1
|
Yu JK, Peng LY, Chen CY, Lu TM, Holland ND, Holland LZ. Asymmetric Segregation of Maternal mRNAs and Germline-related Determinants in Cephalochordate Embryos: Implications for the Evolution of Early Patterning Events in Chordates. Integr Comp Biol 2024; 64:1243-1254. [PMID: 38599626 DOI: 10.1093/icb/icae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024] Open
Abstract
How animal embryos determine their early cell fates is an important question in developmental biology. In various model animals, asymmetrically localized maternal transcripts play important roles in axial patterning and cell fate specification. Cephalochordates (amphioxus), which have three living genera (Asymmetron, Epigonichthys, and Branchiostoma), are an early branching chordate lineage and thus occupy a key phylogenetic position for understanding the evolution of chordate developmental mechanisms. It has been shown that in the zygote of Branchiostoma amphioxus, which possesses bilateral gonads flanking both sides of their trunk region, maternal transcripts of germline determinants form a compact granule. During early embryogenesis, this granule is inherited by a single blastomere, which subsequently gives rise to a cluster of cells displaying typical characteristics of primordial germ cells (PGC). These PGCs then come to lie in the tailbud region and proliferate during posterior elongation of the larvae to join in the gonad anlagen at the ventral tip of the developing myomeres in amphioxus larvae. However, in Asymmetron and Epigonichthys amphioxus, whose gonads are present only on the right side of their bodies, nothing is known about their PGC development or the cellular/morphogenetic processes resulting in the asymmetric distribution of gonads. Using conserved germline determinants as markers, we show that similarly to Branchiostoma amphioxus, Asymmetron also employs a preformation mechanism to specify their PGCs, suggesting that this mechanism represents an ancient trait dating back to the common ancestor of Cephalochordates. Surprisingly, we found that Asymmetron PGCs are initially deposited on both sides of the body during early larval development; however, the left-side PGCs cease to exist in young juveniles, suggesting that PGCs are eliminated from the left body side during larval development or following metamorphosis. This is reminiscent of the PGC development in the sea urchin embryo, and we discuss the implications of this observation for the evolution of developmental mechanisms.
Collapse
Affiliation(s)
- Jr-Kai Yu
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei 11529, Taiwan
- Marine Research Station, ICOB, Academia Sinica, Yilan 26242, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Li-Ying Peng
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei 11529, Taiwan
- Institute of Oceanography, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Yi Chen
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei 11529, Taiwan
| | - Tsai-Ming Lu
- Institute of Cellular and Organismic Biology (ICOB), Academia Sinica, Taipei 11529, Taiwan
| | - Nicholas D Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, CA 92093-0202, USA
| | - Linda Z Holland
- Marine Biology Research Division, Scripps Institution of Oceanography, UCSD, La Jolla, CA 92093-0202, USA
| |
Collapse
|
2
|
D'Aniello S, Bertrand S, Escriva H. Amphioxus as a model to study the evolution of development in chordates. eLife 2023; 12:e87028. [PMID: 37721204 PMCID: PMC10506793 DOI: 10.7554/elife.87028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Cephalochordates and tunicates represent the only two groups of invertebrate chordates, and extant cephalochordates - commonly known as amphioxus or lancelets - are considered the best proxy for the chordate ancestor, from which they split around 520 million years ago. Amphioxus has been an important organism in the fields of zoology and embryology since the 18th century, and the morphological and genomic simplicity of cephalochordates (compared to vertebrates) makes amphioxus an attractive model for studying chordate biology at the cellular and molecular levels. Here we describe the life cycle of amphioxus, and discuss the natural histories and habitats of the different species of amphioxus. We also describe their use as laboratory animal models, and discuss the techniques that have been developed to study different aspects of amphioxus.
Collapse
Affiliation(s)
- Salvatore D'Aniello
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton DohrnNapoliItaly
| | - Stephanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire OcéanologiqueBanyuls-sur-MerFrance
| |
Collapse
|
3
|
Li W, Zhao G, Jiao Z, Xiang C, Liang Y, Huang W, Nie P, Huang B. Nuclear import of IRF11 via the importin α/β pathway is essential for its antiviral activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 141:104649. [PMID: 36716904 DOI: 10.1016/j.dci.2023.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Interferon regulatory factor 11 (IRF11), an intriguing IRF member found only in fish species, has recently been shown to have antiviral properties that are dependent on its nuclear entry and DNA binding affinity. However, the mechanisms by which IRF11 enters the nucleus are unknown. In the present study, we found orthologs of IRF11 in lamprey and lancelet species by combining positional, phylogenetic and structural comparison data, showing that this gene has an ancient origin. The IRF11 gene (AjIRF11) from the Japanese eel, Anguilla japonica, was subsequently characterized, and it was found that AjIRF11 has antiviral activities against spring viremia of carp virus (SVCV), which are accomplished by regulating the production of type I IFN and IFN-stimulated genes. In addition to its known DNA binding residues in the α3 helix, two residues in Loop 1, His40 and Trp46, are also involved in DNA binding and activation of the IFN promoter. Using immunofluorescence microscopy and site-directed mutagenesis analysis, we confirmed that full nuclear localization of AjIRF11 requires the bipartite nuclear localization sequence (NLS) spanning residues 75 to 101, as well as the monopartite NLS situated between residues 119 and 122. Coimmunoprecipitation assays confirmed that AjIRF11 interacts with importin α via its NLSs and can also bind to importin β directly, implying that IRF11 can be imported to the nucleus by one or more transport receptors.
