1
|
Schneider F, Cespedes PF, Karedla N, Dustin ML, Fritzsche M. Quantifying biomolecular organisation in membranes with brightness-transit statistics. Nat Commun 2024; 15:7082. [PMID: 39152104 PMCID: PMC11329664 DOI: 10.1038/s41467-024-51435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Cells crucially rely on the interactions of biomolecules at their plasma membrane to maintain homeostasis. Yet, a methodology to systematically quantify biomolecular organisation, measuring diffusion dynamics and oligomerisation, represents an unmet need. Here, we introduce the brightness-transit statistics (BTS) method based on fluorescence fluctuation spectroscopy and combine information from brightness and transit times to elucidate biomolecular diffusion and oligomerisation in both cell-free in vitro and in vitro systems incorporating living cells. We validate our approach in silico with computer simulations and experimentally using oligomerisation of EGFP tethered to supported lipid bilayers. We apply our pipeline to study the oligomerisation of CD40 ectodomain in vitro and endogenous CD40 on primary B cells. While we find a potential for CD40 to oligomerize in a concentration or ligand depended manner, we do not observe mobile oligomers on B cells. The BTS method combines sensitive analysis, quantification, and intuitive visualisation of dynamic biomolecular organisation.
Collapse
Affiliation(s)
- Falk Schneider
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Translational Imaging Center, University of Southern California, Los Angeles, California, 90089, United States of America.
| | - Pablo F Cespedes
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Narain Karedla
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom
| | - Michael L Dustin
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom.
| |
Collapse
|
2
|
Katoozi D, Clayton AHA, Moss DJ, Chon JWM. On the accuracy bounds of high-order image correlation spectroscopy. OPTICS EXPRESS 2024; 32:22095-22109. [PMID: 39538705 DOI: 10.1364/oe.521390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/22/2024] [Indexed: 11/16/2024]
Abstract
High-order image correlation spectroscopy (HICS) or related image-based cumulant analysis of emitter species are important for identifying properties and concentrations of biomolecules or nanoparticles. However, lack of a thorough parameter space test limits its use in full potential. The current study focused on mapping accuracy bounds of bimodal species concentration space by simulating and analysing more than 2 × 105 images (∼1011 data points). Concentration space maps for four values of quantum yield contrast ratio between two species in a mixture and two sampling spaces (834 and 13357 beam areas in an image) were created, which showed clear accuracy bounds governed by two factors, Poisson fluctuation and quantum yield ratio. Typically, brighter species concentration was 1-3 orders of magnitude lower than that of dimmer species, and higher brightness contrast allowed higher concentration difference. Upper limit of accuracy bounds was governed by resolvable Poisson fluctuation, where this condition was violated for emitter density beyond 10 particles per beam area. The accuracy bounds are shown to be largely invariant under noise correction or the calculation method, and are compared against previous experimental results, showing consistent agreement. This study shows that concentration limit needs to be observed when using HICS or related image moment or cumulant analysis techniques. As a rule of thumb, a large quantum yield contrast and large sampling points allow more concentration difference between two species to be resolved in an analysis.
Collapse
|
3
|
Abouelkheir M, Roy T, Krzyscik MA, Özdemir E, Hristova K. Investigations of membrane protein interactions in cells using fluorescence microscopy. Curr Opin Struct Biol 2024; 86:102816. [PMID: 38648680 PMCID: PMC11141325 DOI: 10.1016/j.sbi.2024.102816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The interactions between proteins in membranes govern many cellular functions. Our ability to probe for such interactions has greatly evolved in recent years due to the introduction of new fluorescence techniques. As a result, we currently have a choice of methods that can be used to assess the spatial distribution of a membrane protein, its association state, and the thermodynamic stability of the oligomers in the native milieu. These biophysical measurements have revealed new insights into important biological processes in cellular membranes.
Collapse
Affiliation(s)
- Mahmoud Abouelkheir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA; Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore MD 21218, USA
| | - Tanaya Roy
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Mateusz A Krzyscik
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Ece Özdemir
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore MD 21218, USA; Chemistry-Biology Interface Program, Johns Hopkins University, Baltimore MD 21218, USA.
| |
Collapse
|
4
|
Liu J, Yu S, Yu W, Dong C, Huang X, Ren J. CRDBP Protein Phase Separation and Its Recruitment to β-Catenin Protein in a Single Living Cell. J Phys Chem B 2023; 127:10498-10507. [PMID: 38051203 DOI: 10.1021/acs.jpcb.3c06346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The Coding Region Determinant-Binding Protein (CRDBP) is a carcinoembryonic protein, and it is overexpressed in various cancer cells in the form of granules. We speculated the formation of CRDBP granules possibly through liquid-liquid phase separation (LLPS) processes due to the existence of intrinsically disordered regions (IDRs) in CRDBP. So far, we did not know whether or how phase separation processes of CRDBP occur in single living cells due to the lack of in vivo methods for studying intracellular protein phase separation. Therefore, to develop an in situ method for studying protein phase separation in living cells is a very urgent task. In this work, we proposed an efficient method for studying phase separation behavior of CRDBP in a single living cell by combining in situ fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) with a fluorescence protein fusion technique. We first predicted and confirmed that CRDBP has phase separation in solution by conventional fluorescence imaging and FCS methods. And then, we in situ studied the phase separation behaviors of CRDBP in living cells and observed three states of CRDBP phase separation such as monomer state, cluster state, and granule state. We studied the effects of CRDBP truncated forms and its inhibitor on the CRDBP phase separation. Furthermore, we discovered the recruitment of CRDBP to β-catenin protein in living cells and investigated the effects of CRDBP structures and inhibitor on CRDBP recruitment behavior. This finding may help us to further understand the mechanism of CRDBP protein for regulating Wnt signaling pathway. Additionally, our results documented that FCS/FCCS is an efficient and alternative method for studying protein phase separation in situ in living cells.
