1
|
Kumar D, Gayen A, Chandra M. Growth Phase Contribution in Dictating Drug Transport and Subcellular Accumulation inside Escherichia coli. ACS Infect Dis 2024; 10:3233-3244. [PMID: 39178142 DOI: 10.1021/acsinfecdis.4c00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Depending upon nutrient availability, bacteria transit to multiple growth phases. The transition from the active to nongrowing phase results in reduced drug efficacy and, in some cases, even multidrug resistance. However, due to multiple alterations in the cell envelope, probing the drug permeation kinetics during growth phases becomes perplexing, especially across the Gram-negative bacteria's complex dual membrane envelope. To advance the understanding of drug permeation during the life cycle of Gram-negative bacteria, we sought to address two underlying objectives: (a) how changes are occurring inside the bacterial envelope during growth and (b) how the drug permeation and accumulation vary across both the membranes and in subcellular compartments during growth. Both objectives are met with the help of nonlinear optical technique second-harmonic generation spectroscopy (SHG). Specifically, using SHG, we probed the transport kinetics and accumulation of a quaternary ammonium compound (QAC), malachite green, inside Escherichia coli in various growth phases. Further insight about another QAC molecule, propidium iodide, is accomplished using fluorescence microscopy. Results indicate that actively growing cells have faster drug transport and higher cytoplasmic accumulation than slow- or nongrowing cells. In this regard, the rpoS gene plays a crucial role in limiting drug transport across the saturation phase cultures. Moreover, within a particular growth phase, membrane permeability undergoes gradual changes much before the subsequent growth phase commences. These outcomes signify the importance of reporting the growth phase and rate in drug efficacy studies.
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anindita Gayen
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Manabendra Chandra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Center of Excellence: Tropical and Infectious Diseases, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
2
|
Squire S, Sebghati S, Hammond MC. Cytoplasmic Accumulation and Permeability of Antibiotics in Gram Positive and Gram Negative Bacteria Visualized in Real-Time via a Fluorogenic Tagging Strategy. ACS Chem Biol 2024; 19:3-8. [PMID: 38096425 PMCID: PMC10805102 DOI: 10.1021/acschembio.3c00510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024]
Abstract
In this study, we describe the first real-time live cell assay for compound accumulation and permeability in both Gram positive and Gram negative bacteria. The assay utilizes a novel fluorogenic tagging strategy that permits direct visualization of compound accumulation dynamics in the cytoplasm of live cells, unobscured by washing or other processing steps. Quantitative differences could be reproducibly measured by flow cytometry at compound concentrations below the limit of detection for MS-based approaches. We establish the fluorogenic assay in E. coli and B. subtilis and compare the intracellular accumulation of two antibiotics, ciprofloxacin and ampicillin, with related pharmacophores in these bacteria.
Collapse
Affiliation(s)
- Scott
O. Squire
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Sepehr Sebghati
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Ming C. Hammond
- Department
of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
- Henry
Eyring Center for Cell & Genome Science, University of Utah, Salt Lake
City, Utah 84112, United States
| |
Collapse
|
3
|
Pajović JD, Dojčilović RJ, Kaščáková S, Réfrégiers M, Božanić DK, Djoković V. Enhanced resonance energy transfer in gold nanoparticles bifunctionalized by tryptophan and riboflavin and its application in fluorescence bioimaging. Colloids Surf B Biointerfaces 2023; 227:113340. [PMID: 37201446 DOI: 10.1016/j.colsurfb.2023.113340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/03/2023] [Accepted: 05/09/2023] [Indexed: 05/20/2023]
Abstract
Gold nanoparticles were functionalized by amino acid tryptophan and vitamin riboflavin - a resonance energy transfer (RET) pair of biomolecules. The presence of the gold nanoparticles resulted in 65% increase in RET efficiency. Because of enhanced RET efficiency, the photobleaching dynamics of the fluorescent molecules at the surface of the nanoparticles is different from that of molecules in solution. The observed effect was used for detection of the functionalized nanoparticles within biological material rich with autofluorescent species. Synchrotron radiation deep-ultraviolet fluorescence microscopy is used to study the photobleaching dynamics of the fluorescence centers within human hepatocellular carcinoma Huh7.5.1 cells incubated with the nanoparticles. The fluorescent centers were classified according to their photobleaching dynamics, which enabled the discrimination of the cell areas where the accumulation of the nanoparticles takes place, even though the particles were smaller than the spatial resolution of the images.
