1
|
Balali H, Morabbi A, Karimian M. Concerning influences of micro/nano plastics on female reproductive health: focusing on cellular and molecular pathways from animal models to human studies. Reprod Biol Endocrinol 2024; 22:141. [PMID: 39529078 PMCID: PMC11552210 DOI: 10.1186/s12958-024-01314-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
The female reproductive system can face serious disorders and show reproductive abnormalities under the influence of environmental pollutants. Microplastics (MPs) and nanoplastics (NPs) as emerging pollutants, by affecting different components of this system, may make female fertility a serious challenge. Animal studies have demonstrated that exposure to these substances weakens the function of ovaries and causes a decrease in ovarian reserve capacity. Also, continuous exposure to micro/nano plastics (MNPs) leads to increased levels of reactive oxygen species, induction of oxidative stress, inflammatory responses, apoptosis of granulosa cells, and reduction of the number of ovarian follicles. Furthermore, by interfering with the hypothalamic-pituitary-ovarian axis, these particles disturb the normal levels of ovarian androgens and endocrine balance and delay the growth of gonads. Exposure to MNPs can accelerate carcinogenesis in the female reproductive system in humans and animal models. Animal studies have determined that these particles can accumulate in the placenta, causing metabolic changes, disrupting the development of the fetus, and endangering the health of future generations. In humans, the presence of micro/nanoplastics in placenta tissue, infant feces, and breast milk has been reported. These particles can directly affect the health of the mother and fetus, increasing the risk of premature birth and other pregnancy complications. This review aims to outline the hazardous effects of micro/nano plastics on female reproductive health and fetal growth and discuss the results of animal experiments and human research focusing on cellular and molecular pathways.
Collapse
Affiliation(s)
- Hasti Balali
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Ali Morabbi
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran
| | - Mohammad Karimian
- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, 47416-95447, Iran.
| |
Collapse
|
2
|
Ma Z, Wang N, Meng T, Zhang R, Huang Y, Li T. Integrated analysis of ceRNA-miRNA changes in paraquat-induced pulmonary epithelial-mesenchymal transition via high-throughput sequencing. J Biochem Mol Toxicol 2024; 38:e23681. [PMID: 38444083 DOI: 10.1002/jbt.23681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 09/13/2023] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
Recent studies have shown that epithelial-mesenchymal transition (EMT) plays an important role in paraquat (PQ)-induced tissue fibrosis, which is the main cause of death in patients with PQ poisoning. However, no effective treatment for pulmonary interstitial fibrosis caused by PQ poisoning exists. It is of great significance for us to find new therapeutic targets through bioinformatics in PQ-induced EMT. We conducted transcriptome sequencing to determine the expression profiles of 1210 messenger RNAs (mRNAs), 558 long noncoding RNAs, 28 microRNAs (miRNAs), including 18 known-miRNAs, 10 novel-miRNAs and 154 circular RNAs in the PQ-exposed EMT group mice. Using gene ontology and Kyoto Encyclopaedia of Genes and Genomes analyses, we identified the pathways associated with signal transduction, cancers, endocrine systems and immune systems were involved in PQ-induced EMT. Furthermore, we constructed long noncoding RNA-miRNA-mRNA interrelated networks and found that upregulated genes included Il22ra2, Mdm4, Slc35e2 and Angptl4, and downregulated genes included RGS2, Gabpb2, Acvr1, Prkd3, Sp100, Tlr12, Syt15 and Camk2d. Thirteen new potential competitive endogenous RNA targets were also identified for further treatment of PQ-induced pulmonary tissue fibrosis. Through further study of the pathway and networks, we may identify new molecular targets in PQ-induced pulmonary EMT.
Collapse
Affiliation(s)
- Zhiyu Ma
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Nana Wang
- Endocrinology Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tingting Meng
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Ruoying Zhang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Yang Huang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| | - Tiegang Li
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shengyang, China
| |
Collapse
|
3
|
Liu J, Lv S, Ma W, Yang D, Zhang X. Effect of WISP1 on paraquat-induced EMT. Toxicol In Vitro 2023; 93:105693. [PMID: 37689312 DOI: 10.1016/j.tiv.2023.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
BACKGROUND Paraquat (PQ) can induce pulmonary fibrosis (PF) by modulating epithelial-mesenchymal transition (EMT) of alveolar epithelial cells, but the molecular mechanism is unknown. In this paper, the role of Wnt-inducible signaling protein-1 (WISP1) in PQ-induced EMT was inspected. METHODS The morphology, apoptosis, and mortality of A549 cells were observed through a microscope. The mRNA and protein levels of WISP1, E-cadherin, and Vimentin were confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot. RESULTS With the increase of PQ concentration, the morphology of A549 cells was apparently changed, cell apoptosis and mortality were enhanced. Besides, the E-cadherin abundance was reduced (p < 0.01), however, WISP1 and Vimentin contents were boosted after PQ treatment (p < 0.01). With the increase of PQ treatment time, the epithelial index of cells first increased and then decreased. The expression of WISP1 gene increased significantly with the increase of PQ treatment time (p < 0.01). Silence of WISP1 abolished the effect of PQ treatment on E-cadherin and Vimentin levels (p < 0.01). Downregulation of WISP1 curbed morphology change and PQ-induced EMT in A549 cells. CONCLUSION Knockdown of WISP1 inhibited PQ-induced EMT in A549 cells. This conclusion might provide a new therapeutic target for PQ poisoning treatment.