Collapse
Affiliation(s)
- Wenxing Li
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Gejie Zhao
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Zhiyuan Jiao
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Chao Xiang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Ying Liang
- Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Wenshu Huang
- Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China
| | - Pin Nie
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266237, China; School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| | - Bei Huang
- Fisheries College, Jimei University, Xiamen, 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
4
|
Brasó-Vives M, Marlétaz F, Echchiki A, Mantica F, Acemel RD, Gómez-Skarmeta JL, Hartasánchez DA, Le Targa L, Pontarotti P, Tena JJ, Maeso I, Escriva H, Irimia M, Robinson-Rechavi M. Parallel evolution of amphioxus and vertebrate small-scale gene duplications. Genome Biol 2022; 23:243. [PMID: 36401278 PMCID: PMC9673378 DOI: 10.1186/s13059-022-02808-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Amphioxus are non-vertebrate chordates characterized by a slow morphological and molecular evolution. They share the basic chordate body-plan and genome organization with vertebrates but lack their 2R whole-genome duplications and their developmental complexity. For these reasons, amphioxus are frequently used as an outgroup to study vertebrate genome evolution and Evo-Devo. Aside from whole-genome duplications, genes continuously duplicate on a smaller scale. Small-scale duplicated genes can be found in both amphioxus and vertebrate genomes, while only the vertebrate genomes have duplicated genes product of their 2R whole-genome duplications. Here, we explore the history of small-scale gene duplications in the amphioxus lineage and compare it to small- and large-scale gene duplication history in vertebrates. RESULTS We present a study of the European amphioxus (Branchiostoma lanceolatum) gene duplications thanks to a new, high-quality genome reference. We find that, despite its overall slow molecular evolution, the amphioxus lineage has had a history of small-scale duplications similar to the one observed in vertebrates. We find parallel gene duplication profiles between amphioxus and vertebrates and conserved functional constraints in gene duplication. Moreover, amphioxus gene duplicates show levels of expression and patterns of functional specialization similar to the ones observed in vertebrate duplicated genes. We also find strong conservation of gene synteny between two distant amphioxus species, B. lanceolatum and B. floridae, with two major chromosomal rearrangements. CONCLUSIONS In contrast to their slower molecular and morphological evolution, amphioxus' small-scale gene duplication history resembles that of the vertebrate lineage both in quantitative and in functional terms.
Collapse
Affiliation(s)
- Marina Brasó-Vives
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| | - Ferdinand Marlétaz
- Department of Genetics, Evolution and Environment (GEE), University College London, London, UK
| | - Amina Echchiki
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Federica Mantica
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rafael D Acemel
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - José L Gómez-Skarmeta
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - Diego A Hartasánchez
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Lorlane Le Targa
- IRD, APHM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
| | - Pierre Pontarotti
- IRD, APHM, MEPHI, Aix Marseille Université, Marseille, France
- IHU-Méditerranée Infection, Marseille, France
- CNRS, Paris, France
| | - Juan J Tena
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
| | - Ignacio Maeso
- Andalusian Centre for Developmental Biology (CABD), CSIC-Pablo Olavide University, Sevilla, Spain
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Hector Escriva
- Biologie Intégrative des Organismes Marins, BIOM, CNRS-Sorbonne University, Banyuls-sur-Mer, France
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
- Pompeu Fabra University (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Marc Robinson-Rechavi
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
| |
Collapse
|
5
|
Carvalho JE, Lahaye F, Yong LW, Croce JC, Escrivá H, Yu JK, Schubert M. An Updated Staging System for Cephalochordate Development: One Table Suits Them All. Front Cell Dev Biol 2021; 9:668006. [PMID: 34095136 PMCID: PMC8174843 DOI: 10.3389/fcell.2021.668006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/31/2021] [Indexed: 12/17/2022] Open
Abstract
