1
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2024:10.1038/s41576-024-00792-0. [PMID: 39587307 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
2
|
Ming H, Iyyappan R, Kakavand K, Dvoran M, Susor A, Jiang Z. Spatiotemporal dynamics and selectivity of mRNA translation during mouse pre-implantation development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620693. [PMID: 39553972 PMCID: PMC11565823 DOI: 10.1101/2024.10.28.620693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Translational regulation is pivotal during preimplantation development. However, how mRNAs are selected for temporal regulation and their dynamic utilization and fate during this period are still unknown. Using a high-resolution ribosome profiling approach, we analyzed the transcriptome, as well as monosome- and polysome-bound RNAs of mouse oocytes and embryos, defining an unprecedented extent of spatiotemporal translational landscapes during this rapid developmental phase. We observed previously unknown mechanisms of translational selectivity, i.e., stage-wise deferral of loading monosome-bound mRNAs to polysome for active translation, continuous translation of both monosome and polysome-bound mRNAs at the same developmental stage, and priming to monosomes after initial activation. We showed that a eukaryotic initiation factor Eif1ad3, which is exclusively translated in the 2-Cell embryo, is required for ribosome biogenesis post embryonic genome activation. Our study thus provides genome-wide datasets and analyses of spatiotemporal translational dynamics accompanying mammalian germ cell and embryonic development and reveals the contribution of a novel translation initiation factor to mammalian pre-implantation development.
Collapse
Affiliation(s)
- Hao Ming
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Rajan Iyyappan
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kianoush Kakavand
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Rumburska 89, 277 21 Libechov, Czech Republic
| | - Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Zhang Q, Zhang J, Chang G, Zhao K, Yao Y, Liu L, Du Z, Wang Y, Guo X, Zhao Z, Zeng W, Gao S. Decoding molecular features of bovine oocyte fate during antral follicle growth via single-cell multi-omics analysis†. Biol Reprod 2024; 111:815-833. [PMID: 39058647 DOI: 10.1093/biolre/ioae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024] Open
Abstract
Antral follicle size is a useful predictive marker of the competency of enclosed oocytes for yielding an embryo following in vitro maturation and fertilization. However, the molecular mechanisms underpinning oocyte developmental potential during bovine antral follicle growth are still unclear. Here, we used a modified single-cell multi-omics approach to analyze the transcriptome, DNA methylome, and chromatin accessibility in parallel for oocytes and cumulus cells collected from bovine antral follicles of different sizes. Transcriptome profiling identified three types of oocytes (small, medium, and large) that underwent different developmental trajectories, with large oocytes exhibiting the largest average follicle size and characteristics resembling metaphase-II oocytes. Differential expression analysis and real-time polymerase chain reaction assay showed that most replication-dependent histone genes were highly expressed in large oocytes. The joint analysis of multi-omics data revealed that the transcription of 20 differentially expressed genes in large oocytes was associated with both DNA methylation and chromatin accessibility. In addition, oocyte-cumulus interaction analysis showed that inflammation, DNA damage, and p53 signaling pathways were active in small oocytes, which had the smallest average follicle sizes. We further confirmed that p53 pathway inhibition in the in vitro maturation experiments using oocytes obtained from small antral follicles could improve the quality of oocytes and increased the blastocyte rate after in vitro fertilization and culture. Our work provides new insights into the intricate orchestration of bovine oocyte fate determination during antral folliculogenesis, which is instrumental for optimizing in vitro maturation techniques to optimize oocyte quality.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jingyao Zhang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Kun Zhao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yujun Yao
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zihuan Du
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanping Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuai Gao
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Su Z, Dong Y, Sun J, Wu Y, Wei Q, Liang Y, Lin Z, Li Y, Shen L, Xi C, Wu L, Xu Y, Liu Y, Yin J, Wang H, Shi K, Le R, Gao S, Xu X. RNA m 6A modification regulates cell fate transition between pluripotent stem cells and 2-cell-like cells. Cell Prolif 2024; 57:e13696. [PMID: 38952035 PMCID: PMC11503247 DOI: 10.1111/cpr.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/28/2024] [Accepted: 06/06/2024] [Indexed: 07/03/2024] Open
Abstract
N6-methyladenosine (m6A) exerts essential roles in early embryos, especially in the maternal-to-zygotic transition stage. However, the landscape and roles of RNA m6A modification during the transition between pluripotent stem cells and 2-cell-like (2C-like) cells remain elusive. Here, we utilised ultralow-input RNA m6A immunoprecipitation to depict the dynamic picture of transcriptome-wide m6A modifications during 2C-like transitions. We found that RNA m6A modification was preferentially enriched in zygotic genome activation (ZGA) transcripts and MERVL with high expression levels in 2C-like cells. During the exit of the 2C-like state, m6A facilitated the silencing of ZGA genes and MERVL. Notably, inhibition of m6A methyltransferase METTL3 and m6A reader protein IGF2BP2 is capable of significantly delaying 2C-like state exit and expanding 2C-like cells population. Together, our study reveals the critical roles of RNA m6A modification in the transition between 2C-like and pluripotent states, facilitating the study of totipotency and cell fate decision in the future.
