1
|
Amano T, Berdejo-Espinola V. Language barriers in conservation: consequences and solutions. Trends Ecol Evol 2024:S0169-5347(24)00276-3. [PMID: 39706729 DOI: 10.1016/j.tree.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 12/23/2024]
Abstract
Language barriers can severely hinder the advance of conservation science and its contribution to addressing the biodiversity crisis. We build a framework for understanding how language barriers can impede the evidence-based conservation of biodiversity in three ways: barriers to (i) the generation of evidence by non-native English speakers; (ii) the global synthesis of evidence scattered across different languages; and (iii) the application of English-language evidence to local decision making. We provide evidence, building on a growing body of literature, that quantifies the three consequences of language barriers in conservation. We also propose a checklist of solutions for reducing language barriers in conservation by addressing language disparities among scientists, promoting linguistic diversity in conservation, and making conservation science and its communication multilingual.
Collapse
Affiliation(s)
- Tatsuya Amano
- School of the Environment, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - Violeta Berdejo-Espinola
- School of the Environment, The University of Queensland, Brisbane, Queensland 4072, Australia; Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Craig HM, Stepanian RA, Spengler KD, Altman KA, Sckrabulis JP, Raffel TR. Testing for thermal acclimation in zoospores of an amphibian pathogen. DISEASES OF AQUATIC ORGANISMS 2024; 160:101-114. [PMID: 39665308 DOI: 10.3354/dao03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Thermal acclimation effects on locomotory performance have been widely documented for macroscopic organisms, but such responses remain largely unexplored in microorganisms. Metabolic theory of ecology (MTE) predicts faster responses in smaller organisms, with potential consequences for host-parasite interactions in variable temperature environments. We investigated thermal acclimation effects on zoospores of the amphibian fungal pathogen Batrachochytrium dendrobatidis (Bd), quantifying (1) thermal performance for maximum zoospore velocity and (2) high temperatures needed to immobilize 50% (CT50max) or 100% (CT100max) of zoospores. We obtained measurements within 18 min following a temperature shift. We found significant curvilinear acclimation effects on maximum zoospore velocity and CT50max, although the latter pattern might have been driven by confoundment with zoospore density. We also observed a significant positive effect of the trial start temperature on CT50max, consistent with a rapid acclimation response to the start temperature on a time scale of ~1-6 min (i.e. too rapid for our experimental acclimation treatments to detect), implying that zoospores either have constitutive heat tolerance (i.e. no acclimation) or fully acclimate CTmax to new temperatures within ~10 min. To explore the plausibility of such a rapid response, we analyzed published CTmax acclimation times for macroscopic eukaryotes, resulting in a predicted interquartile range of 3.11-25.98 min when mass-scaled to the size of a Bd zoospore. Taken together, these results suggest that Bd zoospores do exhibit thermal acclimation response on the rapid time scale predicted by MTE, possibly giving Bd an advantage over slower-acclimating hosts in variable-temperature environments.
Collapse
Affiliation(s)
- Hunter M Craig
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Rima A Stepanian
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Kyle D Spengler
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Karie A Altman
- Department of Biology, St. Bonaventure University, St. Bonaventure, NY 14778, USA
| | - Jason P Sckrabulis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Thomas R Raffel
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| |
Collapse
|
3
|
Cocciardi JM, Ohmer MEB. Drivers of Intraspecific Variation in Thermal Traits and Their Importance for Resilience to Global Change in Amphibians. Integr Comp Biol 2024; 64:882-899. [PMID: 39138058 DOI: 10.1093/icb/icae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024] Open
Abstract
Intraspecific variation can be as great as variation across species, but the role of intraspecific variation in driving local and large-scale patterns is often overlooked, particularly in the field of thermal biology. In amphibians, which depend on environmental conditions and behavior to regulate body temperature, recognizing intraspecific thermal trait variation is essential to comprehensively understanding how global change impacts populations. Here, we examine the drivers of micro- and macrogeographical intraspecific thermal trait variation in amphibians. At the local scale, intraspecific variation can arise via changes in ontogeny, body size, and between the sexes, and developmental plasticity, acclimation, and maternal effects may modulate predictions of amphibian performance under future climate scenarios. At the macrogeographic scale, local adaptation in thermal traits may occur along latitudinal and elevational gradients, with seasonality and range-edge dynamics likely playing important roles in patterns that may impact future persistence. We also discuss the importance of considering disease as a factor affecting intraspecific variation in thermal traits and population resilience to climate change, given the impact of pathogens on thermal preferences and critical thermal limits of hosts. Finally, we make recommendations for future work in this area. Ultimately, our goal is to demonstrate why it is important for researchers to consider intraspecific variation to determine the resilience of amphibians to global change.