Collapse
Affiliation(s)
- Jelena D Pajović
- DISCO Beamline, Synchrotron SOLEIL, BP 48, Gif sur Yvette 91192, France; University of Belgrade, Faculty of Physics, Studentski trg 12, Belgrade 11001, Serbia.
| | - Radovan J Dojčilović
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia; Department of Experimental and Health Sciences, Pompeu Fabra University, Carrer del Dr. Aiguader 88, Barcelona 08003, Spain
| | - Slávka Kaščáková
- Inserm, Unité 1193, Villejuif F-94800, France; University Paris-Sud XI, UMR-S1193, Villejuif F-94800, France
| | - Matthieu Réfrégiers
- DISCO Beamline, Synchrotron SOLEIL, BP 48, Gif sur Yvette 91192, France; Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, Orléans 45071, France
| | - Dušan K Božanić
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia.
| | - Vladimir Djoković
- University of Belgrade, "VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Center of Excellence for Photoconversion, PO Box 522, Belgrade 11001, Serbia.
| |
Collapse
|
4
|
Ongwae GM, Lepori I, Chordia MD, Dalesandro BE, Apostolos AJ, Siegrist MS, Pires MM. Measurement of Small Molecule Accumulation into Diderm Bacteria. ACS Infect Dis 2023; 9:97-110. [PMID: 36530146 DOI: 10.1021/acsinfecdis.2c00435] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Some of the most dangerous bacterial pathogens (Gram-negative and mycobacterial) deploy a formidable secondary membrane barrier to reduce the influx of exogenous molecules. For Gram-negative bacteria, this second exterior membrane is known as the outer membrane (OM), while for the Gram-indeterminate Mycobacteria, it is known as the "myco" membrane. Although different in composition, both the OM and mycomembrane are key structures that restrict the passive permeation of small molecules into bacterial cells. Although it is well-appreciated that such structures are principal determinants of small molecule permeation, it has proven to be challenging to assess this feature in a robust and quantitative way or in complex, infection-relevant settings. Herein, we describe the development of the bacterial chloro-alkane penetration assay (BaCAPA), which employs the use of a genetically encoded protein called HaloTag, to measure the uptake and accumulation of molecules into model Gram-negative and mycobacterial species, Escherichia coli and Mycobacterium smegmatis, respectively, and into the human pathogen Mycobacterium tuberculosis. The HaloTag protein can be directed to either the cytoplasm or the periplasm of bacteria. This offers the possibility of compartmental analysis of permeation across individual cell membranes. Significantly, we also showed that BaCAPA can be used to analyze the permeation of molecules into host cell-internalized E. coli and M. tuberculosis, a critical capability for analyzing intracellular pathogens. Together, our results show that BaCAPA affords facile measurement of permeability across four barriers: the host plasma and phagosomal membranes and the diderm bacterial cell envelope.
Collapse
Affiliation(s)
- George M Ongwae
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Irene Lepori
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Mahendra D Chordia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Brianna E Dalesandro
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - Alexis J Apostolos
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - M Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Marcos M Pires
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
5
|
Cephalosporin translocation across enterobacterial OmpF and OmpC channels, a filter across the outer membrane. Commun Biol 2022; 5:1059. [PMID: 36198902 PMCID: PMC9534850 DOI: 10.1038/s42003-022-04035-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Gram-negative porins are the main entry for small hydrophilic molecules. We studied translocation of structurally related cephalosporins, ceftazidime (CAZ), cefotaxime (CTX) and cefepime (FEP). CAZ is highly active on E. coli producing OmpF (Outer membrane protein F) but less efficient on cells expressing OmpC (Outer membrane protein C), whereas FEP and CTX kill bacteria regardless of the porin expressed. This matches with the different capacity of CAZ and FEP to accumulate into bacterial cells as quantified by LC-MS/MS (Liquid Chromatography Tandem Mass Spectrometry). Furthermore, porin reconstitution into planar lipid bilayer and zero current assays suggest permeation of ≈1,000 molecules of CAZ per sec and per channel through OmpF versus ≈500 through OmpC. Here, the instant killing is directly correlated to internal drug concentration. We propose that the net negative charge of CAZ represents a key advantage for permeation through OmpF porins that are less cation-selective than OmpC. These data could explain the decreased susceptibility to some cephalosporins of enterobacteria that exclusively express OmpC porins. The translocation of cephalosporins across enterobacterial OmpF and OmpC channels is monitored in real-time, demonstrating differential permeation of some cephalosporins through OmpF and OmpC.
