1
|
Koç G, Soyocak A, Kaya Z, Kankaya B, Alış H. The Association Between Arg72Pro C>G Polymorphism in the p53 Gene and the Risk of Obesity. ISTANBUL MEDICAL JOURNAL 2022. [DOI: 10.4274/imj.galenos.2022.64624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
2
|
Guo D, Fang L, Yu X, Wang C, Wang Y, Guo W. Different Roles of TP53 Codon 72 Polymorphism in Type 2 Diabetes and Its Complications: Evidence from a Case-Control Study on a Chinese Han Population. Int J Gen Med 2021; 14:4259-4268. [PMID: 34393505 PMCID: PMC8358090 DOI: 10.2147/ijgm.s322840] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 12/03/2022] Open
Abstract
Objective The purpose of this study was to investigate the relationships between TP53 Pro72Arg (rs1042522) polymorphism and susceptibility to type 2 diabetes (T2DM) and its related complications. Methods The TP53 Pro72Arg polymorphism was genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method in 206 T2DM patients and 446 healthy controls. Mitochondrial DNA (mtDNA) content, mtDNA transcriptional level and large-scale mtDNA deletion were evaluated in leukocytes of T2DM patients using fluorescence-based quantitative PCR (FQ-PCR), reverse transcriptase-quantitative PCR (RT-qPCR) and long-range PCR approaches, respectively. The data of our study were processed by GraphPad Prism software (version 7.00). Results The distribution of TP53 Pro72Arg differed in T2DM patients from the controls, with a moderately increased proportion of TP53 Arg72 variant carriers (Pro/Arg and Arg/Arg genotypes) (88.3% vs 81.2%, p=0.022; OR=1.089, 95% CI=1.018–1.164). T2DM patients with Arg/Arg genotype had significantly decreased prevalences of diabetic neuropathy and retinopathy compared to those without (6.5% vs 19.4%, p=0.018 and 14.8% vs 30.7%, p=0.018, respectively). T2DM patients with Arg/Arg genotype had higher mtDNA content and mtRNA expression level than those who were not Arg/Arg genotype (p<0.05 for all), and we did not observe mtDNA 4977-base pair (bp) deletion mutations in the leukocytes of T2DM patients. Conclusion There was a significant association of the TP53 Pro72Arg polymorphism with susceptibility to T2DM, and the homozygous Arg/Arg genotype of this gene locus might be a protective factor for diabetic complications. Those results suggested that the TP53 Arg72 variant had a different association with type 2 diabetes and its complications, and it might be related to mtDNA maintenance of the TP53 Arg72 variant under hyperglycemia-induced stress.
Collapse
Affiliation(s)
- Dong Guo
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Liang Fang
- Department of Gastroenterology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xuelai Yu
- Department of Neurology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, People's Republic of China
| | - Congyang Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, People's Republic of China
| | - Yan Wang
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, People's Republic of China
| | - Wenwen Guo
- Department of Pathology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, People's Republic of China
| |
Collapse
|
3
|
Olkova MV, Petrushenko VS, Ponomarev GY. Analysis of 13 TP53 and WRAP53 polymorphism frequencies in russian populations. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the last decade the search for and annotation of human genome polymorphisms associated with phenotype have become particularly important concerning the opportunity of their use in medical and population genetics, pharmacogenomics and evolutionary biology. The study was aimed to calculate the frequencies and analyze the prevalence of 13 germline polymorphisms of two genes, ТР53 encoding the genome-keeper p53 protein and WRAP53 involved in regulation of p53 production, in 28 Russian populations. We obtained data on 9 exonic ТР53 variants (rs587781663, rs17882252, rs150293825, rs112431538, rs149633775, rs144340710, rs1042522, rs1800371, rs201753350), one intronic polymorphism (rs17881850), and three variants of WRAP53 (rs17880282, rs2287499, rs34067256). In the majority of populations the sample size was over 50 people (except five populations with 30–49 surveyed people). The alternative alleles’ population frequencies for studies genetic variants in most Russian populations were close to appropriate allele frequencies in European and Asian populations of similar origin taken from global databases. The exceptions were six populations ("Central Caucasus", "Dagestan", "northern Russians", "southeastern Russians", "Tatars" and "Transcaucasia") with increased alternative alleles’ population frequencies. All listed populations except the population of “southeastern Russians” are characterized by polymorphisms with high allele frequencies not satisfying the Hardy–Weinberg principle.