Collapse
Affiliation(s)
- Jian Liu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Shengrong Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wenxin Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
5
|
McKenzie DM, Wirth D, Pogorelov TV, Hristova K. Utility of FRET in studies of membrane protein oligomerization: The concept of the effective dissociation constant. Biophys J 2023; 122:4113-4120. [PMID: 37735871 PMCID: PMC10598290 DOI: 10.1016/j.bpj.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023] Open
Abstract
The activity of many membrane receptors is controlled through their lateral association into dimers or higher-order oligomers. Although Förster resonance energy transfer (FRET) measurements have been used extensively to characterize the stability of receptor dimers, the utility of FRET in studies of larger oligomers has been limited. Here we introduce an effective equilibrium dissociation constant that can be extracted from FRET measurements for EphA2, a receptor tyrosine kinase (RTK) known to form active oligomers of heterogeneous distributions in response to its ligand ephrinA1-Fc. The newly introduced effective equilibrium dissociation constant has a well-defined physical meaning and biological significance. It denotes the receptor concentration for which half of the receptors are monomeric and inactive, and the other half are associated into oligomers and are active, irrespective of the exact oligomer size. This work introduces a new dimension to the utility of FRET in studies of membrane receptor association and signaling in the plasma membrane.
Collapse
Affiliation(s)
- Daniel M McKenzie
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland
| | - Daniel Wirth
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland
| | - Taras V Pogorelov
- Department of Chemistry, Center for Biophysics and Quantitative Biology, School of Chemical Sciences, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 Charles Street, Baltimore, Maryland.
| |
Collapse
|
6
|
Mekonnen G, Djaja N, Yuan X, Myong S. Advanced imaging techniques for studying protein phase separation in living cells and at single-molecule level. Curr Opin Chem Biol 2023; 76:102371. [PMID: 37523989 PMCID: PMC10528199 DOI: 10.1016/j.cbpa.2023.102371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 08/02/2023]
Abstract
Protein-protein and protein-RNA interactions are essential for cell function and survival. These interactions facilitate the formation of ribonucleoprotein complexes and biomolecular condensates via phase separation. Such assembly is involved in transcription, splicing, translation and stress response. When dysregulated, proteins and RNA can undergo irreversible aggregation which can be cytotoxic and pathogenic. Despite technical advances in investigating biomolecular condensates, achieving the necessary spatiotemporal resolution to deduce the parameters that govern their assembly and behavior has been challenging. Many laboratories have applied advanced microscopy methods for imaging condensates. For example, single molecule imaging methods have enabled the detection of RNA-protein interaction, protein-protein interaction, protein conformational dynamics, and diffusional motion of molecules that report on the intrinsic molecular interactions underlying liquid-liquid phase separation. This review will outline advances in both microscopy and spectroscopy techniques which allow single molecule detection and imaging, and how these techniques can be used to probe unique aspects of biomolecular condensates.
Collapse
Affiliation(s)
- Gemechu Mekonnen
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Nathalie Djaja
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Xincheng Yuan
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Sua Myong
- Program in Cellular Molecular Developmental Biology and Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA; Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA.
| |
Collapse
|
7
|
Royer CA, Tyers M, Tollis S. Absolute quantification of protein number and dynamics in single cells. Curr Opin Struct Biol 2023; 82:102673. [PMID: 37595512 DOI: 10.1016/j.sbi.2023.102673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 08/20/2023]
Abstract
Quantitative characterization of protein abundance and interactions in live cells is necessary to understand and predict cellular behavior. The accurate determination of copy number for individual proteins and heterologous complexes in individual cells is critical because small changes in protein dosage, often less than two-fold, can have strong phenotypic consequences. Here, we review the merits and pitfalls of different quantitative fluorescence imaging methods for single-cell determination of protein abundance, localization, interactions, and dynamics. In particular, we discuss how scanning number and brightness (sN&B) and its variation, Raster scanning image correlation spectroscopy (RICS), exploit stochastic noise in small measurement volumes to quantify protein abundance, stoichiometry, and dynamics with high accuracy.
Collapse
Affiliation(s)
- Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy NY 12180, USA.
| | - Mike Tyers
- Program in Molecular Medicine, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sylvain Tollis
- Institute of Biomedicine, University of Eastern Finland, Kuopio 70210 Finland
| |
Collapse
|
8
|
van Zanten TS, S GP, Mayor S. Quantitative fluorescence emission anisotropy microscopy for implementing homo-fluorescence resonance energy transfer measurements in living cells. Mol Biol Cell 2023; 34:tp1. [PMID: 37144969 DOI: 10.1091/mbc.e22-09-0446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023] Open
Abstract
Quantitative fluorescence emission anisotropy microscopy reveals the organization of fluorescently labeled cellular components and allows their characterization in terms of changes in either rotational diffusion or homo-Förster's energy transfer characteristics in living cells. These properties provide insights into molecular organization, such as orientation, confinement, and oligomerization in situ. Here we elucidate how quantitative measurements of anisotropy using multiple microscope systems may be made by bringing out the main parameters that influence the quantification of fluorescence emission anisotropy. We focus on a variety of parameters that contribute to errors associated with the measurement of emission anisotropy in a microscope. These include the requirement for adequate photon counts for the necessary discrimination of anisotropy values, the influence of extinction ratios of the illumination source, the detector system, the role of numerical aperture, and excitation wavelength. All these parameters also affect the ability to capture the dynamic range of emission anisotropy necessary for quantifying its reduction due to homo-FRET and other processes. Finally, we provide easily implementable tests to assess whether homo-FRET is a cause for the observed emission depolarization.