Collapse
Affiliation(s)
- Zhongqu Su
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yu Dong
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jiatong Sun
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - You Wu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Qingqing Wei
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
| | - Yuwei Liang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Zhiyi Lin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yujun Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Lu Shen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Chenxiang Xi
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Li Wu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yiliang Xu
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yingdong Liu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jiqing Yin
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Kerong Shi
- College of Animal Science and Technology, Shandong Key Laboratory of Animal Bioengineering and Disease PreventionShandong Agricultural UniversityTai'anShandongChina
| | - Rongrong Le
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xiaocui Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| |
Collapse
|
5
|
Wells GR, Pillai RS. Roles of N 6-methyladenosine writers, readers and erasers in the mammalian germline. Curr Opin Genet Dev 2024; 87:102224. [PMID: 38981182 DOI: 10.1016/j.gde.2024.102224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/06/2024] [Accepted: 06/23/2024] [Indexed: 07/11/2024]
Abstract
N6-methyladenosine (m6A) is the most abundant internal modification of mRNAs in eukaryotes. Numerous studies have shown that m6A plays key roles in many biological and pathophysiological processes, including fertility. The factors involved in m6A-dependent mRNA regulation include writers, which deposit the m6A mark, erasers, which remove it, and readers, which bind to m6A-modified transcripts and mediate the regulation of mRNA fate. Many of these proteins are highly expressed in the germ cells of mammals, and some have been linked to fertility disorders in human patients. In this review, we summarise recent findings on the important roles played by proteins involved in m6A biology in mammalian gametogenesis and fertility. Continued study of the m6A pathway in the mammalian germline will shed further light on the importance of epitranscriptomics in reproduction and may lead to effective treatment of human fertility disorders.
Collapse
Affiliation(s)
- Graeme R Wells
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland.
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
6
|
Deaville LA, Berrens RV. Technology to the rescue: how to uncover the role of transposable elements in preimplantation development. Biochem Soc Trans 2024; 52:1349-1362. [PMID: 38752836 PMCID: PMC11346443 DOI: 10.1042/bst20231262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024]
Abstract
Transposable elements (TEs) are highly expressed in preimplantation development. Preimplantation development is the phase when the cells of the early embryo undergo the first cell fate choice and change from being totipotent to pluripotent. A range of studies have advanced our understanding of TEs in preimplantation, as well as their epigenetic regulation and functional roles. However, many questions remain about the implications of TE expression during early development. Challenges originate first due to the abundance of TEs in the genome, and second because of the limited cell numbers in preimplantation. Here we review the most recent technological advancements promising to shed light onto the role of TEs in preimplantation development. We explore novel avenues to identify genomic TE insertions and improve our understanding of the regulatory mechanisms and roles of TEs and their RNA and protein products during early development.