Collapse
|
6
|
Shirley JD, Nauta KM, Carlson EE. Live-Cell Profiling of Penicillin-Binding Protein Inhibitors in Escherichia coli MG1655. ACS Infect Dis 2022; 8:1241-1252. [PMID: 35763562 PMCID: PMC10040144 DOI: 10.1021/acsinfecdis.2c00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Penicillin-binding proteins (PBPs) make up an essential class of bacterial enzymes that carry out the final steps of peptidoglycan synthesis and regulate the recycling of this polymeric structure. PBPs are an excellent drug target and have been the most clinically relevant antibacterial target since the 1940s with the introduction of β-lactams. Despite this, a large gap in knowledge remains regarding the individual function and regulation of each PBP homologue in most bacteria. This can be attributed to a lack of chemical tools and methods that enable the study of individual PBPs in an activity-dependent manner and in their native environment. The development of such methods in Gram-negative bacteria has been particularly challenging due to the presence of an outer membrane and numerous resistance mechanisms. To address this, we have developed an optimized live-cell assay for screening inhibitors of the PBPs in Escherichia coli MG1655. We utilized EDTA to permeabilize Gram-negative cells, enabling increased penetration of our readout probe, Bocillin-FL, and subsequent analysis of PBP-inhibition profiles. To identify scaffolds for future development of PBP-selective activity-based probes, we screened ten β-lactams, one diazabicyclooctane, and one monobactam for their PBP-selectivity profiles in E. coli MG1655. These results demonstrate the utility of our assay for the screening of inhibitors in live, non-hypersusceptible Gram-negative organisms.
Collapse
Affiliation(s)
- Joshua D Shirley
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States
| | - Kelsie M Nauta
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Erin E Carlson
- Department of Medicinal Chemistry, University of Minnesota, 208 Harvard Street SE, Minneapolis, Minnesota 55454, United States.,Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States.,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55454, United States.,Department of Pharmacology, University of Minnesota, 321 Church Street SE, Minneapolis, Minnesota 55454, United States
| |
Collapse
|
7
|
Application of antibiotic-derived fluorescent probes to bacterial studies. Methods Enzymol 2022; 665:1-28. [DOI: 10.1016/bs.mie.2021.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Prajapati JD, Kleinekathöfer U, Winterhalter M. How to Enter a Bacterium: Bacterial Porins and the Permeation of Antibiotics. Chem Rev 2021; 121:5158-5192. [PMID: 33724823 DOI: 10.1021/acs.chemrev.0c01213] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite tremendous successes in the field of antibiotic discovery seen in the previous century, infectious diseases have remained a leading cause of death. More specifically, pathogenic Gram-negative bacteria have become a global threat due to their extraordinary ability to acquire resistance against any clinically available antibiotic, thus urging for the discovery of novel antibacterial agents. One major challenge is to design new antibiotics molecules able to rapidly penetrate Gram-negative bacteria in order to achieve a lethal intracellular drug accumulation. Protein channels in the outer membrane are known to form an entry route for many antibiotics into bacterial cells. Up until today, there has been a lack of simple experimental techniques to measure the antibiotic uptake and the local concentration in subcellular compartments. Hence, rules for translocation directly into the various Gram-negative bacteria via the outer membrane or via channels have remained elusive, hindering the design of new or the improvement of existing antibiotics. In this review, we will discuss the recent progress, both experimentally as well as computationally, in understanding the structure-function relationship of outer-membrane channels of Gram-negative pathogens, mainly focusing on the transport of antibiotics.