Collapse
Affiliation(s)
- Thomas S van Zanten
- Cell Biology Group, National Centre for Biological Sciences, UAS-GKVK Campus, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Greeshma Pradeep S
- Cell Biology Group, National Centre for Biological Sciences, UAS-GKVK Campus, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Satyajit Mayor
- Cell Biology Group, National Centre for Biological Sciences, UAS-GKVK Campus, Tata Institute for Fundamental Research, Bangalore 560065, India
| |
Collapse
|
9
|
Benisty H, Song A, Mishne G, Charles AS. Review of data processing of functional optical microscopy for neuroscience. NEUROPHOTONICS 2022; 9:041402. [PMID: 35937186 PMCID: PMC9351186 DOI: 10.1117/1.nph.9.4.041402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
Functional optical imaging in neuroscience is rapidly growing with the development of optical systems and fluorescence indicators. To realize the potential of these massive spatiotemporal datasets for relating neuronal activity to behavior and stimuli and uncovering local circuits in the brain, accurate automated processing is increasingly essential. We cover recent computational developments in the full data processing pipeline of functional optical microscopy for neuroscience data and discuss ongoing and emerging challenges.
Collapse
Affiliation(s)
- Hadas Benisty
- Yale Neuroscience, New Haven, Connecticut, United States
| | - Alexander Song
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Gal Mishne
- UC San Diego, Halıcığlu Data Science Institute, Department of Electrical and Computer Engineering and the Neurosciences Graduate Program, La Jolla, California, United States
| | - Adam S. Charles
- Johns Hopkins University, Kavli Neuroscience Discovery Institute, Center for Imaging Science, Department of Biomedical Engineering, Department of Neuroscience, and Mathematical Institute for Data Science, Baltimore, Maryland, United States
| |
Collapse
|
10
|
Ng WS, Sielaff H, Zhao ZW. Phase Separation-Mediated Chromatin Organization and Dynamics: From Imaging-Based Quantitative Characterizations to Functional Implications. Int J Mol Sci 2022; 23:8039. [PMID: 35887384 PMCID: PMC9316379 DOI: 10.3390/ijms23148039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/14/2022] Open
Abstract
As an effective and versatile strategy to compartmentalize cellular components without the need for lipid membranes, phase separation has been found to underpin a wide range of intranuclear processes, particularly those involving chromatin. Many of the unique physico-chemical properties of chromatin-based phase condensates are harnessed by the cell to accomplish complex regulatory functions in a spatially and temporally controlled manner. Here, we survey key recent findings on the mechanistic roles of phase separation in regulating the organization and dynamics of chromatin-based molecular processes across length scales, packing states and intranuclear functions, with a particular emphasis on quantitative characterizations of these condensates enabled by advanced imaging-based approaches. By illuminating the complex interplay between chromatin and various chromatin-interacting molecular species mediated by phase separation, this review sheds light on an emerging multi-scale, multi-modal and multi-faceted landscape that hierarchically regulates the genome within the highly crowded and dynamic nuclear space. Moreover, deficiencies in existing studies also highlight the need for mechanism-specific criteria and multi-parametric approaches for the characterization of chromatin-based phase separation using complementary techniques and call for greater efforts to correlate the quantitative features of these condensates with their functional consequences in close-to-native cellular contexts.
Collapse
Affiliation(s)
- Woei Shyuan Ng
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; (W.S.N.); (H.S.)
- Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore
| | - Hendrik Sielaff
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; (W.S.N.); (H.S.)
- Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore
| | - Ziqing Winston Zhao
- Department of Chemistry, Faculty of Science, National University of Singapore, Singapore 119543, Singapore; (W.S.N.); (H.S.)
- Centre for BioImaging Sciences (CBIS), Faculty of Science, National University of Singapore, Singapore 117557, Singapore
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
11
|
Solano A, Lou J, Scipioni L, Gratton E, Hinde E. Radial pair correlation of molecular brightness fluctuations maps protein diffusion as a function of oligomeric state within live-cell nuclear architecture. Biophys J 2022; 121:2152-2167. [PMID: 35490296 PMCID: PMC9247470 DOI: 10.1016/j.bpj.2022.04.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nuclear proteins can modulate their DNA binding activity and the exploration volume available during DNA target search by self-associating into higher-order oligomers. Directly tracking this process in the nucleoplasm of a living cell is, however, a complex task. Thus, here we present a microscopy method based on radial pair correlation of molecular brightness fluctuations (radial pCOMB) that can extract the mobility of a fluorescently tagged nuclear protein as a function of its oligomeric state and spatiotemporally map the anisotropy of this parameter with respect to nuclear architecture. By simply performing a rapid frame scan acquisition, radial pCOMB has the capacity to detect, within each pixel, protein oligomer formation and the size-dependent obstruction nuclear architecture imparts on this complex's transport across sub-micrometer distances. From application of radial pCOMB to an oligomeric transcription factor and DNA repair protein, we demonstrate that homo-oligomer formation differentially regulates chromatin accessibility and interaction with the DNA template.