Collapse
Affiliation(s)
| | - Michel E B Ohmer
- Department of Biology, University of Mississippi, Oxford, MS 38655, USA
| |
Collapse
|
4
|
Hofmann S, Rödder D, Andermann T, Matschiner M, Riedel J, Baniya CB, Flecks M, Yang J, Jiang K, Jianping J, Litvinchuk SN, Martin S, Masroor R, Nothnagel M, Vershinin V, Zheng Y, Jablonski D, Schmidt J, Podsiadlowski L. Exploring Paleogene Tibet's warm temperate environments through target enrichment and phylogenetic niche modelling of Himalayan spiny frogs (Paini, Dicroglossidae). Mol Ecol 2024; 33:e17446. [PMID: 38946613 DOI: 10.1111/mec.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The Cenozoic topographic development of the Himalaya-Tibet orogen (HTO) substantially affected the paleoenvironment and biodiversity patterns of High Asia. However, concepts on the evolution and paleoenvironmental history of the HTO differ massively in timing, elevational increase and sequence of surface uplift of the different elements of the orogen. Using target enrichment of a large set of transcriptome-derived markers, ancestral range estimation and paleoclimatic niche modelling, we assess a recently proposed concept of a warm temperate paleo-Tibet in Asian spiny frogs of the tribe Paini and reconstruct their historical biogeography. That concept was previously developed in invertebrates. Because of their early evolutionary origin, low dispersal capacity, high degree of local endemism, and strict dependence on temperature and humidity, the cladogenesis of spiny frogs may echo the evolution of the HTO paleoenvironment. We show that diversification of main lineages occurred during the early to Mid-Miocene, while the evolution of alpine taxa started during the late Miocene/early Pliocene. Our distribution and niche modelling results indicate range shifts and niche stability that may explain the modern disjunct distributions of spiny frogs. They probably maintained their (sub)tropical or (warm)temperate preferences and moved out of the ancestral paleo-Tibetan area into the Himalaya as the climate shifted, as opposed to adapting in situ. Based on ancestral range estimation, we assume the existence of low-elevation, climatically suitable corridors across paleo-Tibet during the Miocene along the Kunlun, Qiangtang and/or Gangdese Shan. Our results contribute to a deeper understanding of the mechanisms and processes of faunal evolution in the HTO.
Collapse
Affiliation(s)
- Sylvia Hofmann
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Dennis Rödder
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Tobias Andermann
- Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Jendrian Riedel
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Chitra B Baniya
- Central Department of Botany, Tribhuvan University, Kathmandu, Nepal
| | - Morris Flecks
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | - Jianhuan Yang
- Kadoorie Conservation China, Kadoorie Farm and Botanic Garden, Hong Kong, China
| | - Ke Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Jiang Jianping
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | | | - Sebastian Martin
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| | | | - Michael Nothnagel
- Statistical Genetics and Bioinformatics, Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Vladimir Vershinin
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
- Institute of Natural Sciences and Mathematics, Eltsyn Ural Federal University, Yekaterinburg, Russia
| | - Yuchi Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Daniel Jablonski
- Department of Zoology, Comenius University in Bratislava, Bratislava, Slovakia
| | - Joachim Schmidt
- General and Systematic Zoology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Lars Podsiadlowski
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig, Bonn, Germany
| |
Collapse
|
5
|
Oborová V, Šugerková M, Gvoždík L. Sensitivity of amphibian embryos to timing and magnitude of present and future thermal extremes. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:377-388. [PMID: 38327237 DOI: 10.1002/jez.2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/21/2023] [Accepted: 01/16/2024] [Indexed: 02/09/2024]
Abstract
Ongoing climate change is increasing the frequency and intensity of extreme temperature events. Unlike the gradual increase on average environmental temperatures, these short-term and unpredictable temperature extremes impact population dynamics of ectotherms through their effect on individual survival. While previous research has predominantly focused on the survival rate of terrestrial embryos under acute heat stress, less attention has been dedicated to the nonlethal effects of ecologically realistic timing and magnitude of temperature extremes on aquatic embryos. In this study, we investigated the influence of the timing and magnitude of current and projected temperature extremes on embryonic life history traits and hatchling behavior in the alpine newt, Ichthyosaura alpestris. Using a factorial experiment under controlled laboratory conditions, we exposed 3- or 10-day-old embryos to different regimes of extreme temperatures for 3 days. Our results show that exposure to different extreme temperature regimes led to a shortened embryonic development time and an increase in hatchling length, while not significantly affecting embryonic survival. The duration of development was sensitive to the timing of temperature extremes, as early exposure accelerated embryo development. Exposure to temperature extremes during embryonic development heightened the exploratory activity of hatched larvae. We conclude that the timing and magnitude of ecologically realistic temperature extremes during embryogenesis have nonlethal effects on life history and behavioral traits. This suggests that species' vulnerability to climate change might be determined by other ecophysiological traits beyond embryonic thermal tolerance in temperate pond-breeding amphibians.