Collapse
Affiliation(s)
| | | | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
9
|
Design and synthesis of novel 4-substituted quinazoline-2-carboxamide derivatives targeting AcrB to reverse the bacterial multidrug resistance. Bioorg Chem 2020; 105:104394. [DOI: 10.1016/j.bioorg.2020.104394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/28/2020] [Accepted: 10/17/2020] [Indexed: 12/30/2022]
|
10
|
Winterhalter M. Antibiotic uptake through porins located in the outer membrane of Gram-negative bacteria. Expert Opin Drug Deliv 2020; 18:449-457. [PMID: 33161750 DOI: 10.1080/17425247.2021.1847080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Making selective inhibitors of novel Gram-negative targets is not a substantial challenge - getting them into Gram-negative bacteria to reach their lethal target is the bottleneck. Poor permeability of the antibiotic requires high concentration causing off target activity. The lack of simple experimental techniques to measure antibiotic uptake as well as the local concentration at the target site creates a particular bottleneck in understanding and in improving the antibiotic activity.Areas covered: Here we recall current approaches to quantify the uptake. For a few antibiotics with known evidence for channel-limited permeation, the flux across a single OmpF or OmpC channel has been measured. For a typical concentration gradient of 1 µM of antibiotics the uptake varies between one up to few hundred molecules per second and per channel.Expert opinion: The current research effort is on quantifying the flux for a larger list of compounds on a cellular (mass spectra, fluorescence) or at single channel level (electrophysiology). A larger dataset of single channel permeabilities under various condition will be a powerful tool for understanding and improving the activity of antibiotics.
Collapse
|
11
|
Bafna JA, Sans-Serramitjana E, Acosta-Gutiérrez S, Bodrenko IV, Hörömpöli D, Berscheid A, Brötz-Oesterhelt H, Winterhalter M, Ceccarelli M. Kanamycin Uptake into Escherichia coli Is Facilitated by OmpF and OmpC Porin Channels Located in the Outer Membrane. ACS Infect Dis 2020; 6:1855-1865. [PMID: 32369342 DOI: 10.1021/acsinfecdis.0c00102] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite decades of therapeutic application of aminoglycosides, it is still a matter of debate if porins contribute to the translocation of the antibiotics across the bacterial outer membrane. Here, we quantified the uptake of kanamycin across the major porin channels OmpF and OmpC present in the outer membrane of Escherichia coli. Our analysis revealed that, despite its relatively large size, about 10-20 kanamycin molecules per second permeate through OmpF and OmpC under a 10 μM concentration gradient, whereas OmpN does not allow the passage. Molecular simulations elucidate the uptake mechanism of kanamycin through these porins. Whole-cell studies with a defined set of E. coli porin mutants provide evidence that translocation of kanamycin via porins is relevant for antibiotic potency. The values are discussed with respect to other antibiotics.
Collapse
Affiliation(s)
- Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719Bremen, Germany
| | | | | | - Igor V. Bodrenko
- IOM/CNR, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | - Daniel Hörömpöli
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
- German Center for Infection Research (DZIF) Partner Site, D-72076 Tübingen, Germany
| | - Anne Berscheid
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
- German Center for Infection Research (DZIF) Partner Site, D-72076 Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076 Tübingen, Germany
- German Center for Infection Research (DZIF) Partner Site, D-72076 Tübingen, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719Bremen, Germany
| | - Matteo Ceccarelli
- IOM/CNR, Sezione di Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
- Department of Physics, University of Cagliari, and CNR/IOM, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| |
Collapse
|
12
|
Pinet E, Franceschi C, Collin V, Davin-Regli A, Zambardi G, Pagès JM. A simple phenotypic test for detecting the contribution of outer membrane permeability to carbapenem resistance. J Med Microbiol 2020; 69:63-71. [PMID: 31904320 DOI: 10.1099/jmm.0.001129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Introduction. The worldwide emergence of carbapenem resistance in Gram-negative bacteria makes the development of simple tests mandatory to identify antimicrobial resistance mechanisms. Enzymatic and membrane barriers are the prominent resistance mechanisms described in these bacteria. Several tests are currently used to detect carbapenemase activities.Aim. However, a simple test for the identification of membrane-associated mechanisms of resistance is not yet available and this mechanism is often inferred after the exclusion of a carbapenemase in carbapenem-resistant Gram-negative bacteria.Methodology. Different media (liquid and solid) containing a membrane permeabilizer were tested to identify the existence of a membrane barrier. Here, polymyxin B nonapeptide (PMBN) was selected to bypass the role of impermeability in clinical carbapenem-resistant Enterobacteriaceae, including Escherichia coli, Enterobacter cloacae , Klebsiella pneumoniae and Klebsiella aerogenes isolates. In parallel, the expression of porins (OmpC and OmpF types) was checked in the various bacterial strains in order to search for a correlation between the restoration of susceptibility and the expression of porin.Results. Using a large number of clinical isolates, PMBN associated with a carbapenem allowed us to detect porin-deficient isolates with a sensitivity ranging from 89 to 93 % and a specificity ranging from 86 to 100 %.Conclusion. This paves the way for a diagnostic assay allowing the detection of this membrane-associated mechanism of resistance in Enterobacteriaceae.
