1
|
Li Q, Vetter L, Veith Y, Christ E, Végvári Á, Sahin C, Ribacke U, Wahlgren M, Ankarklev J, Larsson O, Chun-Leung Chan S. tRNA regulation and amino acid usage bias reflect a coordinated metabolic adaptation in Plasmodium falciparum. iScience 2024; 27:111167. [PMID: 39524331 PMCID: PMC11544085 DOI: 10.1016/j.isci.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
An adaptive feature of malaria-causing parasites is the digestion of host hemoglobin (HB) to acquire amino acids (AAs). Here, we describe a link between nutrient availability and translation dependent regulation of gene expression as an adaptive strategy. We show that tRNA expression in Plasmodium falciparum does not match the decoding need expected for optimal translation. A subset of tRNAs decoding AAs that are insufficiently provided by HB are lowly expressed, wherein the abundance of a protein-coding transcript is negatively correlated with the decoding requirement of these tRNAs. Proliferation-related genes have evolved a high requirement of these tRNAs, thereby proliferation can be modulated by repressing protein synthesis of these genes during nutrient stress. We conclude that the parasite modulates translation elongation by maintaining a discordant tRNA profile to exploit variations in AA-composition among genes as an adaptation strategy. This study exemplifies metabolic adaptation as an important driving force for protein evolution.
Collapse
Affiliation(s)
- Qian Li
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Leonie Vetter
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ylva Veith
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Elena Christ
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ákos Végvári
- Division of Chemistry I, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Ulf Ribacke
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Mats Wahlgren
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Johan Ankarklev
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| | - Sherwin Chun-Leung Chan
- Department of Oncology-Pathology, Science for Life Laboratories, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Bajaj P, Bhasin M, Varadarajan R. Molecular bases for strong phenotypic effects of single synonymous codon substitutions in the E. coli ccdB toxin gene. BMC Genomics 2023; 24:732. [PMID: 38049728 PMCID: PMC10694988 DOI: 10.1186/s12864-023-09817-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 11/18/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Single synonymous codon mutations typically have only minor or no effects on gene function. Here, we estimate the effects on cell growth of ~ 200 single synonymous codon mutations in an operonic context by mutating almost all positions of ccdB, the 101-residue long cytotoxin of the ccdAB Toxin-Antitoxin (TA) operon to most degenerate codons. Phenotypes were assayed by transforming the mutant library into CcdB sensitive and resistant E. coli strains, isolating plasmid pools, and subjecting them to deep sequencing. Since autoregulation is a hallmark of TA operons, phenotypes obtained for ccdB synonymous mutants after transformation in a RelE toxin reporter strain followed by deep sequencing provided information on the amount of CcdAB complex formed. RESULTS Synonymous mutations in the N-terminal region involved in translation initiation showed the strongest non-neutral phenotypic effects. We observe an interplay of numerous factors, namely, location of the codon, codon usage, t-RNA abundance, formation of anti-Shine Dalgarno sequences, predicted transcript secondary structure, and evolutionary conservation in determining phenotypic effects of ccdB synonymous mutations. Incorporation of an N-terminal, hyperactive synonymous mutation, in the background of the single synonymous codon mutant library sufficiently increased translation initiation, such that mutational effects on either folding or termination of translation became more apparent. Introduction of putative pause sites not only affects the translational rate, but might also alter the folding kinetics of the protein in vivo. CONCLUSION In summary, the study provides novel insights into diverse mechanisms by which synonymous mutations modulate gene function. This information is useful in optimizing heterologous gene expression in E. coli and understanding the molecular bases for alteration in gene expression that arise due to synonymous mutations.