Collapse
Affiliation(s)
- Valentína Oborová
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Monika Šugerková
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| |
Collapse
|
6
|
Kasihmuddin SM, Cob ZC, Noor NM, Das SK. Effect of different temperature variations on the physiological state of catfish species: a systematic review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:413-434. [PMID: 38367084 DOI: 10.1007/s10695-024-01323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/10/2024] [Indexed: 02/19/2024]
Abstract
Catfish are a highly diverse group of fish that are found in various regions across the globe. The significance of catfish culture extends to various aspects, including food security, economic advancement, preservation of cultural legacy, and ecological stewardship. The catfish industry is presently encountering unprecedented challenges as a consequence of the variability in water temperature caused by climate change. Temperature is a significant abiotic component that regulates and restricts fish physiology throughout their life cycle. The impact of severe temperatures on various species of catfish is dependent upon the magnitude of the stressor and additional influencing factors. This paper presents an analysis of the effects of temperature fluctuations on various aspects of catfish species, including growth and survival, blood parameters, enzymatic and hormone response, oxygen consumption rates, sound generation and hearing skills, nutritional requirements, and other phenotypic attributes. While this review is certainly not exhaustive, it offers a broad synopsis of the ideal temperature ranges that are most favorable for several catfish species. In-depth research to investigate the interacting impacts of severe temperature occurrences in conjunction with other associated environmental stresses on a wider variety of catfish species is crucial in order to further our understanding of how catfish species will respond to the anticipated climate change in the future.
Collapse
Affiliation(s)
- Sonia Mohd Kasihmuddin
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Zaidi Che Cob
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Noorashikin Md Noor
- Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Simon Kumar Das
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Marine Ecosystem Research Centre (EKOMAR), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
7
|
Albecker MA, Strobel SM, Womack MC. Developmental Plasticity in Anurans: Meta-analysis Reveals Effects of Larval Environments on Size at Metamorphosis And Timing of Metamorphosis. Integr Comp Biol 2023; 63:714-729. [PMID: 37279893 DOI: 10.1093/icb/icad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Many anuran amphibians (frogs and toads) rely on aquatic habitats during their larval stage. The quality of this environment can significantly impact lifetime fitness and population dynamics. Over 450 studies have been published on environmental impacts on anuran developmental plasticity, yet we lack a synthesis of these effects across different environments. We conducted a meta-analysis and used a comparative approach to understand whether developmental plasticity in response to different larval environments produces predictable changes in metamorphic phenotypes. We analyzed data from 124 studies spanning 80 anuran species and six larval environments and showed that intraspecific variation in mass at metamorphosis and the duration of the larval period is partly explained by the type of environment experienced during the larval period. Changes in larval environments tended to reduce mass at metamorphosis relative to control conditions, with the degree of change depending on the identity and severity of environmental change. Higher temperatures and lower water levels shortened the duration of the larval period, whereas less food and higher densities increased the duration of the larval period. Phylogenetic relationships among species were not associated with interspecific variation in mass at metamorphosis plasticity or duration of the larval period plasticity. Our results provide a foundation for future studies on developmental plasticity, especially in response to global changes. This study provides motivation for additional work that links developmental plasticity with fitness consequences within and across life stages, as well as how the outcomes described here are altered in compounding environments.