Collapse
Affiliation(s)
- Ashleigh Solano
- School of Physics, University of Melbourne; Department of Biochemistry and Pharmacology, University of Melbourne
| | - Jieqiong Lou
- School of Physics, University of Melbourne; Department of Biochemistry and Pharmacology, University of Melbourne
| | - Lorenzo Scipioni
- Department of Biomedical Engineering, University of California, Irvine
| | - Enrico Gratton
- Department of Biomedical Engineering, University of California, Irvine.
| | - Elizabeth Hinde
- School of Physics, University of Melbourne; Department of Biochemistry and Pharmacology, University of Melbourne.
| |
Collapse
|
12
|
Litsios A, Goswami P, Terpstra HM, Coffin C, Vuillemenot LA, Rovetta M, Ghazal G, Guerra P, Buczak K, Schmidt A, Tollis S, Tyers M, Royer CA, Milias-Argeitis A, Heinemann M. The timing of Start is determined primarily by increased synthesis of the Cln3 activator rather than dilution of the Whi5 inhibitor. Mol Biol Cell 2022; 33:rp2. [PMID: 35482514 PMCID: PMC9282015 DOI: 10.1091/mbc.e21-07-0349] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Athanasios Litsios
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Pooja Goswami
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Hanna M Terpstra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Carleton Coffin
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Luc-Alban Vuillemenot
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Mattia Rovetta
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Ghada Ghazal
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada
| | - Paolo Guerra
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Sylvain Tollis
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada.,Institute of Biomedicine, University of Eastern Finland, FI-70210 Kuopio, Finland
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, University of Montréal, Montréal, H3T 1J4 QC, Canada
| | - Catherine A Royer
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180
| | - Andreas Milias-Argeitis
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, Netherlands
| |
Collapse
|
13
|
Sefkow-Werner J, Migliorini E, Picart C, Wahyuni D, Wang I, Delon A. Combining Fluorescence Fluctuations and Photobleaching to Quantify Surface Density. Anal Chem 2022; 94:6521-6528. [PMID: 35446542 DOI: 10.1021/acs.analchem.1c05513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have established a self-calibrated method, called pbFFS for photobleaching fluctuation fluorescence spectroscopy, which aims to characterize molecules or particles labeled with an unknown distribution of fluorophores. Using photobleaching as a control parameter, pbFFS provides information on the distribution of fluorescent labels and a reliable estimation of the absolute density or concentration of these molecules. We present a complete theoretical derivation of the pbFFS approach and experimentally apply it to measure the surface density of a monolayer of fluorescently tagged streptavidin molecules, which can be used as a base platform for biomimetic systems. The surface density measured by pbFFS is consistent with the results of spectroscopic ellipsometry, a standard surface technique. However, pbFFS has two main advantages: it enables in situ characterization (no dedicated substrates are required) and can be applied to low masses of adsorbed molecules, which we demonstrate here by quantifying the density of biotin-Atto molecules that bind to the streptavidin layer. In addition to molecules immobilized on a surface, we also applied pbFFS to molecules diffusing in solution, to confirm the distribution of fluorescent labels found on a surface. Hence, pbFFS provides a set of tools for investigating the molecules labeled with a variable number of fluorophores, with the aim of quantifying either the number of molecules or the distribution of fluorescent labels, the latter case being especially relevant for oligomerization studies.
Collapse
Affiliation(s)
- Julius Sefkow-Werner
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, 38054 Grenoble, France.,Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 38016 Grenoble, France
| | - Elisa Migliorini
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, 38054 Grenoble, France.,Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 38016 Grenoble, France
| | - Catherine Picart
- Univ. Grenoble Alpes, INSERM U1292, CEA, CNRS EMR 5000 BRM, IRIG Institute, CEA, 38054 Grenoble, France.,Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, 38016 Grenoble, France
| | - Dwiria Wahyuni
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Irène Wang
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| | - Antoine Delon
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France
| |
Collapse
|
14
|
Liao M, Kuo YW, Howard J. Counting fluorescently labeled proteins in tissues in the spinning disk microscope using single-molecule calibrations. Mol Biol Cell 2022; 33:ar48. [PMID: 35323029 PMCID: PMC9265152 DOI: 10.1091/mbc.e21-12-0618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Quantification of molecular numbers and concentrations in living cells is critical for testing models of complex biological phenomena. Counting molecules in cells requires estimation of the fluorescence intensity of single molecules, which is generally limited to imaging near cell surfaces, in isolated cells, or where motions are diffusive. To circumvent this difficulty, we have devised a calibration technique for spinning–disk confocal microscopy, commonly used for imaging in tissues, that uses single–step bleaching kinetics to estimate the single–fluorophore intensity. To cross–check our calibrations, we compared the brightness of fluorophores in the SDC microscope to those in the total internal reflection and epifluorescence microscopes. We applied this calibration method to quantify the number of end–binding protein 1 (EB1)–eGFP in the comets of growing microtubule ends and to measure the cytoplasmic concentration of EB1–eGFP in sensory neurons in fly larvae. These measurements allowed us to estimate the dissociation constant of EB1–eGFP from the microtubules as well as the GTP–tubulin cap size. Our results show the unexplored potential of single–molecule imaging using spinning–disk confocal microscopy and provide a straightforward method to count the absolute number of fluorophores in tissues that can be applied to a wide range of biological systems and imaging techniques.
Collapse
Affiliation(s)
- Maijia Liao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Yin-Wei Kuo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
15
|
Owyong TC, Hong Y. Emerging fluorescence tools for the study of proteostasis in cells. Curr Opin Chem Biol 2022; 67:102116. [PMID: 35176555 DOI: 10.1016/j.cbpa.2022.102116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/22/2021] [Accepted: 01/12/2022] [Indexed: 11/25/2022]
Abstract
Understanding how cells maintain the functional proteome and respond to stress conditions is critical for deciphering molecular pathogenesis and developing treatments for conditions such as neurodegenerative diseases. Efforts towards finer quantification of cellular proteostasis machinery efficiency, phase transitions and local environment changes remain a priority. Herein, we describe recent developments in fluorescence-based strategy and methodology, building on the experimental toolkit, for the study of proteostasis (protein homeostasis) in cells. We hope this review can assist in bridging gaps between a multitude of research disciplines and promote interdisciplinary collaboration to address the crucial topic of proteostasis.