Collapse
Affiliation(s)
- Priyanka Bajaj
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
- Present address: Department of Bioengineering and Therapeutic Sciences, University of CA - San Francisco, San Francisco, CA, 94158, USA
| | - Munmun Bhasin
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
3
|
Catacalos C, Krohannon A, Somalraju S, Meyer KD, Janga SC, Chakrabarti K. Epitranscriptomics in parasitic protists: Role of RNA chemical modifications in posttranscriptional gene regulation. PLoS Pathog 2022; 18:e1010972. [PMID: 36548245 PMCID: PMC9778586 DOI: 10.1371/journal.ppat.1010972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
"Epitranscriptomics" is the new RNA code that represents an ensemble of posttranscriptional RNA chemical modifications, which can precisely coordinate gene expression and biological processes. There are several RNA base modifications, such as N6-methyladenosine (m6A), 5-methylcytosine (m5C), and pseudouridine (Ψ), etc. that play pivotal roles in fine-tuning gene expression in almost all eukaryotes and emerging evidences suggest that parasitic protists are no exception. In this review, we primarily focus on m6A, which is the most abundant epitranscriptomic mark and regulates numerous cellular processes, ranging from nuclear export, mRNA splicing, polyadenylation, stability, and translation. We highlight the universal features of spatiotemporal m6A RNA modifications in eukaryotic phylogeny, their homologs, and unique processes in 3 unicellular parasites-Plasmodium sp., Toxoplasma sp., and Trypanosoma sp. and some technological advances in this rapidly developing research area that can significantly improve our understandings of gene expression regulation in parasites.
Collapse
Affiliation(s)
- Cassandra Catacalos
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Alexander Krohannon
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Sahiti Somalraju
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Kate D. Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Sarath Chandra Janga
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, United States of America
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| |
Collapse
|
4
|
Shaw PJ, Kaewprommal P, Wongsombat C, Ngampiw C, Taechalertpaisarn T, Kamchonwongpaisan S, Tongsima S, Piriyapongsa J. Transcriptomic complexity of the human malaria parasite Plasmodium falciparum revealed by long-read sequencing. PLoS One 2022; 17:e0276956. [PMID: 36331983 PMCID: PMC9635732 DOI: 10.1371/journal.pone.0276956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
The Plasmodium falciparum human malaria parasite genome is incompletely annotated and does not accurately represent the transcriptomic diversity of this species. To address this need, we performed long-read transcriptomic sequencing. 5' capped mRNA was enriched from samples of total and nuclear-fractionated RNA from intra-erythrocytic stages and converted to cDNA library. The cDNA libraries were sequenced on PacBio and Nanopore long-read platforms. 12,495 novel isoforms were annotated from the data. Alternative 5' and 3' ends represent the majority of isoform events among the novel isoforms, with retained introns being the next most common event. The majority of alternative 5' ends correspond to genomic regions with features similar to those of the reference transcript 5' ends. However, a minority of alternative 5' ends showed markedly different features, including locations within protein-coding regions. Alternative 3' ends showed similar features to the reference transcript 3' ends, notably adenine-rich termination signals. Distinguishing features of retained introns could not be observed, except for a tendency towards shorter length and greater GC content compared with spliced introns. Expression of antisense and retained intron isoforms was detected at different intra-erythrocytic stages, suggesting developmental regulation of these isoform events. To gain insights into the possible functions of the novel isoforms, their protein-coding potential was assessed. Variants of P. falciparum proteins and novel proteins encoded by alternative open reading frames suggest that P. falciparum has a greater proteomic repertoire than the current annotation. We provide a catalog of annotated transcripts and encoded alternative proteins to support further studies on gene and protein regulation of this pathogen.
Collapse
Affiliation(s)
- Philip J. Shaw
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Pavita Kaewprommal
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chayaphat Wongsombat
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chumpol Ngampiw
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | | | - Sumalee Kamchonwongpaisan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sissades Tongsima
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Jittima Piriyapongsa
- National Biobank of Thailand (NBT), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| |
Collapse
|
5
|
Fages‐Lartaud M, Hundvin K, Hohmann‐Marriott MF. Mechanisms governing codon usage bias and the implications for protein expression in the chloroplast of Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:919-945. [PMID: 36071273 PMCID: PMC9828097 DOI: 10.1111/tpj.15970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
Chloroplasts possess a considerably reduced genome that is decoded via an almost minimal set of tRNAs. These features make an excellent platform for gaining insights into fundamental mechanisms that govern protein expression. Here, we present a comprehensive and revised perspective of the mechanisms that drive codon selection in the chloroplast of Chlamydomonas reinhardtii and the functional consequences for protein expression. In order to extract this information, we applied several codon usage descriptors to genes with different expression levels. We show that highly expressed genes strongly favor translationally optimal codons, while genes with lower functional importance are rather affected by directional mutational bias. We demonstrate that codon optimality can be deduced from codon-anticodon pairing affinity and, for a small number of amino acids (leucine, arginine, serine, and isoleucine), tRNA concentrations. Finally, we review, analyze, and expand on the impact of codon usage on protein yield, secondary structures of mRNA, translation initiation and termination, and amino acid composition of proteins, as well as cotranslational protein folding. The comprehensive analysis of codon choice provides crucial insights into heterologous gene expression in the chloroplast of C. reinhardtii, which may also be applicable to other chloroplast-containing organisms and bacteria.