Collapse
Affiliation(s)
- Molly A Albecker
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston Texas, 77004, USA
- Department of Biology, Utah State University, Logan Utah, 84322, USA
| | | | - Molly C Womack
- Department of Biology, Utah State University, Logan Utah, 84322, USA
| |
Collapse
|
8
|
Schäfer RB, Jackson M, Juvigny-Khenafou N, Osakpolor SE, Posthuma L, Schneeweiss A, Spaak J, Vinebrooke R. Chemical Mixtures and Multiple Stressors: Same but Different? ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1915-1936. [PMID: 37036219 DOI: 10.1002/etc.5629] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/19/2023]
Abstract
Ecosystems are strongly influenced by multiple anthropogenic stressors, including a wide range of chemicals and their mixtures. Studies on the effects of multiple stressors have largely focussed on nonchemical stressors, whereas studies on chemical mixtures have largely ignored other stressors. However, both research areas face similar challenges and require similar tools and methods to predict the joint effects of chemicals or nonchemical stressors, and frameworks to integrate multiple chemical and nonchemical stressors are missing. We provide an overview of the research paradigms, tools, and methods commonly used in multiple stressor and chemical mixture research and discuss potential domains of cross-fertilization and joint challenges. First, we compare the general paradigms of ecotoxicology and (applied) ecology to explain the historical divide. Subsequently, we compare methods and approaches for the identification of interactions, stressor characterization, and designing experiments. We suggest that both multiple stressor and chemical mixture research are too focused on interactions and would benefit from integration regarding null model selection. Stressor characterization is typically more costly for chemical mixtures. While for chemical mixtures comprehensive classification systems at suborganismal level have been developed, recent classification systems for multiple stressors account for environmental context. Both research areas suffer from rather simplified experimental designs that focus on only a limited number of stressors, chemicals, and treatments. We discuss concepts that can guide more realistic designs capturing spatiotemporal stressor dynamics. We suggest that process-based and data-driven models are particularly promising to tackle the challenge of prediction of effects of chemical mixtures and nonchemical stressors on (meta-)communities and (meta-)food webs. We propose a framework to integrate the assessment of effects for multiple stressors and chemical mixtures. Environ Toxicol Chem 2023;42:1915-1936. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Ralf B Schäfer
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | | | - Noel Juvigny-Khenafou
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Stephen E Osakpolor
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Leo Posthuma
- Centre for Sustainability, Environment and Health, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Environmental Science, Radboud University, Nijmegen, The Netherlands
| | - Anke Schneeweiss
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Jürg Spaak
- Institute for Environmental Sciences, Rheinland-Pfälzische Technische Univerität Kaiserslautern-Landau, Landau, Germany
| | - Rolf Vinebrooke
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Rollins-Smith LA, Le Sage EH. Heat stress and amphibian immunity in a time of climate change. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220132. [PMID: 37305907 PMCID: PMC10258666 DOI: 10.1098/rstb.2022.0132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/28/2023] [Indexed: 06/13/2023] Open
Abstract
As a class of vertebrates, amphibians, are at greater risk for declines or extinctions than any other vertebrate group, including birds and mammals. There are many threats, including habitat destruction, invasive species, overuse by humans, toxic chemicals and emerging diseases. Climate change which brings unpredictable temperature changes and rainfall constitutes an additional threat. Survival of amphibians depends on immune defences functioning well under these combined threats. Here, we review the current state of knowledge of how amphibians respond to some natural stressors, including heat and desiccation stress, and the limited studies of the immune defences under these stressful conditions. In general, the current studies suggest that desiccation and heat stress can activate the hypothalamus pituitary-interrenal axis, with possible suppression of some innate and lymphocyte-mediated responses. Elevated temperatures can alter microbial communities in amphibian skin and gut, resulting in possible dysbiosis that fosters reduced resistance to pathogens. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Louise A. Rollins-Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Emily H. Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
10
|
Nemesházi E, Bókony V. HerpSexDet: the herpetological database of sex determination and sex reversal. Sci Data 2023; 10:377. [PMID: 37311775 DOI: 10.1038/s41597-023-02268-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023] Open
Abstract
Wildlife exhibits various sex-determination systems where sex chromosomes and environmental temperatures may both contribute to individual sexual development. The causes and consequences of this variability are important questions for evolutionary ecology, especially in light of ongoing environmental change. Amphibians and reptiles are emerging as a key group for studying these questions, with new data accumulating acceleratingly. We collected empirical data from earlier databases, reviews and primary literature to create the most up-to-date database on herpetological sex determination. We named our database HerpSexDet, which currently features data on genetic and temperature-dependent sex determination as well as reports on sex reversal for a total of 192 amphibian and 697 reptile species. This dataset, which we will regularly update in the future, facilitates interspecific comparative studies on the evolution of sex determination and its consequences for species-specific traits such as life history and conservation status, and may also help guiding future research by identifying species or higher taxa that are potentially most enlightening for the study of environmentally driven sex reversal.
Collapse
Affiliation(s)
- Edina Nemesházi
- Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Savoyenstr. 1a, A-1160, Vienna, Austria.
- Veterinary Medical Research Institute, Hungária Krt. 21, H-1143, Budapest, Hungary.
| | - Veronika Bókony
- Department of Evolutionary Ecology, Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Herman Ottó u. 15, H-1022, Budapest, Hungary.
| |
Collapse
|
11
|
Novel physiological data needed for progress in global change ecology. Basic Appl Ecol 2023. [DOI: 10.1016/j.baae.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|