Chordates are divided into three subphyla: Vertebrata, Tunicata, and Cephalochordata. Phylogenetically, the Cephalochordata, more commonly known as lancelets or amphioxus, constitute the sister group of Vertebrata and Tunicata. Lancelets are small, benthic, marine filter feeders, and their roughly three dozen described species are divided into three genera: Branchiostoma, Epigonichthys, and Asymmetron. Due to their phylogenetic position and their stereotypical chordate morphology and genome architecture, lancelets are key models for understanding the evolutionary history of chordates. Lancelets have thus been studied by generations of scientists, with the first descriptions of adult anatomy and developmental morphology dating back to the 19th century. Today, several different lancelet species are used as laboratory models, predominantly for developmental, molecular and genomic studies. Surprisingly, however, a universal staging system and an unambiguous nomenclature for developing lancelets have not yet been adopted by the scientific community. In this work, we characterized the development of the European lancelet (Branchiostoma lanceolatum) using confocal microscopy and compiled a streamlined developmental staging system, from fertilization through larval life, including an unambiguous stage nomenclature. By tracing growth curves of the European lancelet reared at different temperatures, we were able to show that our staging system permitted an easy conversion of any developmental time into a specific stage name. Furthermore, comparisons of embryos and larvae from the European lancelet (B. lanceolatum), the Florida lancelet (Branchiostoma floridae), two Asian lancelets (Branchiostoma belcheri and Branchiostoma japonicum), and the Bahamas lancelet (Asymmetron lucayanum) demonstrated that our staging system could readily be applied to other lancelet species. Although the detailed staging description was carried out on developing B. lanceolatum, the comparisons with other lancelet species thus strongly suggested that both staging and nomenclature are applicable to all extant lancelets. We conclude that this description of embryonic and larval development will be of great use for the scientific community and that it should be adopted as the new standard for defining and naming developing lancelets. More generally, we anticipate that this work will facilitate future studies comparing representatives from different chordate lineages.
Collapse
Affiliation(s)
- João E. Carvalho
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - François Lahaye
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Luok Wen Yong
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jenifer C. Croce
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Hector Escrivá
- Biologie Intégrative des Organismes Marins, Observatoire Océanologique, Sorbonne Université, CNRS, Banyuls-sur-Mer, France
| | - Jr-Kai Yu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Yilan, Taiwan
| | - Michael Schubert
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer, Institut de la Mer de Villefranche, Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| |
Collapse
|
6
|
Caccavale F, Osca D, D’Aniello S, Crocetta F. Molecular taxonomy confirms that the northeastern Atlantic and Mediterranean Sea harbor a single lancelet, Branchiostoma lanceolatum (Pallas, 1774) (Cephalochordata: Leptocardii: Branchiostomatidae). PLoS One 2021; 16:e0251358. [PMID: 33956890 PMCID: PMC8101936 DOI: 10.1371/journal.pone.0251358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/23/2021] [Indexed: 12/02/2022] Open
Abstract
Branchiostomatidae (lancelets or amphioxus) comprises about 30 species, several of which are well-established models in evolutionary development. Our zoological and ecological knowledge of the family is nonetheless limited. Despite evident differences can be found among known populations, the taxonomy of Branchiostoma lanceolatum (type species of the genus Branchiostoma) has never been investigated with modern methods through its range in the northeastern Atlantic and Mediterranean Sea. We address this via a multilocus molecular approach and comparing specimens collected from different European populations. Results obtained here confirm the presence of a single species inhabiting the range between the topotypical localities of B. lanceolatum (Atlantic Ocean) and of its junior synonym B. lubricum (Mediterranean Sea), without evincing geographical structure between populations. This suggests that environment most likely drives the characteristics observed in different geographic areas. The long larval phase and the slow mutation rate in lancelets may have played a key role in the evolutionary history of this iconic species.