Collapse
Affiliation(s)
- Tze Cin Owyong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia; ARC Centre of Excellence in Exciton Science, School of Chemistry, Bio21 Institute, The University of Melbourne, Victoria, 3010, Australia
| | - Yuning Hong
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
16
|
Lv X, Jin K, Sun G, Ledesma-Amaro R, Liu L. Microscopy imaging of living cells in metabolic engineering. Trends Biotechnol 2021; 40:752-765. [PMID: 34799183 DOI: 10.1016/j.tibtech.2021.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/25/2021] [Accepted: 10/25/2021] [Indexed: 01/23/2023]
Abstract
Microscopy imaging of living cells is becoming a pivotal, noninvasive, and highly specific tool in metabolic engineering to visualize molecular dynamics in industrial microorganisms. This review describes the different microscopy methods, from fluorescence to super resolution, with application in microbial bioengineering. Firstly, the role and importance of microscopy imaging is analyzed in the context of strain design. Then, the advantages and disadvantages of different microscopy technologies are discussed, including confocal laser scanning microscopy (CLSM), spatial light interference microscopy (SLIM), and super-resolution microscopy, followed by their applications in synthetic biology. Finally, the future perspectives of live-cell imaging and their potential to transform microbial systems are analyzed. This review provides theoretical guidance and highlights the importance of microscopy in understanding and engineering microbial metabolism.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guoyun Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW72AZ, UK
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
17
|
Cerutti E, D'Amico M, Cainero I, Dellino GI, Faretta M, Vicidomini G, Pelicci PG, Bianchini P, Diaspro A, Lanzanò L. Evaluation of sted super-resolution image quality by image correlation spectroscopy (QuICS). Sci Rep 2021; 11:20782. [PMID: 34675304 PMCID: PMC8531054 DOI: 10.1038/s41598-021-00301-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/08/2021] [Indexed: 12/05/2022] Open
Abstract
Quantifying the imaging performances in an unbiased way is of outmost importance in super-resolution microscopy. Here, we describe an algorithm based on image correlation spectroscopy (ICS) that can be used to assess the quality of super-resolution images. The algorithm is based on the calculation of an autocorrelation function and provides three different parameters: the width of the autocorrelation function, related to the spatial resolution; the brightness, related to the image contrast; the relative noise variance, related to the signal-to-noise ratio of the image. We use this algorithm to evaluate the quality of stimulated emission depletion (STED) images of DNA replication foci in U937 cells acquired under different imaging conditions. Increasing the STED depletion power improves the resolution but may reduce the image contrast. Increasing the number of line averages improves the signal-to-noise ratio but facilitates the onset of photobleaching and subsequent reduction of the image contrast. Finally, we evaluate the performances of two different separation of photons by lifetime tuning (SPLIT) approaches: the method of tunable STED depletion power and the commercially available Leica Tau-STED. We find that SPLIT provides an efficient way to improve the resolution and contrast in STED microscopy.
Collapse
Affiliation(s)
- Elena Cerutti
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy.,Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Morgana D'Amico
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy
| | - Isotta Cainero
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, 20139, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.,DIFILAB, Department of Physics, University of Genoa, via Dodecaneso 33, 16143, Genoa, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123, Catania, Italy. .,Nanoscopy and NIC@IIT, CHT Erzelli, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152, Genoa, Italy.
| |
Collapse
|
18
|
Emenecker RJ, Holehouse AS, Strader LC. Biological Phase Separation and Biomolecular Condensates in Plants. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:17-46. [PMID: 33684296 PMCID: PMC8221409 DOI: 10.1146/annurev-arplant-081720-015238] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A surge in research focused on understanding the physical principles governing the formation, properties, and function of membraneless compartments has occurred over the past decade. Compartments such as the nucleolus, stress granules, and nuclear speckles have been designated as biomolecular condensates to describe their shared property of spatially concentrating biomolecules. Although this research has historically been carried out in animal and fungal systems, recent work has begun to explore whether these same principles are relevant in plants. Effectively understanding and studying biomolecular condensates require interdisciplinary expertise that spans cell biology, biochemistry, and condensed matter physics and biophysics. As such, some involved concepts may be unfamiliar to any given individual. This review focuses on introducing concepts essential to the study of biomolecular condensates and phase separation for biologists seeking to carry out research in this area and further examines aspects of biomolecular condensates that are relevant to plant systems.
