1
|
Duan M, Song S, Wasserman H, Lee PH, Liu KJ, Gordân R, He Y, Mao P. High UV damage and low repair, but not cytosine deamination, stimulate mutation hotspots at ETS binding sites in melanoma. Proc Natl Acad Sci U S A 2024; 121:e2310854121. [PMID: 38241433 PMCID: PMC10823218 DOI: 10.1073/pnas.2310854121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/20/2023] [Indexed: 01/21/2024] Open
Abstract
Noncoding mutation hotspots have been identified in melanoma and many of them occur at the binding sites of E26 transformation-specific (ETS) proteins; however, their formation mechanism and functional impacts are not fully understood. Here, we used UV (Ultraviolet) damage sequencing data and analyzed cyclobutane pyrimidine dimer (CPD) formation, DNA repair, and CPD deamination in human cells at single-nucleotide resolution. Our data show prominent CPD hotspots immediately after UV irradiation at ETS binding sites, particularly at sites with a conserved TTCCGG motif, which correlate with mutation hotspots identified in cutaneous melanoma. Additionally, CPDs are repaired slower at ETS binding sites than in flanking DNA. Cytosine deamination in CPDs to uracil is suggested as an important step for UV mutagenesis. However, we found that CPD deamination is significantly suppressed at ETS binding sites, particularly for the CPD hotspot on the 5' side of the ETS motif, arguing against a role for CPD deamination in promoting ETS-associated UV mutations. Finally, we analyzed a subset of frequently mutated promoters, including the ribosomal protein genes RPL13A and RPS20, and found that mutations in the ETS motif can significantly reduce the promoter activity. Thus, our data identify high UV damage and low repair, but not CPD deamination, as the main mechanism for ETS-associated mutations in melanoma and uncover important roles of often-overlooked mutation hotspots in perturbing gene transcription.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM87131
| | - Shenghan Song
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM87131
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM87131
| | - Hana Wasserman
- Program in Computational Biology and Bioinformatics, Department of Biostatistics and Bioinformatics, Duke University, Durham, NC27708
| | - Po-Hsuen Lee
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM87131
| | - Ke Jian Liu
- Department of Pathology, Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY11794-7263
| | - Raluca Gordân
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC27708
- Department of Computer Science, Duke University, Durham, NC27708
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC27708
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM87131
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM87131
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM87131
| |
Collapse
|
2
|
Maritz C, Khaleghi R, Yancoskie MN, Diethelm S, Brülisauer S, Ferreira NS, Jiang Y, Sturla SJ, Naegeli H. ASH1L-MRG15 methyltransferase deposits H3K4me3 and FACT for damage verification in nucleotide excision repair. Nat Commun 2023; 14:3892. [PMID: 37393406 PMCID: PMC10314917 DOI: 10.1038/s41467-023-39635-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
To recognize DNA adducts, nucleotide excision repair (NER) deploys the XPC sensor, which detects damage-induced helical distortions, followed by engagement of TFIIH for lesion verification. Accessory players ensure that this factor handover takes place in chromatin where DNA is tightly wrapped around histones. Here, we describe how the histone methyltransferase ASH1L, once activated by MRG15, helps XPC and TFIIH to navigate through chromatin and induce global-genome NER hotspots. Upon UV irradiation, ASH1L adds H3K4me3 all over the genome (except in active gene promoters), thus priming chromatin for XPC relocations from native to damaged DNA. The ASH1L-MRG15 complex further recruits the histone chaperone FACT to DNA lesions. In the absence of ASH1L, MRG15 or FACT, XPC is misplaced and persists on damaged DNA without being able to deliver the lesions to TFIIH. We conclude that ASH1L-MRG15 makes damage verifiable by the NER machinery through the sequential deposition of H3K4me3 and FACT.
Collapse
Affiliation(s)
- Corina Maritz
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Reihaneh Khaleghi
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Michelle N Yancoskie
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Sarah Diethelm
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Sonja Brülisauer
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Natalia Santos Ferreira
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Yang Jiang
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Hanspeter Naegeli
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland.
| |
Collapse
|
3
|
Gao L, Bu Y. Molecular dynamics insights into electron-catalyzed dissociation repair of cyclobutane pyrimidine dimer. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Liang Gao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yuxiang Bu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|