Collapse
Affiliation(s)
- Filomena Caccavale
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - David Osca
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Salvatore D’Aniello
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Fabio Crocetta
- Department of Integrated Marine Ecology, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| |
Collapse
|
7
|
Leclère L, Nir TS, Bazarsky M, Braitbard M, Schneidman-Duhovny D, Gat U. Dynamic Evolution of the Cthrc1 Genes, a Newly Defined Collagen-Like Family. Genome Biol Evol 2020; 12:3957-3970. [PMID: 32022859 PMCID: PMC7058181 DOI: 10.1093/gbe/evaa020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2020] [Indexed: 12/11/2022] Open
Abstract
Collagen triple helix repeat containing protein 1 (Cthrc1) is a secreted glycoprotein reported to regulate collagen deposition and to be linked to the Transforming growth factor β/Bone morphogenetic protein and the Wnt/planar cell polarity pathways. It was first identified as being induced upon injury to rat arteries and was found to be highly expressed in multiple human cancer types. Here, we explore the phylogenetic and evolutionary trends of this metazoan gene family, previously studied only in vertebrates. We identify Cthrc1 orthologs in two distant cnidarian species, the sea anemone Nematostella vectensis and the hydrozoan Clytia hemisphaerica, both of which harbor multiple copies of this gene. We find that Cthrc1 clade-specific diversification occurred multiple times in cnidarians as well as in most metazoan clades where we detected this gene. Many other groups, such as arthropods and nematodes, have entirely lost this gene family. Most vertebrates display a single highly conserved gene, and we show that the sequence evolutionary rate of Cthrc1 drastically decreased within the gnathostome lineage. Interestingly, this reduction coincided with the origin of its conserved upstream neighboring gene, Frizzled 6 (FZD6), which in mice has been shown to functionally interact with Cthrc1. Structural modeling methods further reveal that the yet uncharacterized C-terminal domain of Cthrc1 is similar in structure to the globular C1q superfamily domain, also found in the C-termini of collagens VIII and X. Thus, our studies show that the Cthrc1 genes are a collagen-like family with a variable short collagen triple helix domain and a highly conserved C-terminal domain structure resembling the C1q family.
Collapse
Affiliation(s)
- Lucas Leclère
- Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Sorbonne Université, CNRS, Villefranche-sur-Mer, France
| | - Tal S Nir
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Michael Bazarsky
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Merav Braitbard
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| | - Dina Schneidman-Duhovny
- Department of Biochemistry, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel.,School of Computer Science and Engineering, The Hebrew University of Jerusalem, Israel
| | - Uri Gat
- Department of Cell and Developmental Biology, Silberman Life Sciences Institute, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
8
|
Larouche‐Bilodeau C, Guilbeault‐Mayers X, Cameron CB. Filter feeding, deviations from bilateral symmetry, developmental noise, and heterochrony of hemichordate and cephalochordate gills. Ecol Evol 2020; 10:13544-13554. [PMID: 33304558 PMCID: PMC7713955 DOI: 10.1002/ece3.6962] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/02/2022] Open
Abstract
We measured gill slit fluctuating asymmetry (FA), a measure of developmental noise, in adults of three invertebrate deuterostomes with different feeding modes: the cephalochordate Branchiostoma floridae (an obligate filter feeder), the enteropneusts Protoglossus graveolens (a facultative filter feeder/deposit feeder) and Saccoglossus bromophenolosus (a deposit feeder). FA was substantially and significantly low in B. floridae and P. graveolens and high in S. bromophenolosus. Our results suggest that the gills of species that have experienced a relaxation of the filter feeding trait exhibit elevated FA. We found that the timing of development of the secondary collagenous gill bars, compared to the primary gill bars, was highly variable in P. graveolens but not the other two species, demonstrating an independence of gill FA from gill bar heterochrony. We also discovered the occasional ectopic expression of a second set of paired gills posterior to the first set of gills in the enteropneusts and that these were more common in S. bromophenolosus. Moreover, our finding that gill slits in enteropneusts exhibit bilateral symmetry suggests that the left-sidedness of larval cephalochordate gills, and the directional asymmetry of Cambrian stylophoran echinoderm fossil gills, evolved independently from a bilaterally symmetrical ancestor.
Collapse
|
9
|
Golan MP, Piłsyk S, Muszewska A, Wawrzyniak A. Ferritins in Chordata: Potential evolutionary trajectory marked by discrete selective pressures: History and reclassification of ferritins in chordates and geological events' influence on their evolution and radiation. Bioessays 2020; 43:e2000207. [PMID: 33226145 DOI: 10.1002/bies.202000207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 11/11/2022]
Abstract
Ferritins (FTs) are iron storage proteins that are involved in managing iron-oxygen balance. In our work, we present a hypothesis on the putative effect of geological changes that have affected the evolution and radiation of ferritin proteins. Based on sequence analysis and phylogeny reconstruction, we hypothesize that two significant factors have been involved in the evolution of ferritin proteins: fluctuations of atmospheric oxygen concentrations, altering redox potential, and changing availability of water rich in bioavailable ferric ions. Fish, ancient amphibians, reptiles, and placental mammals developed the broadest repertoire of singular FTs, attributable to embryonic growth in aquatic environments containing low oxygen levels and abundant forms of soluble iron. In contrast, oviparous land vertebrates, like reptiles and birds, that have developed in high oxygen levels and limited levels of environmental Fe2+ exhibit a lower diversity of singular FTs, but display a broad repertoire of subfamilies, particularly notable in early reptiles.