Collapse
Affiliation(s)
- Elizabeth Pinet
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, SSA, IRBA, MCT, Marseille, France
| | | | - Valérie Collin
- R&D Microbiology Innovation, BIOMÉRIEUX, La Balme les Grottes, France
| | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Gilles Zambardi
- R&D Microbiology Innovation, BIOMÉRIEUX, La Balme les Grottes, France
| | - Jean Marie Pagès
- UMR_MD1, U-1261, Aix-Marseille Univ, INSERM, SSA, IRBA, MCT, Marseille, France
| |
Collapse
|
13
|
Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat Rev Microbiol 2019; 18:164-176. [DOI: 10.1038/s41579-019-0294-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
|
14
|
Breaching the Barrier: Quantifying Antibiotic Permeability across Gram-negative Bacterial Membranes. J Mol Biol 2019; 431:3531-3546. [DOI: 10.1016/j.jmb.2019.03.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/29/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
|
15
|
Stone MRL, Masi M, Phetsang W, Pagès JM, Cooper MA, Blaskovich MAT. Fluoroquinolone-derived fluorescent probes for studies of bacterial penetration and efflux. MEDCHEMCOMM 2019; 10:901-906. [PMID: 31303987 PMCID: PMC6596217 DOI: 10.1039/c9md00124g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
Fluorescent probes derived from the fluoroquinolone antibiotic ciprofloxacin were synthesised using a Cu(i)-catalysed azide–alkyne cycloaddition (CuAAC) to link a ciprofloxacin azide derivative with alkyne-substituted green and blue fluorophores.
Fluorescent probes derived from the fluoroquinolone antibiotic ciprofloxacin were synthesised using a Cu(i)-catalysed azide–alkyne cycloaddition (CuAAC) to link a ciprofloxacin azide derivative with alkyne-substituted green and blue fluorophores. The azide (2) and fluorophore (3 and 4) derivatives retained antimicrobial activity against Gram-positive and Gram-negative bacteria. The use of confocal fluorescent microscopy showed intracellular penetration, which was substantially enhanced in the presence of carbonyl cyanide 3-chlorophenylhydrazone as an efflux pump inhibitor in Escherichia coli.
Collapse
Affiliation(s)
- M Rhia L Stone
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Muriel Masi
- Membranes et Cibles Thérapeutiques , UMR_MD1 , Inserm U1261 , Aix-Marseille Univ & IRBA , Facultés de Médecine et de Pharmacie , 27 Bd Jean Moulin , 13005 Marseille , France
| | - Wanida Phetsang
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Jean-Marie Pagès
- Membranes et Cibles Thérapeutiques , UMR_MD1 , Inserm U1261 , Aix-Marseille Univ & IRBA , Facultés de Médecine et de Pharmacie , 27 Bd Jean Moulin , 13005 Marseille , France
| | - Matthew A Cooper
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience , The University of Queensland , Brisbane , QLD 4072 , Australia .
| |
Collapse
|
16
|
Venter H. Reversing resistance to counter antimicrobial resistance in the World Health Organisation's critical priority of most dangerous pathogens. Biosci Rep 2019; 39:BSR20180474. [PMID: 30910848 PMCID: PMC6465202 DOI: 10.1042/bsr20180474] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/18/2019] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
The speed at which bacteria develop antimicrobial resistance far outpace drug discovery and development efforts resulting in untreatable infections. The World Health Organisation recently released a list of pathogens in urgent need for the development of new antimicrobials. The organisms that are listed as the most critical priority are all Gram-negative bacteria resistant to the carbapenem class of antibiotics. Carbapenem resistance in these organisms is typified by intrinsic resistance due to the expression of antibiotic efflux pumps and the permeability barrier presented by the outer membrane, as well as by acquired resistance due to the acquisition of enzymes able to degrade β-lactam antibiotics. In this perspective article we argue the case for reversing resistance by targeting these resistance mechanisms - to increase our arsenal of available antibiotics and drastically reduce antibiotic discovery times - as the most effective way to combat antimicrobial resistance in these high priority pathogens.