Collapse
Affiliation(s)
- Ryan J Emenecker
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Center for Science and Engineering of Living Systems, Washington University, St. Louis, Missouri 63130, USA
- Center for Engineering MechanoBiology, Washington University, St. Louis, Missouri 63130, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
- Center for Science and Engineering of Living Systems, Washington University, St. Louis, Missouri 63130, USA
| | - Lucia C Strader
- Center for Science and Engineering of Living Systems, Washington University, St. Louis, Missouri 63130, USA
- Center for Engineering MechanoBiology, Washington University, St. Louis, Missouri 63130, USA
- Department of Biology, Duke University, Durham, North Carolina 27708, USA;
| |
Collapse
|
19
|
Emenecker RJ, Holehouse AS, Strader LC. Sequence determinants of in cell condensate morphology, dynamics, and oligomerization as measured by number and brightness analysis. Cell Commun Signal 2021; 19:65. [PMID: 34090478 PMCID: PMC8178893 DOI: 10.1186/s12964-021-00744-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/20/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Biomolecular condensates are non-stoichiometric assemblies that are characterized by their capacity to spatially concentrate biomolecules and play a key role in cellular organization. Proteins that drive the formation of biomolecular condensates frequently contain oligomerization domains and intrinsically disordered regions (IDRs), both of which can contribute multivalent interactions that drive higher-order assembly. Our understanding of the relative and temporal contribution of oligomerization domains and IDRs to the material properties of in vivo biomolecular condensates is limited. Similarly, the spatial and temporal dependence of protein oligomeric state inside condensates has been largely unexplored in vivo. METHODS In this study, we combined quantitative microscopy with number and brightness analysis to investigate the aging, material properties, and protein oligomeric state of biomolecular condensates in vivo. Our work is focused on condensates formed by AUXIN RESPONSE FACTOR 19 (ARF19), a transcription factor integral to the auxin signaling pathway in plants. ARF19 contains a large central glutamine-rich IDR and a C-terminal Phox Bem1 (PB1) oligomerization domain and forms cytoplasmic condensates. RESULTS Our results reveal that the IDR amino acid composition can influence the morphology and material properties of ARF19 condensates. In contrast the distribution of oligomeric species within condensates appears insensitive to the IDR composition. In addition, we identified a relationship between the abundance of higher- and lower-order oligomers within individual condensates and their apparent fluidity. CONCLUSIONS IDR amino acid composition affects condensate morphology and material properties. In ARF condensates, altering the amino acid composition of the IDR did not greatly affect the oligomeric state of proteins within the condensate. Video Abstract.
Collapse
Affiliation(s)
- Ryan J. Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130 USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130 USA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130 USA
| | - Lucia C. Strader
- Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130 USA
- Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130 USA
- Department of Biology, Duke University, Durham, NC 27708 USA
| |
Collapse
|
20
|
Li F, Yu S, Huang X, Dong C, Ren J. Studying Homo-oligomerization and Hetero-oligomerization of MDMX and MDM2 Proteins in Single Living Cells by Using In Situ Fluorescence Correlation Spectroscopy. Biochemistry 2021; 60:1498-1505. [PMID: 33870698 DOI: 10.1021/acs.biochem.1c00153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Protein oligomerization plays a very important role in many physiological processes. p53 acts as a key tumor suppressor by regulating cell cycle arrest, DNA repair, and apoptosis, and its antitumor activity is regulated by the hetero- and homo-oligomerization of MDMX and MDM2 proteins. So far, some traditional methods have been utilized to study the oligomerization of MDMX and MDM2 in vitro, but they have not clarified some controversial issues or whether the extracellular results can represent the intracellular results. Here, we put forward an in situ method for studying protein homo- and hetero-oligomerization in single living cells by using fluorescence correlation spectroscopy. In this study, MDMX and MDM2 were labeled with fluorescent proteins using lentiviral transfection. Autocorrelation spectroscopy and cross-correlation spectroscopy methods were used to study the oligomerization of MDMX and MDM2 in situ and the effect of regulation of MDMX oligomerization on p53-MDMX interactions in single living cells. We observed the homo- and hetero-oligomerization of MDMX and MDM2 in living cells. Meanwhile, the levels of the homo-oligomers of MDMX and MDM2 were increased due to the lack of hetero-oligomerization. Finally, the binding affinity of MDMX for p53 was improved with an increase in the level of MDMX hetero-oligomerization.
Collapse
Affiliation(s)
- Fucai Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Shengrong Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Xiangyi Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Chaoqing Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
21
|
Hummert J, Tashev SA, Herten DP. An update on molecular counting in fluorescence microscopy. Int J Biochem Cell Biol 2021; 135:105978. [PMID: 33865985 DOI: 10.1016/j.biocel.2021.105978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/14/2021] [Accepted: 04/08/2021] [Indexed: 01/18/2023]
Abstract
Quantitative assessment of protein complexes, such as receptor clusters in the context of cellular signalling, has become a pressing objective in cell biology. The advancements in the field of single molecule fluorescence microscopy have led to different approaches for counting protein copy numbers in various cellular structures. This has resulted in an increasing interest in robust calibration protocols addressing photophysical properties of fluorescent labels and the effect of labelling efficiencies. Here, we want to give an update on recent methods for protein counting with a focus on novel calibration protocols. In this context, we discuss different types of calibration samples and identify some of the challenges arising in molecular counting experiments. Some recently published applications offer potential approaches to tackle these challenges.
Collapse
Affiliation(s)
- Johan Hummert
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK
| | - Stanimir Asenov Tashev
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK
| | - Dirk-Peter Herten
- College of Medical and Dental Sciences & School of Chemistry, University of Birmingham, Birmingham, UK; Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, UK.