Collapse
Affiliation(s)
- Maciej P Golan
- Department of Neuropathology, Institute of Psychiatry and Neurology, Warszawa, Poland
| | - Sebastian Piłsyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Agata Wawrzyniak
- Morphological Sciences Department, College for Medical Sciences of University of Rzeszów, Rzeszów, Poland
| |
Collapse
|
10
|
Abstract
How vertebrates evolved from their invertebrate ancestors has long been a central topic of discussion in biology. Evolutionary developmental biology (evodevo) has provided a new tool-using gene expression patterns as phenotypic characters to infer homologies between body parts in distantly related organisms-to address this question. Combined with micro-anatomy and genomics, evodevo has provided convincing evidence that vertebrates evolved from an ancestral invertebrate chordate, in many respects resembling a modern amphioxus. The present review focuses on the role of evodevo in addressing two major questions of chordate evolution: (1) how the vertebrate brain evolved from the much simpler central nervous system (CNS) in of this ancestral chordate and (2) whether or not the head mesoderm of this ancestor was segmented.
Collapse
|
11
|
Pergner J, Vavrova A, Kozmikova I, Kozmik Z. Molecular Fingerprint of Amphioxus Frontal Eye Illuminates the Evolution of Homologous Cell Types in the Chordate Retina. Front Cell Dev Biol 2020; 8:705. [PMID: 32850825 PMCID: PMC7417673 DOI: 10.3389/fcell.2020.00705] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
The evolution of the vertebrate eye remains so far unresolved. Amphioxus frontal eye pigment cells and photoreceptors were proposed to be homologous to vertebrate photoreceptors and retinal pigmented epithelium, based on ultrastructural morphology and gene expression analysis in B. floridae. Here, we present comparative molecular data using two additional amphioxus species, a closely related B. lanceolatum, and the most divergent A. lucayanum. Taking advantage of a unique set of specific antibodies we characterized photoreceptors and putative interneurons of the frontal eye and investigated its neuronal circuitry. Our results corroborate generally conserved molecular fingerprint among cephalochordate species. Furthermore, we performed pharmacological perturbations and found that the Notch signaling pathway, a key regulator of retina development in vertebrates, is required for correct ratios among frontal eye cell types. In summary, our study provides a valuable insight into cell-type relationships in chordate visual organs and strengthens the previously proposed homology between amphioxus frontal eye and vertebrate eyes.
Collapse
Affiliation(s)
- Jiri Pergner
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Anna Vavrova
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Iryna Kozmikova
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| | - Zbynek Kozmik
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
12
|
Bi C, Lu N, Huang Z, Chen J, He C, Lu Z. Whole-genome resequencing reveals the pleistocene temporal dynamics of Branchiostoma belcheri and Branchiostoma floridae populations. Ecol Evol 2020; 10:8210-8224. [PMID: 32788973 PMCID: PMC7417228 DOI: 10.1002/ece3.6527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/30/2022] Open
Abstract
Global climatic fluctuations governed the ancestral demographic histories of species and contributed to place the current population status into a more extensive ecological and evolutionary context. Genetic variations will leave unambiguous signatures in the patterns of intraspecific genetic variation in extant species since the genome of each individual is an imperfect mosaic of the ancestral genomes. Here, we report the genome sequences of 20 Branchiostoma individuals by whole-genome resequencing strategy. We detected over 140 million genomic variations for each Branchiostoma individual. In particular, we applied the pairwise sequentially Markovian coalescent (PSMC) method to estimate the trajectories of changes in the effective population size (N e) of Branchiostoma population during the Pleistocene. We evaluated the threshold of sequencing depth for proper inference of demographic histories using PSMC was ≥25×. The PSMC results highlight the role of historical global climatic fluctuations in the long-term population dynamics of Branchiostoma. The inferred ancestral N e of the Branchiostoma belcheri populations from Zhanjiang and Xiamen (China) seawaters was different in amplitude before the first (mutation rate = 3 × 10-9) or third glaciation (mutation rate = 9 × 10-9) of the Pleistocene, indicating that the two populations most probably started to evolve in isolation in their respective seas after the first or third glaciation of the Pleistocene. A pronounced population bottleneck coinciding with the last glacial maximum was observed in all Branchiostoma individuals, followed by a population expansion occurred during the late Pleistocene. Species that have experienced long-term declines may be especially vulnerable to recent anthropogenic activities. Recently, the industrial pollution and the exploitation of sea sand have destroyed the harmonious living environment of amphioxus species. In the future, we need to protect the habitat of Branchiostoma and make full use of these detected genetic variations to facilitate the functional study of Branchiostoma for adaptation to local environments.