Collapse
Affiliation(s)
- Maxime Fages‐Lartaud
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Kristoffer Hundvin
- Department of BiotechnologyNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | | |
Collapse
|
6
|
Fages-Lartaud M, Hohmann-Marriott MF. Overview of tRNA Modifications in Chloroplasts. Microorganisms 2022; 10:226. [PMID: 35208681 PMCID: PMC8877259 DOI: 10.3390/microorganisms10020226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 11/29/2022] Open
Abstract
The chloroplast is a promising platform for biotechnological innovation due to its compact translation machinery. Nucleotide modifications within a minimal set of tRNAs modulate codon-anticodon interactions that are crucial for translation efficiency. However, a comprehensive assessment of these modifications does not presently exist in chloroplasts. Here, we synthesize all available information concerning tRNA modifications in the chloroplast and assign translation efficiency for each modified anticodon-codon pair. In addition, we perform a bioinformatics analysis that links enzymes to tRNA modifications and aminoacylation in the chloroplast of Chlamydomonas reinhardtii. This work provides the first comprehensive analysis of codon and anticodon interactions of chloroplasts and its implication for translation efficiency.
Collapse
Affiliation(s)
- Maxime Fages-Lartaud
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
| | - Martin Frank Hohmann-Marriott
- Department of Biotechnology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway;
- United Scientists CORE (Limited), Dunedin 9016, Aotearoa, New Zealand
| |
Collapse
|
7
|
Quintana MDP. Expression of Single-Domain Soluble and Disulfide-Folded PfEMP1 Antigens in the Escherichia coli SHuffle Expression System. Methods Mol Biol 2022; 2470:273-282. [PMID: 35881352 DOI: 10.1007/978-1-0716-2189-9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The genome of Plasmodium falciparum has an A/T content of around 81%. This, together with a high cysteine content and the high molecular weight of several proteins, make the expression of recombinant parasite proteins in heterologous systems challenging. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is a family of proteins composed of several Duffy-binding like (DBL) and cysteine-rich inter-domain region (CIDR) domains involved in cytoadhesion to human host receptors and development of severe malaria. Expression of correctly folded single- and multiple-domain PfEMP1 fragment regions containing cysteines forming disulfide bonds, remains particularly difficult. Nevertheless, expression of single DBL and CIDR domains has been successful and this protocol describes the expression and purification of single-domain soluble PfEMP1 fragments using the Escherichia coli SHuffle expression system.
Collapse
Affiliation(s)
- Maria Del Pilar Quintana
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Menichelli C, Guitard V, Martins RM, Lèbre S, Lopez-Rubio JJ, Lecellier CH, Bréhélin L. Identification of long regulatory elements in the genome of Plasmodium falciparum and other eukaryotes. PLoS Comput Biol 2021; 17:e1008909. [PMID: 33861755 PMCID: PMC8081344 DOI: 10.1371/journal.pcbi.1008909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 04/28/2021] [Accepted: 03/24/2021] [Indexed: 01/15/2023] Open
Abstract
Long regulatory elements (LREs), such as CpG islands, polydA:dT tracts or AU-rich elements, are thought to play key roles in gene regulation but, as opposed to conventional binding sites of transcription factors, few methods have been proposed to formally and automatically characterize them. We present here a computational approach named DExTER (Domain Exploration To Explain gene Regulation) dedicated to the identification of candidate LREs (cLREs) and apply it to the analysis of the genomes of P. falciparum and other eukaryotes. Our analyses show that all tested genomes contain several cLREs that are somewhat conserved along evolution, and that gene expression can be predicted with surprising accuracy on the basis of these long regions only. Regulation by cLREs exhibits very different behaviours depending on species and conditions. In P. falciparum and other Apicomplexan organisms as well as in Dictyostelium discoideum, the process appears highly dynamic, with different cLREs involved at different phases of the life cycle. For multicellular organisms, the same cLREs are involved in all tissues, but a dynamic behavior is observed along embryonic development stages. In P. falciparum, whose genome is known to be strongly depleted of transcription factors, cLREs are predictive of expression with an accuracy above 70%, and our analyses show that they are associated with both transcriptional and post-transcriptional regulation signals. Moreover, we assessed the biological relevance of one LRE discovered by DExTER in P. falciparum using an in vivo reporter assay. The source code (python) of DExTER is available at https://gite.lirmm.fr/menichelli/DExTER.
