky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Alaa M Elgohary
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Zhan XY, Zha GF, He Y. Evolutionary dissection of monkeypox virus: Positive Darwinian selection drives the adaptation of virus-host interaction proteins. Front Cell Infect Microbiol 2023; 12:1083234. [PMID: 36710983 PMCID: PMC9880225 DOI: 10.3389/fcimb.2022.1083234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
The emerging and ongoing outbreak of human monkeypox (hMPX) in 2022 is a serious global threat. An understanding of the evolution of the monkeypox virus (MPXV) at the single-gene level may provide clues for exploring the unique aspects of the current outbreak: rapidly expanding and sustained human-to-human transmission. For the current investigation, alleles of 156 MPXV coding genes (which account for >95% of the genomic sequence) have been gathered from roughly 1,500 isolates, including those responsible for the previous outbreaks. Using a range of molecular evolution approaches, we demonstrated that intra-species homologous recombination has a negligible effect on MPXV evolution. Despite the fact that the majority of the MPXV genes (64.10%) were subjected to negative selection at the whole gene level, 10 MPXV coding genes (MPXVgp004, 010, 012, 014, 044, 098, 138, 178, 188, and 191) were found to have a total of 15 codons or amino acid sites that are known to evolve under positive Darwinian selection. Except for MPXVgp138, almost all of these genes encode proteins that interact with the host. Of these, five ankyrin proteins (MPXVgp004, 010, 012, 178, and 188) and one Bcl-2-like protein (MPXVgp014) are involved in poxviruses' host range determination. We discovered that the majority (80%) of positive amino acid substitutions emerged several decades ago, indicating that these sites have been under constant selection pressure and that more adaptable alleles have been circulating in the natural reservoir. This finding was also supported by the minimum spanning networks of the gene alleles. The three positive amino acid substitutions (T/A426V in MPXVgp010, A423D in MPXVgp012, and S105L in MPXVgp191) appeared in 2019 or 2022, indicating that they would be crucial for the virus' eventual adaptation to humans. Protein modeling suggests that positive amino acid substitutions may affect protein functions in a variety of ways. Further study should focus on revealing the biological effects of positive amino acid substitutions in the genes for viral adaptation to humans, virulence, transmission, and so on. Our study advances knowledge of MPXV's adaptive mechanism and provides insights for exploring factors that are responsible for the unique aspects of the current outbreak.
Collapse
Affiliation(s)
- Xiao-Yong Zhan
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| | - Gao-Feng Zha
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| | - Yulong He
- *Correspondence: Xiao-Yong Zhan, ; Gao-Feng Zha, ; Yulong He,
| |
Collapse
|
9
|
Hyun J. Poxvirus under the eyes of electron microscope. Appl Microsc 2022; 52:11. [DOI: 10.1186/s42649-022-00080-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractZoonotic poxvirus infections pose significant threat to human health as we have witnessed recent spread of monkeypox. Therefore, insights into molecular mechanism behind poxvirus replication cycle are needed for the development of efficient antiviral strategies. Virion assembly is one of the key steps that determine the fate of replicating poxviruses. However, in-depth understanding of poxvirus assembly is challenging due to the complex nature of multi-step morphogenesis and heterogeneous virion structures. Despite these challenges, decades of research have revealed virion morphologies at various maturation stages, critical protein components and interactions with host cell compartments. Transmission electron microscopy has been employed as an indispensable tool for the examination of virion morphology, and more recently for the structure determination of protein complexes. In this review, we describe some of the major findings in poxvirus morphogenesis and the contributions of continuously advancing electron microscopy techniques.