Collapse
Affiliation(s)
- Changwei Bi
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Na Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zhen Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic AdministrationCollege of Life SciencesFujian Normal UniversityFuzhouChina
- Key Laboratory of Special Marine Bio‐resources Sustainable Utilization of Fujian ProvinceFuzhouChina
| | - Junyuan Chen
- Nanjing Institute of Paleontology and GeologyChinese Academy of SciencesNanjingChina
| | - Chunpeng He
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Zuhong Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
13
|
Yasuoka Y. Enhancer evolution in chordates: Lessons from functional analyses of cephalochordate cis‐regulatory modules. Dev Growth Differ 2020; 62:279-300. [DOI: 10.1111/dgd.12684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Yuuri Yasuoka
- Laboratory for Comprehensive Genomic Analysis RIKEN Center for Integrative Medical Sciences Tsurumi‐ku Japan
| |
Collapse
|
14
|
Sun A, Xu K, Liu H, Li H, Shi Y, Zhu X, Liang T, Li X, Cao X, Ji Y, Jiang T, Xu C, Liu X. The evolution of zebrafish RAG2 protein is required for adapting to the elevated body temperature of the higher endothermic vertebrates. Sci Rep 2020; 10:4126. [PMID: 32139788 PMCID: PMC7057966 DOI: 10.1038/s41598-020-61019-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/19/2020] [Indexed: 11/21/2022] Open
Abstract
The recombination activating gene (RAG or RAG1/RAG2 complex)-mediated adaptive immune system is a hallmark of jawed vertebrates. It has been reported that RAG originated in invertebrates. However, whether RAG further evolved once it arose in jawed vertebrates remains largely unknown. Here, we found that zebrafish RAG (zRAG) had a lower activity than mouse RAG (mRAG). Intriguingly, the attenuated stability of zebrafish RAG2 (zRAG2), but not zebrafish RAG1, caused the reduced V(D)J recombination efficiency compared to mRAG at 37 °C which are the body temperature of most endotherms except birds. Importantly, the lower temperature 28 °C, which is the best temperature for zebrafish growth, made the recombination efficiency of zRAG similar to that of mRAG by improving the stability of zRAG2. Consistent with the prementioned observation, the V(D)J recombination of Rag2KI/KI mice, which zRAG2 was substituted for mRAG2, was also severely impaired. Unexpectedly, Rag2KI/KI mice developed cachexia syndromes accompanied by premature death. Taken together, our findings illustrate that the evolution of zebrafish RAG2 protein is required for adapting to the elevated body temperature of the higher endothermic vertebrates.
Collapse
Affiliation(s)
- Ao Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ke Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Haifeng Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hua Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yaohuang Shi
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyan Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Tao Liang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinyue Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xianxia Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi, 710061, China
| | - Taijiao Jiang
- Center of System Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
| | - Chenqi Xu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaolong Liu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
15
|
Abstract
The cephalochordates amphioxus or lancelets are benthic marine animals representing the earliest divergent evolutionary lineage within chordates. Although amphioxus are present in most of the world's tropical and temperate oceans, only about thirty different species grouped into three different genera, Branchiostoma, Epigonichthys and Asymmetron have been described. In the genus Asymmetron, only two species have been characterized, although for one of them, A. lucayanum, several cryptic lineages exist. In this work we have sequenced and analyzed the mitogenome of an A. lucayanum population previously described in the Red Sea. The phylogenetic study using this complete mitogenome as well as the analysis of COI gene sequences of several individuals of this Red Sea population show that the Red Sea population is a new cryptic species. We propose to call this new species Asymmetron rubrum.
Collapse
|
16
|
Ji H, Xu X, Jin X, Yin H, Luo J, Liu G, Zhao Q, Chen Z, Bu W, Gao S. Using high-resolution annotation of insect mitochondrial DNA to decipher tandem repeats in the control region. RNA Biol 2019; 16:830-837. [PMID: 30870076 DOI: 10.1080/15476286.2019.1591035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
In this study, we used a small RNA sequencing (sRNA-seq) based method to annotate the mitochondrial genome of the insect Erthesina fullo Thunberg at 1 bp resolution. The high-resolution annotations cover both entire strands of the mitochondrial genome without any gaps or overlaps. Most of the new annotations were consistent with the previous annotations which had been obtained using PacBio full-length transcripts. Two important findings were that animals transcribe both entire strands of mitochondrial genomes and the tandem repeats in the control region of the E. fullo mitochondrial genome contains the repeated Transcription Initiation Sites (TISs) of the heavy strand. In addition, we found that the copy numbers of tandem repeats showed a great diversity within an individual, suggesting that mitochondrial DNA recombination occurs in an individual. In conclusion, the sRNA-seq based method uses 5' and 3' end small RNAs to annotate nuclear non-coding and mitochondrial genes at 1 bp resolution, and can be used to identify new steady RNAs, particularly long non-coding RNAs (lncRNAs). The high-resolution annotations of mitochondrial genomes can also be used to study the molecular phylogenetics and evolution of animals or to investigate mitochondrial gene transcription, RNA processing, RNA maturation and several other related topics. The complete mitochondrial genome sequence of E. fullo with the new annotations using the sRNA-seq based method is available at the NCBI GenBank database under the accession number MK374364. We publish our theories, methods, the high quality sRNA-seq and RNA-seq data (SRA: SRP174926) for extensive use.