| |
Collapse
|
22
|
Paul MD, Rainwater R, Zuo Y, Gu L, Hristova K. Probing Membrane Protein Association Using Concentration‐Dependent Number and Brightness. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael D. Paul
- Program in Molecular Biophysics Johns Hopkins University Baltimore MD 21218 USA
| | - Randall Rainwater
- Department of Materials Science and Engineering and Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Yi Zuo
- Department of Materials Science and Engineering and Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Luo Gu
- Department of Materials Science and Engineering and Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology Johns Hopkins University Baltimore MD 21218 USA
- Program in Molecular Biophysics Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
23
|
Işbilir A, Serfling R, Möller J, Thomas R, De Faveri C, Zabel U, Scarselli M, Beck-Sickinger AG, Bock A, Coin I, Lohse MJ, Annibale P. Determination of G-protein-coupled receptor oligomerization by molecular brightness analyses in single cells. Nat Protoc 2021; 16:1419-1451. [PMID: 33514946 DOI: 10.1038/s41596-020-00458-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023]
Abstract
Oligomerization of membrane proteins has received intense research interest because of their importance in cellular signaling and the large pharmacological and clinical potential this offers. Fluorescence imaging methods are emerging as a valid tool to quantify membrane protein oligomerization at high spatial and temporal resolution. Here, we provide a detailed protocol for an image-based method to determine the number and oligomerization state of fluorescently labeled prototypical G-protein-coupled receptors (GPCRs) on the basis of small out-of-equilibrium fluctuations in fluorescence (i.e., molecular brightness) in single cells. The protocol provides a step-by-step procedure that includes instructions for (i) a flexible labeling strategy for the protein of interest (using fluorescent proteins, small self-labeling tags or bio-orthogonal labeling) and the appropriate controls, (ii) performing temporal and spatial brightness image acquisition on a confocal microscope and (iii) analyzing and interpreting the data, excluding clusters and intensity hot-spots commonly observed in receptor distributions. Although specifically tailored for GPCRs, this protocol can be applied to diverse classes of membrane proteins of interest. The complete protocol can be implemented in 1 month.
Collapse
Affiliation(s)
- Ali Işbilir
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Robert Serfling
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Jan Möller
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Romy Thomas
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Chiara De Faveri
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Ulrike Zabel
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Andreas Bock
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Irene Coin
- Institute of Biochemistry, Faculty of Life Sciences, University of Leipzig, Leipzig, Germany
| | - Martin J Lohse
- Max Delbrück Center for Molecular Medicine, Berlin, Germany. .,Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany. .,ISAR Bioscience Institute, Munich, Germany.
| | - Paolo Annibale
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
24
|
Paul MD, Rainwater R, Zuo Y, Gu L, Hristova K. Probing Membrane Protein Association Using Concentration-Dependent Number and Brightness. Angew Chem Int Ed Engl 2021; 60:6503-6508. [PMID: 33351993 DOI: 10.1002/anie.202010049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/11/2020] [Indexed: 01/13/2023]
Abstract
We introduce concentration-dependent number and brightness (cdN&B), a fluorescence fluctuation technique that can be implemented on a standard confocal microscope and can report on the thermodynamics of membrane protein association in the native plasma membrane. It uses transient transfection to enable measurements of oligomer size as a function of receptor concentration over a broad range, yielding the association constant. We discuss artifacts in cdN&B that are concentration-dependent and can distort the oligomerization curves, and we outline procedures that can correct for them. Using cdN&B, we characterize the association of neuropilin 1 (NRP1), a protein that plays a critical role in the development of the embryonic cardiovascular and nervous systems. We show that NRP1 associates into a tetramer in a concentration-dependent manner, and we quantify the strength of the association. This work demonstrates the utility of cdN&B as a powerful tool in biophysical chemistry.
Collapse
Affiliation(s)
- Michael D Paul
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Randall Rainwater
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yi Zuo
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Luo Gu
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.,Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
25
|
Li F, Du Z, Huang X, Dong C, Ren J. Analyses of p73 Protein Oligomerization and p73-MDM2 Interaction in Single Living Cells Using In Situ Single Molecule Spectroscopy. Anal Chem 2021; 93:886-894. [PMID: 33393764 DOI: 10.1021/acs.analchem.0c03521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein oligomerization and protein-protein interaction are crucial to regulate protein functions and biological processes. p73 protein is a very important transcriptional factor and can promote apoptosis and cell cycle arrest, and its transcriptional activity is regulated by p73 oligomerization and p73-MDM2 interaction. Although extracellular studies on p73 oligomerization and p73-MDM2 interaction have been carried out, it is unclear how p73 oligomerization and p73-MDM2 interaction occur in living cells. In our study, we described an in situ method for studying p73 oligomerization and p73-MDM2 interaction in living cells by combining fluorescence cross-correlation spectroscopy with a fluorescent protein labeling technique. Lentiviral transfection was used to transfect cells with a plasmid for either p73 or MDM2, each fused to a different fluorescent protein. p73 oligomerization was evaluated using brightness per particle, and the p73-MDM2 interaction was quantified using the cross-correlation value. We constructed a series of p73 mutants in three domains (transactivation domain, DNA binding domain, and oligomerization domain) and MDM2 mutants. We systematically studied p73 oligomerization and the effects of p73 oligomerization and the p73 and MDM2 structures on the p73-MDM2 interaction in single living cells. We have found that the p73 protein can form oligomers and that the p73 structure changes in the oligomerization domain significantly influence its oligomerization. p73 oligomerization and the structure changes significantly affect the p73-MDM2 interaction. Furthermore, the effects of inhibitors on p73 oligomerization and p73-MDM2 interaction were studied.
Collapse
Affiliation(s)
- Fucai Li
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhixue Du
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
26
|
Ward RJ, Pediani JD, Marsango S, Jolly R, Stoneman MR, Biener G, Handel TM, Raicu V, Milligan G. Chemokine receptor CXCR4 oligomerization is disrupted selectively by the antagonist ligand IT1t. J Biol Chem 2021; 296:100139. [PMID: 33268380 PMCID: PMC7949023 DOI: 10.1074/jbc.ra120.016612] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
CXCR4, a member of the family of chemokine-activated G protein-coupled receptors, is widely expressed in immune response cells. It is involved in both cancer development and progression as well as viral infection, notably by HIV-1. A variety of methods, including structural information, have suggested that the receptor may exist as a dimer or an oligomer. However, the mechanistic details surrounding receptor oligomerization and its potential dynamic regulation remain unclear. Using both biochemical and biophysical means, we confirm that CXCR4 can exist as a mixture of monomers, dimers, and higher-order oligomers in cell membranes and show that oligomeric structure becomes more complex as receptor expression levels increase. Mutations of CXCR4 residues located at a putative dimerization interface result in monomerization of the receptor. Additionally, binding of the CXCR4 antagonist IT1t-a small drug-like isothiourea derivative-rapidly destabilizes the oligomeric structure, whereas AMD3100, another well-characterized CXCR4 antagonist, does not. Although a mutation that regulates constitutive activity of CXCR4 also results in monomerization of the receptor, binding of IT1t to this variant promotes receptor dimerization. These results provide novel insights into the basal organization of CXCR4 and how antagonist ligands of different chemotypes differentially regulate its oligomerization state.