Collapse
Affiliation(s)
- Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
17
|
Khazandi M, Pi H, Chan WY, Ogunniyi AD, Sim JXF, Venter H, Garg S, Page SW, Hill PB, McCluskey A, Trott DJ. In vitro Antimicrobial Activity of Robenidine, Ethylenediaminetetraacetic Acid and Polymyxin B Nonapeptide Against Important Human and Veterinary Pathogens. Front Microbiol 2019; 10:837. [PMID: 31105656 PMCID: PMC6494957 DOI: 10.3389/fmicb.2019.00837] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/01/2019] [Indexed: 12/11/2022] Open
Abstract
The emergence and global spread of antimicrobial resistance among bacterial pathogens demand alternative strategies to treat life-threatening infections. Combination drugs and repurposing of old compounds with known safety profiles that are not currently used in human medicine can address the problem of multidrug-resistant infections and promote antimicrobial stewardship in veterinary medicine. In this study, the antimicrobial activity of robenidine alone or in combination with ethylenediaminetetraacetic acid (EDTA) or polymyxin B nonapeptide (PMBN) against Gram-negative bacterial pathogens, including those associated with canine otitis externa and human skin and soft tissue infection, was evaluated in vitro using microdilution susceptibility testing and the checkerboard method. Fractional inhibitory concentration indices (FICIs) and dose reduction indices (DRI) of the combinations against tested isolates were determined. Robenidine alone was bactericidal against Acinetobacter baumannii [minimum inhibitory concentrations (MIC) mode = 8 μg/ml] and Acinetobacter calcoaceticus (MIC mode = 2 μg/ml). Against Acinetobacter spp., an additivity/indifference of the combination of robenidine/EDTA (0.53 > FICIs > 1.06) and a synergistic effect of the combination of robenidine/PMBN (0.5 < FICI) were obtained. DRIs of robenidine were significantly increased in the presence of both EDTA and PMBN from 2- to 2048-fold. Robenidine exhibited antimicrobial activity against Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, in the presence of sub-inhibitory concentrations of either EDTA or PMBN. Robenidine also demonstrated potent antibacterial activity against multidrug-resistant Gram-positive pathogens and all Gram-negative pathogens isolated from cases of canine otitis externa in the presence of EDTA. Robenidine did not demonstrate antibiofilm activity against Gram-positive and Gram-negative bacteria. EDTA facilitated biofilm biomass degradation for both Gram-positives and Gram-negatives. The addition of robenidine to EDTA was not associated with any change in the effect on biofilm biomass degradation. The combination of robenidine with EDTA or PMBN has potential for further exploration and pharmaceutical development, such as incorporation into topical and otic formulations for animal and human use.
Collapse
Affiliation(s)
- Manouchehr Khazandi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Hongfei Pi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Wei Yee Chan
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Abiodun David Ogunniyi
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Jowenna Xiao Feng Sim
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Sanjay Garg
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | | | - Peter B. Hill
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Adam McCluskey
- Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, Australia
| | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
18
|
Jin C, Alenazy R, Wang Y, Mowla R, Qin Y, Tan JQE, Modi ND, Gu X, Polyak SW, Venter H, Ma S. Design, synthesis and evaluation of a series of 5-methoxy-2,3-naphthalimide derivatives as AcrB inhibitors for the reversal of bacterial resistance. Bioorg Med Chem Lett 2019; 29:882-889. [DOI: 10.1016/j.bmcl.2019.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/02/2019] [Indexed: 11/26/2022]
|
19
|
Marine sponge alkaloid aaptamine enhances the anti-bacterial and anti-cancer activity against ESBL producing Gram negative bacteria and HepG 2 human liver carcinoma cells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
20
|
Abstract
The transport of small molecules across membranes is essential for the import of nutrients and other energy sources into the cell and, for the export of waste and other potentially harmful byproducts out of the cell. While hydrophobic molecules are permeable to membranes, ions and other small polar molecules require transport via specialized membrane transport proteins . The two major classes of membrane transport proteins are transporters and channels. With our focus here on porins-major class of non-specific diffusion channel proteins , we will highlight some recent structural biology reports and functional assays that have substantially contributed to our understanding of the mechanism that mediates uptake of small molecules, including antibiotics, across the outer membrane of Enterobacteriaceae . We will also review advances in the regulation of porin expression and porin biogenesis and discuss these pathways as new therapeutic targets.