Collapse
Affiliation(s)
| | - Vincent Guitard
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, INSERM, Montpellier, France
| | - Rafael M. Martins
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, INSERM, Montpellier, France
| | - Sophie Lèbre
- IMAG, Univ. Montpellier, CNRS, Montpellier, France
- Univ. Paul-Valéry-Montpellier 3, Montpellier, France
| | - Jose-Juan Lopez-Rubio
- Laboratory of Pathogen-Host Interactions (LPHI), UMR5235, CNRS, Montpellier University, INSERM, Montpellier, France
| | - Charles-Henri Lecellier
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | | |
Collapse
|
9
|
Tagliamonte MS, Yowell CA, Elbadry MA, Boncy J, Raccurt CP, Okech BA, Goss EM, Salemi M, Dame JB. Genetic Markers of Adaptation of Plasmodium falciparum to Transmission by American Vectors Identified in the Genomes of Parasites from Haiti and South America. mSphere 2020; 5:e00937-20. [PMID: 33087522 PMCID: PMC7580960 DOI: 10.1128/msphere.00937-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
The malaria parasite, Plasmodium falciparum, was introduced into Hispaniola and other regions of the Americas through the slave trade spanning the 16th through the 19th centuries. During this period, more than 12 million Africans were brought across the Atlantic to the Caribbean and other regions of the Americas. Since malaria is holoendemic in West Africa, a substantial percentage of these individuals carried the parasite. St. Domingue on Hispaniola, now modern-day Haiti, was a major port of disembarkation, and malaria is still actively transmitted there. We undertook a detailed study of the phylogenetics of the Haitian parasites and those from Colombia and Peru utilizing whole-genome sequencing. Principal-component and phylogenetic analyses, based upon single nucleotide polymorphisms (SNPs) in protein coding regions, indicate that, despite the potential for millions of introductions from Africa, the Haitian parasites share an ancestral relationship within a well-supported monophyletic clade with parasites from South America, while belonging to a distinct lineage. This result, in stark contrast to the historical record of parasite introductions, is best explained by a severe population bottleneck experienced by the parasites introduced into the Americas. Here, evidence is presented for targeted selection of rare African alleles in genes which are expressed in the mosquito stages of the parasite's life cycle. These genetic markers support the hypothesis that the severe population bottleneck was caused by the required adaptation of the parasite to transmission by new definitive hosts among the Anopheles (Nyssorhynchus) spp. found in the Caribbean and South America.IMPORTANCE Historical data suggest that millions of P. falciparum parasite lineages were introduced into the Americas during the trans-Atlantic slave trade, which would suggest a paraphyletic origin of the extant isolates in the Western Hemisphere. Our analyses of whole-genome variants show that the American parasites belong to a well-supported monophyletic clade. We hypothesize that the required adaptation to American vectors created a severe bottleneck, reducing the effective introduction to a few lineages. In support of this hypothesis, we discovered genes expressed in the mosquito stages of the life cycle that have alleles with multiple, high-frequency or fixed, nonsynonymous mutations in the American populations which are rarely found in African isolates. These alleles appear to be in gene products critical for transmission through the anopheline vector. Thus, these results may inform efforts to develop novel transmission-blocking vaccines by identifying parasite proteins functionally interacting with the vector that are important for successful transmission. Further, to the best of our knowledge, these are the first whole-genome data available from Haitian P. falciparum isolates. Defining the genome of these parasites provides genetic markers useful for mapping parasite populations and monitoring parasite movements/introductions.