Collapse
|
10
|
Grimm C, Bartuli J, Fischer U. Cytoplasmic gene expression: lessons from poxviruses. Trends Biochem Sci 2022; 47:892-902. [DOI: 10.1016/j.tibs.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/12/2022] [Accepted: 04/20/2022] [Indexed: 10/18/2022]
|
11
|
Bartuli J, Lorenzi I, Backes S, Grimm C, Fischer U. A generic protocol for the affinity-purification of native macromolecular complexes from poxvirus-infected cells. STAR Protoc 2022; 3:101116. [PMID: 35118428 PMCID: PMC8792428 DOI: 10.1016/j.xpro.2021.101116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The functional and structural characterization of macromolecular complexes requires protocols for their native isolation. Here, we describe a protocol for this task based on the recombinant poxvirus Vaccinia expressing tagged proteins of interest in infected cells. Tagged proteins and their interactors can then be isolated via affinity chromatography. The procedure is illustrated for the Vaccinia virus encoded multi-subunit RNA polymerase. Our protocol also allows the expression and isolation of heterologous proteins and hence is suitable for a broader application. For complete details on the use and execution of this profile, please refer to Grimm et al. (2019). Generation of endogenously tagged Vaccinia virus (VACV) strains Generation of VACV strains expressing heterologous proteins Protocol for the affinity purification of native macromolecular complexes
Collapse
Affiliation(s)
- Julia Bartuli
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Corresponding author
| | - Isotta Lorenzi
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Corresponding author
| | - Simone Backes
- Institute for Virology and Immunobiology, University of Wuerzburg, Versbacher Straße 7, 97078 Wuerzburg, Germany
| | - Clemens Grimm
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Utz Fischer
- Department of Biochemistry and Cancer Therapy Research Center (CTRC), Theodor Boveri-Institute, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Wuerzburg, Germany
- Corresponding author
| |
Collapse
|
12
|
Ly M, Burgess HM, Shah SB, Mohr I, Glaunsinger BA. Vaccinia virus D10 has broad decapping activity that is regulated by mRNA splicing. PLoS Pathog 2022; 18:e1010099. [PMID: 35202449 PMCID: PMC8903303 DOI: 10.1371/journal.ppat.1010099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/08/2022] [Accepted: 02/10/2022] [Indexed: 01/01/2023] Open
Abstract
The mRNA 5' cap structure serves both to protect transcripts from degradation and promote their translation. Cap removal is thus an integral component of mRNA turnover that is carried out by cellular decapping enzymes, whose activity is tightly regulated and coupled to other stages of the mRNA decay pathway. The poxvirus vaccinia virus (VACV) encodes its own decapping enzymes, D9 and D10, that act on cellular and viral mRNA, but may be regulated differently than their cellular counterparts. Here, we evaluated the targeting potential of these viral enzymes using RNA sequencing from cells infected with wild-type and decapping mutant versions of VACV as well as in uninfected cells expressing D10. We found that D9 and D10 target an overlapping subset of viral transcripts but that D10 plays a dominant role in depleting the vast majority of human transcripts, although not in an indiscriminate manner. Unexpectedly, the splicing architecture of a gene influences how robustly its corresponding transcript is targeted by D10, as transcripts derived from intronless genes are less susceptible to enzymatic decapping by D10. As all VACV genes are intronless, preferential decapping of transcripts from intron-containing genes provides an unanticipated mechanism for the virus to disproportionately deplete host transcripts and remodel the infected cell transcriptome.
Collapse
Affiliation(s)
- Michael Ly
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Hannah M. Burgess
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Sahil B. Shah
- Center for Computational Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, New York, United States of America
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, Berkeley, California, United States of America
| |
Collapse
|
13
|
African Swine Fever Virus and host response - transcriptome profiling of the Georgia 2007/1 strain and porcine macrophages. J Virol 2022; 96:e0193921. [PMID: 35019713 PMCID: PMC8906413 DOI: 10.1128/jvi.01939-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
African swine fever virus (ASFV) has a major global economic impact. With a case fatality in domestic pigs approaching 100%, it currently presents the largest threat to animal farming. Although genomic differences between attenuated and highly virulent ASFV strains have been identified, the molecular determinants for virulence at the level of gene expression have remained opaque. Here, we characterize the transcriptome of ASFV genotype II Georgia 2007/1 (GRG) during infection of the physiologically relevant host cells, porcine macrophages. In this study, we applied cap analysis gene expression sequencing (CAGE-seq) to map th0e 5′ ends of viral mRNAs at 5 and 16 h postinfection. A bioinformatics analysis of the sequence context surrounding the transcription start sites (TSSs) enabled us to characterize the global early and late promoter landscape of GRG. We compared transcriptome maps of the GRG isolate and the lab-attenuated BA71V strain that highlighted GRG virulence-specific transcripts belonging to multigene families, including two predicted MGF 100 genes, I7L and I8L. In parallel, we monitored transcriptome changes in the infected host macrophage cells. Of the 9,384 macrophage genes studied, transcripts for 652 host genes were differentially regulated between 5 and 16 h postinfection compared with only 25 between uninfected cells and 5 h postinfection. NF-κB activated genes and lysosome components such as S100 were upregulated, and chemokines such as CCL24, CXCL2, CXCL5, and CXCL8 were downregulated. IMPORTANCE African swine fever virus (ASFV) causes hemorrhagic fever in domestic pigs, with case fatality rates approaching 100% and no approved vaccines or antivirals. The highly virulent ASFV Georgia 2007/1 strain (GRG) was the first isolated when ASFV spread from Africa to the Caucasus region in 2007, then spreading through Eastern Europe and, more recently, across Asia. We used an RNA-based next-generation sequencing technique called CAGE-seq to map the starts of viral genes across the GRG DNA genome. This has allowed us to investigate which viral genes are expressed during early or late stages of infection and how this is controlled, comparing their expression to the nonvirulent ASFV-BA71V strain to identify key genes that play a role in virulence. In parallel, we investigated how host cells respond to infection, which revealed how the ASFV suppresses components of the host immune response to ultimately win the arms race against its porcine host.
Collapse
|