Collapse
Affiliation(s)
- Lauryn A. Deaville
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
- MRC Weatherall Institute of Molecular Medicine, Oxford University, John Radcliffe Hospital, Oxford OX3 9DS, U.K
| | - Rebecca V. Berrens
- Institute for Developmental and Regenerative Medicine, Oxford University, IMS-Tetsuya Nakamura Building, Old Road Campus, Roosevelt Dr, Oxford OX3 7TY, U.K
- Department of Paediatrics, Oxford University, Level 2, Children's Hospital, John Radcliffe Headington, Oxford OX3 9DU, U.K
| |
Collapse
|
7
|
Li Y, Wang Y, Vera-Rodriguez M, Lindeman LC, Skuggen LE, Rasmussen EMK, Jermstad I, Khan S, Fosslie M, Skuland T, Indahl M, Khodeer S, Klemsdal EK, Jin KX, Dalen KT, Fedorcsak P, Greggains GD, Lerdrup M, Klungland A, Au KF, Dahl JA. Single-cell m 6A mapping in vivo using picoMeRIP-seq. Nat Biotechnol 2024; 42:591-596. [PMID: 37349523 PMCID: PMC10739642 DOI: 10.1038/s41587-023-01831-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 05/17/2023] [Indexed: 06/24/2023]
Abstract
Current N6-methyladenosine (m6A) mapping methods need large amounts of RNA or are limited to cultured cells. Through optimized sample recovery and signal-to-noise ratio, we developed picogram-scale m6A RNA immunoprecipitation and sequencing (picoMeRIP-seq) for studying m6A in vivo in single cells and scarce cell types using standard laboratory equipment. We benchmark m6A mapping on titrations of poly(A) RNA and embryonic stem cells and in single zebrafish zygotes, mouse oocytes and embryos.
Collapse
Affiliation(s)
- Yanjiao Li
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Yunhao Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Maria Vera-Rodriguez
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Reproductive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | | | | | - Erik M K Rasmussen
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Aas, Norway
| | - Ingunn Jermstad
- Norwegian Transgenic Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Shaista Khan
- Norwegian Transgenic Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Madeleine Fosslie
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Trine Skuland
- Department of Reproductive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Division of Gynaecology and Obstetrics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Marie Indahl
- Department of Reproductive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Division of Gynaecology and Obstetrics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Sherif Khodeer
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- KU Leuven-University of Leuven, Department of Development and Regeneration, Leuven Institute for Single-Cell Omics (LISCO), Leuven Stem Cell Institute, Leuven, Belgium
| | | | - Kang-Xuan Jin
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Knut Tomas Dalen
- Norwegian Transgenic Centre, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Peter Fedorcsak
- Department of Reproductive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Division of Gynaecology and Obstetrics, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Gareth D Greggains
- Department of Reproductive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Mads Lerdrup
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Klungland
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
- Department of Microbiology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA.
| | - John Arne Dahl
- Department of Microbiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| |
Collapse
|
8
|
Su X, Lu R, Qu Y, Mu D. Methyltransferase-like 3 mediated RNA m 6 A modifications in the reproductive system: Potentials for diagnosis and therapy. J Cell Mol Med 2024; 28:e18128. [PMID: 38332508 PMCID: PMC10853593 DOI: 10.1111/jcmm.18128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Several studies have highlighted the functional indispensability of methyltransferase-like 3 (METTL3) in the reproductive system. However, a review that comprehensively interprets these studies and elucidates their relationships is lacking. Therefore, the present work aimed to review studies that have investigated the functions of METTL3 in the reproductive system (including spermatogenesis, follicle development, gametogenesis, reproductive cancer, asthenozoospermia and assisted reproduction failure). This review suggests that METTL3 functions not only essential for normal development, but also detrimental in the occurrence of disorders. In addition, promising applications of METTL3 as a diagnostic or prognostic biomarker and therapeutic target for reproductive disorders have been proposed. Collectively, this review provides comprehensive interpretations, novel insights, potential applications and future perspectives on the role of METTL3 in regulating the reproductive system, which may be a valuable reference for researchers and clinicians.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Ruifeng Lu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Yi Qu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| | - Dezhi Mu
- Department of Pediatrics/Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education)West China Second University Hospital, Sichuan UniversityChengduChina
- NHC Key Laboratory of Chronobiology (Sichuan University)ChengduChina
| |
Collapse
|
9
|
Guo Y, Li TD, Modzelewski AJ, Siomi H. Retrotransposon renaissance in early embryos. Trends Genet 2024; 40:39-51. [PMID: 37949723 DOI: 10.1016/j.tig.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/12/2023]
Abstract
Despite being the predominant genetic elements in mammalian genomes, retrotransposons were often dismissed as genomic parasites with ambiguous biological significance. However, recent studies reveal their functional involvement in early embryogenesis, encompassing crucial processes such as zygotic genome activation (ZGA) and cell fate decision. This review underscores the paradigm shift in our understanding of retrotransposon roles during early preimplantation development, as well as their rich functional reservoir that is exploited by the host to provide cis-regulatory elements, noncoding RNAs, and functional proteins. The rapid advancement in long-read sequencing, low input multiomics profiling, advanced in vitro systems, and precise gene editing techniques encourages further dissection of retrotransposon functions that were once obscured by the intricacies of their genomic footprints.