Collapse
Affiliation(s)
- Massimiliano S Tagliamonte
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Charles A Yowell
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Maha A Elbadry
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Jacques Boncy
- Laboratoire National de Santé Publique, Ministère de la Santé Publique et de la Population, Port-au-Prince, Haiti
| | - Christian P Raccurt
- Department of Tropical Medicine and Infectious Diseases, Faculty of Medicine, University of Quisqueya, Port-au-Prince, Haiti
| | - Bernard A Okech
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Erica M Goss
- Department of Plant Pathology, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Marco Salemi
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - John B Dame
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
10
|
Ranford-Cartwright L, Gómez-Díaz E. Plasmodium comparative genomics. Brief Funct Genomics 2020; 18:267-269. [PMID: 31696202 DOI: 10.1093/bfgp/elz020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lisa Ranford-Cartwright
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Scotland, UK
| | - Elena Gómez-Díaz
- Institute of Parasitology and Biomedicine López-Neyra, Spanish National Research Council (CSIC), Spain
| |
Collapse
|
11
|
Bungei JK, Mobegi VA, Nyanjom SG. Single-nucleotide polymorphism characterization of gametocyte development 1 gene in Plasmodium falciparum isolates from Baringo, Uasin Gishu, and Nandi Counties, Kenya. Heliyon 2020; 6:e03453. [PMID: 32154414 PMCID: PMC7056661 DOI: 10.1016/j.heliyon.2020.e03453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/18/2020] [Accepted: 02/17/2020] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Plasmodium falciparum relies on gametocytogenesis to transmit from humans to mosquitoes. Gametocyte development 1 (Pfgdv1) is an upstream activator and epigenetic controller of gametocytogenesis. The emergence of drug resistance is a major public health concern and this requires the development of new strategies that target the transmission of malaria. As a putative drug target, Pfgdv1 has not been characterized to identify its polymorphisms and alleles under selection and how such polymorphisms influence protein structure. METHODS This study characterized single-nucleotide polymorphisms (SNPs) in primary sequences (n = 30) of Pfgdv1 gene generated from thirty blood samples collected from patients infected with P. falciparum and secondary sequences (n = 216) retrieved from PlasmoDB. ChromasPro, MUSCLE, Tajima's D statistic, SLAC, and STRUM were used in editing raw sequences, performing multiple sequence alignment (MSA), identifying signatures of selection, detecting codon sites under selection pressure, and determining the effect of SNPs, respectively. RESULTS MSA of primary and secondary sequences established the existence of five SNPs, consisting of four non-synonymous substitutions (nsSNPs) (p.P217H, p.R398Q, p.H417N, and p.D497E), and a synonymous substitution (p.S514S). The analysis of amino acid changes reveals that p.P217H, p.R398Q, and p.H417N comprise non-conservative changes. Tajima's D statistic showed that these SNPs were under balancing selection, while SLAC analysis identified p.P217H to be under the strongest positive selection. . Further analysis based on thermodynamics indicated that p.P217H has a destabilizing effect, while p.R398Q and p.D497E have stabilizing effects on the protein structure. CONCLUSIONS The existence of four nsSNPs implies that Pfgdv1 has a minimal diversity in the encoded protein. Selection analysis demonstrates that these nsSNPs are under balancing selection in both local and global populations. However, p.P217H exhibits positive directional selection consistent with previous reports where it showed differentiatial selection of P. falciparum in low and high transmission regions. Therefore, in-silico prediction and experimental determination of protein structure are necessary to evaluate Pfgdv1 as a target candidate for drug design and development.
Collapse
Affiliation(s)
- Josephat K. Bungei
- Department of Biochemistry, JKUAT, Kenya
- Department of Biochemistry, School of Medicine, University of Nairobi, Kenya
| | - Victor A. Mobegi
- Department of Biochemistry, School of Medicine, University of Nairobi, Kenya
| | | |
Collapse
|
12
|
Mandad S, Rahman RU, Centeno TP, Vidal RO, Wildhagen H, Rammner B, Keihani S, Opazo F, Urban I, Ischebeck T, Kirli K, Benito E, Fischer A, Yousefi RY, Dennerlein S, Rehling P, Feussner I, Urlaub H, Bonn S, Rizzoli SO, Fornasiero EF. The codon sequences predict protein lifetimes and other parameters of the protein life cycle in the mouse brain. Sci Rep 2018; 8:16913. [PMID: 30443017 PMCID: PMC6237891 DOI: 10.1038/s41598-018-35277-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/02/2018] [Indexed: 12/14/2022] Open
Abstract
The homeostasis of the proteome depends on the tight regulation of the mRNA and protein abundances, of the translation rates, and of the protein lifetimes. Results from several studies on prokaryotes or eukaryotic cell cultures have suggested that protein homeostasis is connected to, and perhaps regulated by, the protein and the codon sequences. However, this has been little investigated for mammals in vivo. Moreover, the link between the coding sequences and one critical parameter, the protein lifetime, has remained largely unexplored, both in vivo and in vitro. We tested this in the mouse brain, and found that the percentages of amino acids and codons in the sequences could predict all of the homeostasis parameters with a precision approaching experimental measurements. A key predictive element was the wobble nucleotide. G-/C-ending codons correlated with higher protein lifetimes, protein abundances, mRNA abundances and translation rates than A-/U-ending codons. Modifying the proportions of G-/C-ending codons could tune these parameters in cell cultures, in a proof-of-principle experiment. We suggest that the coding sequences are strongly linked to protein homeostasis in vivo, albeit it still remains to be determined whether this relation is causal in nature.