Collapse
Affiliation(s)
- Haishuo Ji
- a College of Life Sciences , Nankai University , Tianjin , P.R.China
| | - Xiaofeng Xu
- b State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Science , Lanzhou , P.R.China
| | - Xiufeng Jin
- a College of Life Sciences , Nankai University , Tianjin , P.R.China
| | - Hong Yin
- b State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Science , Lanzhou , P.R.China.,c Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonose , Yangzhou , P.R.China
| | - Jianxun Luo
- b State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Science , Lanzhou , P.R.China
| | - Guangyuan Liu
- b State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Science , Lanzhou , P.R.China
| | - Qiang Zhao
- a College of Life Sciences , Nankai University , Tianjin , P.R.China
| | - Ze Chen
- b State Key Laboratory of Veterinary Etiological Biology and Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute , Chinese Academy of Agricultural Science , Lanzhou , P.R.China
| | - Wenjun Bu
- a College of Life Sciences , Nankai University , Tianjin , P.R.China
| | - Shan Gao
- a College of Life Sciences , Nankai University , Tianjin , P.R.China
| |
Collapse
|
17
|
Somorjai IML, Martí-Solans J, Diaz-Gracia M, Nishida H, Imai KS, Escrivà H, Cañestro C, Albalat R. Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biol 2018; 19:98. [PMID: 30045756 PMCID: PMC6060547 DOI: 10.1186/s13059-018-1468-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND What impact gene loss has on the evolution of developmental processes, and how function shuffling has affected retained genes driving essential biological processes, remain open questions in the fields of genome evolution and EvoDevo. To investigate these problems, we have analyzed the evolution of the Wnt ligand repertoire in the chordate phylum as a case study. RESULTS We conduct an exhaustive survey of Wnt genes in genomic databases, identifying 156 Wnt genes in 13 non-vertebrate chordates. This represents the most complete Wnt gene catalog of the chordate subphyla and has allowed us to resolve previous ambiguities about the orthology of many Wnt genes, including the identification of WntA for the first time in chordates. Moreover, we create the first complete expression atlas for the Wnt family during amphioxus development, providing a useful resource to investigate the evolution of Wnt expression throughout the radiation of chordates. CONCLUSIONS Our data underscore extraordinary genomic stasis in cephalochordates, which contrasts with the liberal and dynamic evolutionary patterns of gene loss and duplication in urochordate genomes. Our analysis has allowed us to infer ancestral Wnt functions shared among all chordates, several cases of function shuffling among Wnt paralogs, as well as unique expression domains for Wnt genes that likely reflect functional innovations in each chordate lineage. Finally, we propose a potential relationship between the evolution of WntA and the evolution of the mouth in chordates.
Collapse
Affiliation(s)
- Ildikó M L Somorjai
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9ST, Scotland, UK.
- Scottish Oceans Institute, School of Biology, University of St Andrews, East Sands, St Andrews, KY16 8LB, Scotland, UK.
| | - Josep Martí-Solans
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Miriam Diaz-Gracia
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Kaoru S Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Hector Escrivà
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Biologie Intégrative des Organismes Marins (BIOM), Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Cristian Cañestro
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| | - Ricard Albalat
- Departament de Genètica, , Microbiologia i Estadística, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
18
|
Bányai L, Kerekes K, Trexler M, Patthy L. Morphological Stasis and Proteome Innovation in Cephalochordates. Genes (Basel) 2018; 9:genes9070353. [PMID: 30013013 PMCID: PMC6071037 DOI: 10.3390/genes9070353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/11/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022] Open
Abstract
Lancelets, extant representatives of basal chordates, are prototypic examples of evolutionary stasis; they preserved a morphology and body-plan most similar to the fossil chordates from the early Cambrian. Such a low level of morphological evolution is in harmony with a low rate of amino acid substitution; cephalochordate proteins were shown to evolve slower than those of the slowest evolving vertebrate, the elephant shark. Surprisingly, a study comparing the predicted proteomes of Chinese amphioxus, Branchiostoma belcheri and the Florida amphioxus, Branchiostoma floridae has led to the conclusion that the rate of creation of novel domain combinations is orders of magnitude greater in lancelets than in any other Metazoa, a finding that contradicts the notion that high rates of protein innovation are usually associated with major evolutionary innovations. Our earlier studies on a representative sample of proteins have provided evidence suggesting that the differences in the domain architectures of predicted proteins of these two lancelet species reflect annotation errors, rather than true innovations. In the present work, we have extended these studies to include a larger sample of genes and two additional lancelet species, Asymmetron lucayanum and Branchiostoma lanceolatum. These analyses have confirmed that the domain architecture differences of orthologous proteins of the four lancelet species are because of errors of gene prediction, the error rate in the given species being inversely related to the quality of the transcriptome dataset that was used to aid gene prediction.