Collapse
Affiliation(s)
- MV Olkova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - VS Petrushenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - GYu Ponomarev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Kodal JB, Çolak Y, Kobylecki CJ, Vedel-Krogh S, Nordestgaard BG, Afzal S. Smoking Reduces Plasma Bilirubin: Observational and Genetic Analyses in the Copenhagen General Population Study. Nicotine Tob Res 2020; 22:104-110. [PMID: 30202916 DOI: 10.1093/ntr/nty188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/05/2018] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Observational studies have found lower concentrations of plasma bilirubin in current smokers compared with former and never smokers. However, whether there is a causal relationship between smoking and bilirubin is unknown. In a Mendelian randomization analysis, we tested the hypothesis that higher tobacco consumption is causally associated with lower concentrations of plasma bilirubin. METHODS We genotyped 103 557 individuals aged 20-100 years from the Copenhagen General Population Study for the CHRNA3 rs1051730 genotype, known to be associated with higher tobacco consumption. Tobacco consumption was defined as daily and cumulative tobacco consumption. RESULTS In observational multivariable-adjusted analyses, a 10 g/day higher daily tobacco consumption was associated with a 0.28 µmol/L (95% confidence interval = 0.20 to 0.35) lower concentration of plasma bilirubin in current smokers, and a 10 pack-year higher cumulative tobacco consumption was associated with a 0.19 µmol/L (0.17 to 0.21) lower concentration of plasma bilirubin in former and current smokers. Using the CHRNA3 rs1051730 genotype as a proxy for daily and cumulative tobacco consumption, the difference in plasma bilirubin per T-allele was -0.12 µmol/L (-0.23 to -0.002) in current smokers and -0.09 µmol/L (-0.15 to -0.01) in current and former smokers combined. Furthermore, observationally bilirubin concentrations increased with time from smoking cessation in former smokers. CONCLUSION Higher daily and cumulative tobacco consumption were associated with lower concentrations of plasma bilirubin in observational and genetic analyses, suggesting that the association is causal. IMPLICATIONS Our results are compatible with two possible interpretations of previous observational studies, either that bilirubin is a mediator of smoking-induced respiratory disease or that the association between plasma bilirubin and respiratory disease stems from residual confounding because of smoking. Future studies should examine whether bilirubin is a causal risk factor for respiratory disease, or merely a marker of smoking status.
Collapse
Affiliation(s)
- Jakob B Kodal
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of clinical biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of clinical medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yunus Çolak
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of clinical biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Camilla J Kobylecki
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of clinical biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Signe Vedel-Krogh
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of clinical biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of clinical biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of clinical medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark.,Department of clinical biochemistry, The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|
5
|
Toufektchan E, Lejour V, Durand R, Giri N, Draskovic I, Bardot B, Laplante P, Jaber S, Alter BP, Londono-Vallejo JA, Savage SA, Toledo F. Germline mutation of MDM4, a major p53 regulator, in a familial syndrome of defective telomere maintenance. SCIENCE ADVANCES 2020; 6:eaay3511. [PMID: 32300648 PMCID: PMC7148086 DOI: 10.1126/sciadv.aay3511] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 01/16/2020] [Indexed: 05/08/2023]
Abstract
Dyskeratosis congenita is a cancer-prone inherited bone marrow failure syndrome caused by telomere dysfunction. A mouse model recently suggested that p53 regulates telomere metabolism, but the clinical relevance of this finding remained uncertain. Here, a germline missense mutation of MDM4, a negative regulator of p53, was found in a family with features suggestive of dyskeratosis congenita, e.g., bone marrow hypocellularity, short telomeres, tongue squamous cell carcinoma, and acute myeloid leukemia. Using a mouse model, we show that this mutation (p.T454M) leads to increased p53 activity, decreased telomere length, and bone marrow failure. Variations in p53 activity markedly altered the phenotype of Mdm4 mutant mice, suggesting an explanation for the variable expressivity of disease symptoms in the family. Our data indicate that a germline activation of the p53 pathway may cause telomere dysfunction and point to polymorphisms affecting this pathway as potential genetic modifiers of telomere biology and bone marrow function.
Collapse
Affiliation(s)
- Eléonore Toufektchan
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Romane Durand
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Neelam Giri
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Irena Draskovic
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Telomeres and Cancer, Institut Curie, Paris, France
| | - Boris Bardot
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Pierre Laplante
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Sara Jaber
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
| | - Blanche P. Alter
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - José-Arturo Londono-Vallejo
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Telomeres and Cancer, Institut Curie, Paris, France
| | - Sharon A. Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut Curie, Paris, France
- CNRS UMR 3244, Paris, France
- Sorbonne Université, Paris, France
- PSL Research University, Paris, France
- Corresponding author.
| |
Collapse
|
6
|
DNA damage responses and p53 in the aging process. Blood 2017; 131:488-495. [PMID: 29141944 DOI: 10.1182/blood-2017-07-746396] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/01/2017] [Indexed: 12/18/2022] Open
Abstract
The genome is constantly attacked by genotoxic insults. DNA damage has long been established as a cause of cancer development through its mutagenic consequences. Conversely, radiation therapy and chemotherapy induce DNA damage to drive cells into apoptosis or senescence as outcomes of the DNA damage response (DDR). More recently, DNA damage has been recognized as a causal factor for the aging process. The role of DNA damage in aging and age-related diseases is illustrated by numerous congenital progeroid syndromes that are caused by mutations in genome maintenance pathways. During the past 2 decades, understanding how DDR drives cancer development and contributes to the aging process has progressed rapidly. It turns out that the DDR factor p53 takes center stage during tumor development and also plays an important role in the aging process. Studies in metazoan models ranging from Caenorhabditis elegans to mammals have revealed cell-autonomous and systemic DDR mechanisms that orchestrate adaptive responses that augment maintenance of the aging organism amid gradually accumulating DNA damage.
Collapse
|