Collapse
Affiliation(s)
- Muriel Masi
- UMR_MD1, Inserm U1261, IRBA, Membranes et Cibles Thérapeutiques, Facultés de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | | | - Jean-Marie Pagès
- UMR_MD1, Inserm U1261, IRBA, Membranes et Cibles Thérapeutiques, Facultés de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
21
|
Terrasse R, Winterhalter M. Translocation of small molecules through engineered outer-membrane channels from Gram-negative bacteria. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:111. [PMID: 30238205 DOI: 10.1140/epje/i2018-11721-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Selective permeability is a key feature of biological membranes. It is controlled by the physico-chemical properties of the lipid bilayer and by channel-forming membrane proteins. Here we focus on the permeation of small molecules across channel-forming proteins in Gram-negative bacteria called porins and present a new approach based on artificial amino acids. We introduced Hco, a fluorescent amino acid with characteristic excitation and emission wavelengths, into OmpF and measured FRET from Hco to dissolved Bocillin FL using solubilized OmpF porins. We examined four variants of OmpF and by doing so, we were able to show that small molecules, like Bocillin FL, are remaining long enough in the porin in order to undergo FRET and produce a reproducible fluorescence signal. This finding opens the way to quantify translocation in the future by the simultaneous detection of resistive pulses and differential fluorescence with FRET as an example.
Collapse
Affiliation(s)
- Rémi Terrasse
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719, Bremen, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719, Bremen, Germany.
| |
Collapse
|
22
|
Masi M, Dumont E, Vergalli J, Pajovic J, Réfrégiers M, Pagès JM. Fluorescence enlightens RND pump activity and the intrabacterial concentration of antibiotics. Res Microbiol 2018; 169:432-441. [DOI: 10.1016/j.resmic.2017.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 02/01/2023]
|
23
|
Spectrofluorimetric quantification of antibiotic drug concentration in bacterial cells for the characterization of translocation across bacterial membranes. Nat Protoc 2018; 13:1348-1361. [DOI: 10.1038/nprot.2018.036] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Pagès JM. [Antibiotic transport and membrane permeability: new insights to fight bacterial resistance]. Biol Aujourdhui 2017; 211:149-154. [PMID: 29236663 DOI: 10.1051/jbio/2017020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 11/14/2022]
Abstract
A main challenge in medicinal chemistry is to determine the parameters modulating the in cellulo drug concentration needed for a therapeutic action. In Gram-negative antibacterial research, the concern is to evaluate the antibiotic permeation across the outer and inner membranes, that delineate the periplasm surrounding the bacterial cytoplasm. Passing through the membrane barrier to reach the inhibitory concentration inside the bacterium is the first pivotal step for antibiotics. The research and the development of new antimicrobials mostly rely on their capacity to reach critical concentrations in the vicinity of their intracellular target. Despite several decades of studies focused on antibiotic/drug activity against bacterial cells using different approaches, no consensus regarding the analysis of the kinetics and accumulation in individual bacterium and in bacterial populations is available to understand the drug translocation into living bacteria as a first step of drug action. Our TRANSLOCATION consortium supports the development of reliable and robust methods to quantify penetration and efflux processes in Gram-negative bacteria and recently we have developed a reliable and efficient method to determine the intra-bacterial concentration of fluorescent antibiotics. By using these powerful approaches, new concepts, "Resident Time Concentration Close to Target" (RTC2T) and "Structure Intracellular Concentration Activity Relationship" (SICAR), have been proposed in order to link chemical and structural aspects with the bacterial membrane and transport aspects. Using RTC2T and SICAR indexes, a new dissection of antibiotic translocation-transport can be obtained to better understand and improve the antibiotic pharmacophoric groups that are related to permeation and efflux.
Collapse
Affiliation(s)
- Jean-Marie Pagès
- UMR_MD1, Transporteurs Membranaires, Chimiorésistance et Drug Design, Faculté de Médecine et Faculté de Pharmacie, 27 boulevard Jean-Moulin, 13385 Marseille cedex 05, France
| |
Collapse
|