Collapse
Affiliation(s)
- László Bányai
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - Krisztina Kerekes
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - Mária Trexler
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, H-1117 Budapest, Hungary.
| |
Collapse
|
19
|
Barton-Owen TB, Ferrier DEK, Somorjai IML. Pax3/7 duplicated and diverged independently in amphioxus, the basal chordate lineage. Sci Rep 2018; 8:9414. [PMID: 29925900 PMCID: PMC6010424 DOI: 10.1038/s41598-018-27700-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023] Open
Abstract
The Pax3/7 transcription factor family is integral to developmental gene networks contributing to important innovations in vertebrate evolution, including the neural crest. The basal chordate lineage of amphioxus is ideally placed to understand the dynamics of the gene regulatory network evolution that produced these novelties. We report here the discovery that the cephalochordate lineage possesses two Pax3/7 genes, Pax3/7a and Pax3/7b. The tandem duplication is ancestral to all extant amphioxus, occurring in both Asymmetron and Branchiostoma, but originated after the split from the lineage leading to vertebrates. The two paralogues are differentially expressed during embryonic development, particularly in neural and somitic tissues, suggesting distinct regulation. Our results have implications for the study of amphioxus regeneration, neural plate and crest evolution, and differential tandem paralogue evolution.
Collapse
Affiliation(s)
- Thomas B Barton-Owen
- University of St Andrews, Gatty Marine Laboratory, Scottish Oceans Institute, East Sands, St Andrews, Fife, KY16 8LB, UK.,University of St Andrews, Biomedical Sciences Research Complex, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - David E K Ferrier
- University of St Andrews, Gatty Marine Laboratory, Scottish Oceans Institute, East Sands, St Andrews, Fife, KY16 8LB, UK
| | - Ildikó M L Somorjai
- University of St Andrews, Gatty Marine Laboratory, Scottish Oceans Institute, East Sands, St Andrews, Fife, KY16 8LB, UK. .,University of St Andrews, Biomedical Sciences Research Complex, North Haugh, St Andrews, Fife, KY16 9ST, UK.
| |
Collapse
|
20
|
Nishikawa T. Reinstatement of the Lancelet Name Asymmetron lucayanum, Recently Proposed as a Junior Synonym of Branchiostoma pelagicum (Cephalochordata). ACTA ACUST UNITED AC 2018. [DOI: 10.12782/specdiv.23.83] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Pantzartzi CN, Pergner J, Kozmik Z. The role of transposable elements in functional evolution of amphioxus genome: the case of opsin gene family. Sci Rep 2018; 8:2506. [PMID: 29410521 PMCID: PMC5802833 DOI: 10.1038/s41598-018-20683-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/22/2018] [Indexed: 11/30/2022] Open
Abstract
Transposable elements (TEs) are able to jump to new locations (transposition) in the genome, usually after replication. They constitute the so-called selfish or junk DNA and take over large proportions of some genomes. Due to their ability to move around they can change the DNA landscape of genomes and are therefore a rich source of innovation in genes and gene regulation. Surge of sequence data in the past years has significantly facilitated large scale comparative studies. Cephalochordates have been regarded as a useful proxy to ancestral chordate condition partially due to the comparatively slow evolutionary rate at morphological and genomic level. In this study, we used opsin gene family from three Branchiostoma species as a window into cephalochordate genome evolution. We compared opsin complements in terms of family size, gene structure and sequence allowing us to identify gene duplication and gene loss events. Furthermore, analysis of the opsin containing genomic loci showed that they are populated by TEs. In summary, we provide evidence of the way transposable elements may have contributed to the evolution of opsin gene family and to the shaping of cephalochordate genomes in general.
Collapse
Affiliation(s)
- Chrysoula N Pantzartzi
- Laboratory of Eye Biology, Institute of Molecular Genetics of the ASCR, v.v.i., Division BIOCEV, Prumyslová 595, 252 50, Vestec, Czech Republic
| | - Jiri Pergner
- Department of Transcriptional Regulation, Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 14220, Prague 4, Czech Republic
| | - Zbynek Kozmik
- Laboratory of Eye Biology, Institute of Molecular Genetics of the ASCR, v.v.i., Division BIOCEV, Prumyslová 595, 252 50, Vestec, Czech Republic. .,Department of Transcriptional Regulation, Institute of Molecular Genetics of the ASCR, v.v.i., Videnska 1083, 14220, Prague 4, Czech Republic.
| |
Collapse
|