Collapse
Affiliation(s)
- Sunit Mandad
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, 37077, Göttingen, Germany
| | - Raza-Ur Rahman
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany
| | - Tonatiuh Pena Centeno
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Ramon O Vidal
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - Hanna Wildhagen
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Burkhard Rammner
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Sarva Keihani
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Felipe Opazo
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany
| | - Inga Urban
- Genes and Behavior Department, Max Planck Institute of Biophysical Chemistry, 37073, Göttingen, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University, 37073, Göttingen, Germany
| | - Koray Kirli
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, 37073, Göttingen, Germany
| | - Eva Benito
- Laboratory of Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
| | - André Fischer
- Laboratory of Epigenetics in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, 37075, Göttingen, Germany
| | - Roya Y Yousefi
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, 37073, Germany
- Max Planck Institute for Biophysical Chemistry, 37073, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, Georg-August-University, 37073, Göttingen, Germany
| | - Henning Urlaub
- Department of Clinical Chemistry, University Medical Center Göttingen, 37077, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute of Biophysical Chemistry, 37077, Göttingen, Germany
| | - Stefan Bonn
- Laboratory of Computational Systems Biology, German Center for Neurodegenerative Diseases (DZNE), 37075, Göttingen, Germany.
- Institute of Medical Systems Biology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20246, Hamburg, Germany.
- German Center for Neurodegenerative Diseases (DZNE), 72076, Tübingen, Germany.
| | - Silvio O Rizzoli
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany.
- Center for Biostructural Imaging of Neurodegeneration (BIN), 37075, Göttingen, Germany.
| | - Eugenio F Fornasiero
- Department of Neuro- and Sensory Physiology, University Medical Center Göttingen, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, 37073, Göttingen, Germany.
| |
Collapse
|
13
|
Sinha I, Woodrow CJ. Forces acting on codon bias in malaria parasites. Sci Rep 2018; 8:15984. [PMID: 30374097 PMCID: PMC6206010 DOI: 10.1038/s41598-018-34404-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/16/2018] [Indexed: 11/09/2022] Open
Abstract
Malaria parasite genomes have a range of codon biases, with Plasmodium falciparum one of the most AT-biased genomes known. We examined the make up of synonymous coding sites and stop codons in the core genomes of representative malaria parasites, showing first that local DNA context influences codon bias similarly across P. falciparum, P. vivax and P. berghei, with suppression of CpG dinucleotides and enhancement of CpC dinucleotides, both within and aross codons. Intense asexual phase gene expression in P. falciparum and P. berghei is associated with increased A3:G3 bias but reduced T3:C3 bias at 2-fold sites, consistent with adaptation of codons to tRNA pools and avoidance of wobble tRNA interactions that potentially slow down translation. In highly expressed genes, the A3:G3 ratio can exceed 30-fold while the T3:C3 ratio can be less than 1, according to the encoded amino acid and subsequent base. Lysine codons (AAA/G) show distinctive behaviour with substantially reduced A3:G3 bias in highly expressed genes, perhaps because of selection against frameshifting when the AAA codon is followed by another adenine. Intense expression is also associated with a strong bias towards TAA stop codons (found in 94% and 89% of highly expressed P. falciparum and P. berghei genes respectively) and a proportional rise in the TAAA stop ‘tetranucleotide’. The presence of these expression-linked effects in the relatively AT-rich malaria parasite species adds weight to the suggestion that AT-richness in the Plasmodium genus might be a fitness adaptation. Potential explanations for the relative lack of codon bias in P. vivax include the distinct features of its lifecycle and its effective population size over evolutionary time.
Collapse
Affiliation(s)
- I Sinha
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - C J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| |
Collapse
|