Collapse
Affiliation(s)
- Richard J Ward
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - John D Pediani
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Sara Marsango
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Richard Jolly
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Michael R Stoneman
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Gabriel Biener
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Tracy M Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Valerică Raicu
- Physics Department, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Graeme Milligan
- Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
27
|
Dong S, Chen X, Yang H, Tang X, Chen J, Lin X, Peng Y. Visualization photofragmentation-induced rhodamine B release from gold nanorod delivery system by combination two-photon luminescence imaging with correlation spectroscopy. JOURNAL OF BIOPHOTONICS 2020; 13:e201960103. [PMID: 31919964 DOI: 10.1002/jbio.201960103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/25/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
Plasmon-enhanced gold nanorod (AuNR) with high photothermal conversion efficiency is a promising light-controllable nanodrug delivery system for cancer therapy. Understanding the mechanism for the light-controllable drug release of AuNR delivery systems is important for the development of nanomedicine. In this study, the rhodamine B (RB) released from AuNR-RB nanodelivery system was quantitated and visualized by using two-photon luminescence (TPL) imaging combined with correlation spectroscopy. The photofragmentation of AuNR induced by femtosecond pulsed laser was revealed by TPL correlation spectroscopy when the laser energy was above the thermal damage threshold of AuNR, and the RB released from this nanodrug delivery system was visualized by TPL imaging. Furthermore, the photofragmentation-induced release of RB from AuNR-RB nanodelivery system was visualized in living MCF-7 breast cancer cells by TPL imaging combined with correlation spectroscopy. These results provided a novel optical approach to quantify the release of drugs from gold nanocarriers in complex biological media.
Collapse
Affiliation(s)
- Shiqing Dong
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiuqin Chen
- Fujian Provincial Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| | - Hongqin Yang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiaoqiong Tang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Jianling Chen
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Xiu Lin
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, China
| | - Yiru Peng
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, China
- Fujian Provincial Key Laboratory of Polymer Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, China
| |
Collapse
|
28
|
Petazzi RA, Aji AK, Chiantia S. Fluorescence microscopy methods for the study of protein oligomerization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:1-41. [DOI: 10.1016/bs.pmbts.2019.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Koff WC, Schenkelberg T. The future of vaccine development. Vaccine 2019; 38:4485-4486. [PMID: 31443989 DOI: 10.1016/j.vaccine.2019.07.101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/30/2019] [Indexed: 01/05/2023]
Abstract
Vaccines are one of the most successful public health interventions in our history resulting in eradication of small pox, near eradication of polio and major reductions in case number and global morbidity and mortality for numerous diseases (Centers for Disease C, 1999) [1]. However, vaccine development has been less successful against complex infectious diseases, where pathogen variability and/or immune evasion mechanisms have combined to pose major obstacles, and have been unsuccessful against non-communicable diseases, including cancer, autoimmunity, allergy, neurodegenerative and metabolic diseases (Koff et al., 2013) [2]. In addition, the current state of vaccine development is an expensive, slow and laborious process, costing billions of dollars, taking decades, with less than a 10% rate of success (Pronker et al., 2013) [3]. While some vaccines, such as the smallpox vaccine approach the gold standard of life-long protection in everyone following a single immunization, other vaccines are less effective, often requiring multiple immunizations, being less effective to populations most susceptible to disease such as infants, the elderly, and those living in the developing world. There is clearly an urgent need to determine ways to improve not just the effectiveness of the vaccines themselves but also the very processes by which they are developed.
Collapse
Affiliation(s)
- Wayne C Koff
- Human Vaccines Project, One Penn Plaza, Suite 6178, New York, NY 10119, United States.
| | - Theodore Schenkelberg
- Human Vaccines Project, One Penn Plaza, Suite 6178, New York, NY 10119, United States.
| |
Collapse
|
30
|
Fluorescence fluctuation spectroscopy: an invaluable microscopy tool for uncovering the biophysical rules for navigating the nuclear landscape. Biochem Soc Trans 2019; 47:1117-1129. [DOI: 10.1042/bst20180604] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/05/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Nuclear architecture is fundamental to the manner by which molecules traverse the nucleus. The nucleoplasm is a crowded environment where dynamic rearrangements in local chromatin compaction locally redefine the space accessible toward nuclear protein diffusion. Here, we review a suite of methods based on fluorescence fluctuation spectroscopy (FFS) and how they have been employed to interrogate chromatin organization, as well as the impact this structural framework has on nuclear protein target search. From first focusing on a set of studies that apply FFS to an inert fluorescent tracer diffusing inside the nucleus of a living cell, we demonstrate the capacity of this technology to measure the accessibility of the nucleoplasm. Then with a baseline understanding of the exploration volume available to nuclear proteins during target search, we review direct applications of FFS to fluorescently labeled transcription factors (TFs). FFS can detect changes in TF mobility due to DNA binding, as well as the formation of TF complexes via changes in brightness due to oligomerization. Collectively, we find that FFS-based methods can uncover how nuclear proteins in general navigate the nuclear landscape.
Collapse
|