Collapse
Affiliation(s)
- Youjia Guo
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan
| | - Ten D Li
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA
| | - Andrew J Modzelewski
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA.
| | - Haruhiko Siomi
- Department of Molecular Biology, Keio University School of Medicine, Shinjuku, Tokyo 160-8582, Japan; Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo 160-8582, Japan.
| |
Collapse
|
10
|
Zhao Y, Li J, Lian Y, Zhou Q, Wu Y, Kang J. METTL3-Dependent N6-Methyladenosine Modification Programs Human Neural Progenitor Cell Proliferation. Int J Mol Sci 2023; 24:15535. [PMID: 37958523 PMCID: PMC10647291 DOI: 10.3390/ijms242115535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
METTL3, a methyltransferase responsible for N6-methyladenosine (m6A) modification, plays key regulatory roles in mammal central neural system (CNS) development. However, the specific epigenetic mechanisms governing human CNS development remain poorly elucidated. Here, we generated small-molecule-assisted shut-off (SMASh)-tagged hESC lines to reduce METTL3 protein levels, and found that METTL3 is not required for human neural progenitor cell (hNPC) formation and neuron differentiation. However, METTL3 deficiency inhibited hNPC proliferation by reducing SLIT2 expression. Mechanistic studies revealed that METTL3 degradation in hNPCs significantly decreased the enrichment of m6A in SLIT2 mRNA, consequently reducing its expression. Our findings reveal a novel functional target (SLIT2) for METTL3 in hNPCs and contribute to a better understanding of m6A-dependent mechanisms in hNPC proliferation.
Collapse
Affiliation(s)
- Yuan Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jianguo Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yilin Lian
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qian Zhou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yukang Wu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Maternal Fetal Medicine, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; (Y.Z.); (J.L.); (Y.L.); (Q.Z.)
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center of Stem Cell Research, National Stem Cell Translational Resource Center, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Bai L, Xiang Y, Tang M, Liu S, Chen Q, Chen Q, Zhang M, Wan S, Sang Y, Li Q, Wang S, Li Z, Song Y, Hu X, Mao L, Feng G, Cui L, Ye Y, Zhu Y. ALKBH5 controls the meiosis-coupled mRNA clearance in oocytes by removing the N 6-methyladenosine methylation. Nat Commun 2023; 14:6532. [PMID: 37848452 PMCID: PMC10582257 DOI: 10.1038/s41467-023-42302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
N6-methyladenosine (m6A) maintains maternal RNA stability in oocytes. One regulator of m6A, ALKBH5, reverses m6A deposition and is essential in RNA metabolism. However, the specific role of ALKBH5 in oocyte maturation remains elusive. Here, we show that Alkbh5 depletion causes a wide range of defects in oocyte meiosis and results in female infertility. Temporal profiling of the maternal transcriptomes revealed striking RNA accumulation in Alkbh5-/- oocytes during meiotic maturation. Analysis of m6A dynamics demonstrated that ALKBH5-mediated m6A demethylation ensures the timely degradation of maternal RNAs, which is severely disrupted following Alkbh5-/- depletion. A distinct subset of transcripts with persistent m6A peaks are recognized by the m6A reader IGF2BP2 and thus remain stabilized, resulting in impaired RNA clearance. Additionally, reducing IGF2BP2 in Alkbh5-depleted oocytes partially rescued these defects. Overall, this work identifies ALKBH5 as a key determinant of oocyte quality and unveil the facilitating role of ALKBH5-mediated m6A removal in maternal RNA decay.
Collapse
Affiliation(s)
- Long Bai
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| | - Yu Xiang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Minyue Tang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Shuangying Liu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Qingqing Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Qichao Chen
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Min Zhang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Shan Wan
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yimiao Sang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Qingfang Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Sisi Wang
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Zhekun Li
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yang Song
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Xiaoling Hu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Luna Mao
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Guofang Feng
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Long Cui
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Yimin Zhu
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310006, China.
- Key Laboratory of Reproductive Genetics (Ministry of Education), Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
- Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|