1
|
Oğuz EC, Ortiz-Ambriz A, Shem-Tov H, Babià-Soler E, Tierno P, Shokef Y. Topology Restricts Quasidegeneracy in Sheared Square Colloidal Ice. PHYSICAL REVIEW LETTERS 2020; 124:238003. [PMID: 32603179 DOI: 10.1103/physrevlett.124.238003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Recovery of ground-state degeneracy in two-dimensional square ice is a significant challenge in the field of geometric frustration with far-reaching fundamental implications, such as realization of vertex models and understanding the effect of dimensionality reduction. We combine experiments, theory, and numerical simulations to demonstrate that sheared square colloidal ice partially recovers the ground-state degeneracy for a wide range of field strengths and lattice shear angles. Our method could inspire engineering a novel class of frustrated microstructures and nanostructures based on sheared magnetic lattices in a wide range of soft- and condensed-matter systems.
Collapse
Affiliation(s)
- Erdal C Oğuz
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- School of Chemistry, Tel Aviv University, Tel Aviv 69978, Israel
- Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Antonio Ortiz-Ambriz
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona 08028, Spain
| | - Hadas Shem-Tov
- School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eric Babià-Soler
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
| | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona 08028, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona 08028, Spain
| | - Yair Shokef
- School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Sackler Center for Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
2
|
Libál A, Lee DY, Ortiz-Ambriz A, Reichhardt C, Reichhardt CJO, Tierno P, Nisoli C. Ice rule fragility via topological charge transfer in artificial colloidal ice. Nat Commun 2018; 9:4146. [PMID: 30297820 PMCID: PMC6175946 DOI: 10.1038/s41467-018-06631-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/05/2018] [Indexed: 11/09/2022] Open
Abstract
Artificial particle ices are model systems of constrained, interacting particles. They have been introduced theoretically to study ice-manifolds emergent from frustration, along with domain wall and grain boundary dynamics, doping, pinning-depinning, controlled transport of topological defects, avalanches, and memory effects. Recently such particle-based ices have been experimentally realized with vortices in nano-patterned superconductors or gravitationally trapped colloids. Here we demonstrate that, although these ices are generally considered equivalent to magnetic spin ices, they can access a novel spectrum of phenomenologies that are inaccessible to the latter. With experiments, theory and simulations we demonstrate that in mixed coordination geometries, entropy-driven negative monopoles spontaneously appear at a density determined by the vertex-mixture ratio. Unlike its spin-based analogue, the colloidal system displays a "fragile ice" manifold, where local energetics oppose the ice rule, which is instead enforced through conservation of the global topological charge. The fragile colloidal ice, stabilized by topology, can be spontaneously broken by topological charge transfer.
Collapse
Affiliation(s)
- András Libál
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.,Mathematics and Computer Science Department, Babeş-Bolyai University, Cluj, 400084, Romania
| | - Dong Yun Lee
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, 08028, España
| | - Antonio Ortiz-Ambriz
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, 08028, España.,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Charles Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | | | - Pietro Tierno
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, 08028, España.,Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, Barcelona, 08028, Spain.,Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Cristiano Nisoli
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA. .,Institute for Materials Science, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
3
|
Nisoli C. Unexpected Phenomenology in Particle-Based Ice Absent in Magnetic Spin Ice. PHYSICAL REVIEW LETTERS 2018; 120:167205. [PMID: 29756919 DOI: 10.1103/physrevlett.120.167205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Indexed: 06/08/2023]
Abstract
While particle-based ices are often considered essentially equivalent to magnet-based spin ices, the two differ essentially in frustration and energetics. We show that at equilibrium particle-based ices correspond exactly to spin ices coupled to a background field. In trivial geometries, such a field has no effect, and the two systems are indeed thermodynamically equivalent. In other cases, however, the field controls a richer phenomenology, absent in magnetic ices, and still largely unexplored: ice rule fragility, topological charge transfer, radial polarization, decimation induced disorder, and glassiness.
Collapse
Affiliation(s)
- Cristiano Nisoli
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
4
|
Libál A, Nisoli C, Reichhardt CJO, Reichhardt C. Inner Phases of Colloidal Hexagonal Spin Ice. PHYSICAL REVIEW LETTERS 2018; 120:027204. [PMID: 29376707 DOI: 10.1103/physrevlett.120.027204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Using numerical simulations that mimic recent experiments on hexagonal colloidal ice, we show that colloidal hexagonal artificial spin ice exhibits an inner phase within its ice state that has not been observed previously. Under increasing colloid-colloid repulsion, the initially paramagnetic system crosses into a disordered ice regime, then forms a topologically charge ordered state with disordered colloids, and finally reaches a threefold degenerate, ordered ferromagnetic state. This is reminiscent of, yet distinct from, the inner phases of the magnetic kagome spin ice analog. The difference in the inner phases of the two systems is explained by their difference in energetics and frustration.
Collapse
Affiliation(s)
- A Libál
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Mathematics and Computer Science Department, Babeş-Bolyai University, Cluj 400084, Romania
| | - C Nisoli
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|