Collapse
Affiliation(s)
- Jingyan Liu
- Department of Emergency, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Shengnan Lv
- Department of Out-patient, Linyi People's Hospital, Linyi 276000, Shandong, China
| | - Wanling Ma
- Department of Radiology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Dong Yang
- Department of Vascular Surgery, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China
| | - Xuchang Zhang
- Department of Geriatrics Emergency, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Longgang District People's Hospital of Shenzhen, Shenzhen, Guangdong 518172, PR China.
| |
Collapse
|
4
|
Ostovar T, Rezaei S, Shokri-Afra H, Samavarchi Tehrani S, Namvarjah F, Aliabadi M, Effatpanah H, Moradi-Sardareh H. Effect of Capparis spinosa Fruit Hydroalcoholic Extract on Paraquat-Induced Pulmonary Fibrosis in the Rat. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2023; 12:423-434. [PMID: 39006195 PMCID: PMC11240055 DOI: 10.22088/ijmcm.bums.12.4.423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/07/2023] [Accepted: 04/08/2024] [Indexed: 07/16/2024]
Abstract
Pulmonary fibrosis (PF) is a lethal inflammatory disease and there has been no effective medication for this progressive disease up to now. Paraquat is commonly used in agricultural settings to control weed growth and is one of the important risk factors for PF. Additionally, emerging evidence has demonstrated Capparis spinosa (C. spinose) fruit extract has anti-fibrotic, anti-inflammatory, and antioxidant properties. We aimed to evaluate whether C. spinose fruit hydroalcoholic extract has a positive effect against Paraquat-induced PF in rats. 30 male Wistar rats were randomly divided into 5 groups, which included: a control group, a Paraquat control group, a C. spinose group with a dose of 20 mg/kg, a C. spinose group with a dose of 30 mg/kg, a C. spinose group with a dose of 50 mg/kg. After 21 days of the treatment, levels of hydroxyproline and malondialdehyde (MDA) in lung tissue were assessed and lung indices and semi-quantitative histopathological changes were determined. The results showed that treatment with C. spinose, led to increased weight gain, whereas reduced lung weight. C. spinose demonstrated a decreasing effect on levels of MDA, and hydroxyproline in lung tissue. Moreover, histopathological data and the number of lung indices indicated the preventive role of C. spinose Paraquat-induced PF in rats.
Collapse
Affiliation(s)
- Tahmine Ostovar
- International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Sahar Rezaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hajar Shokri-Afra
- Gut and Liver Research Center, Non-communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Sadra Samavarchi Tehrani
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Science, Tehran, Iran.
| | - Fatemeh Namvarjah
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Masoume Aliabadi
- Department of Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Hosein Effatpanah
- Department of Public Health, Asadabad School of Medical Sciences, Asadabad, Iran.
| | | |
Collapse
|
5
|
Wu H, Xu T, Chen T, Liu J, Xu S. Oxidative stress mediated by the TLR4/NOX2 signalling axis is involved in polystyrene microplastic-induced uterine fibrosis in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155825. [PMID: 35597360 DOI: 10.1016/j.scitotenv.2022.155825] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), as a new environmental pollutant, have received widespread attention worldwide. Uterine fibrosis is one of the main factors of female reproductive disorders. However, it is unclear whether the female reproductive disorders caused by MPs are related to uterine fibrosis. Therefore, in this study, we constructed female mouse models exposed to polystyrene microplastics (PS-MPs). We found that PS-MP exposure resulted in endometrial thinning and severe collagen fibre deposition in female mice. Further mechanistic studies found that PS-MP exposure increased the expression of high mobility group Box 1 (HMGB1) and acetyl-HMGB1, further activating the Toll-like receptor 4/NADPH oxidase 2 (TLR4/NOX2) signalling axis and eventually causing oxidative stress. Afterwards, oxidative stress elicited the activation of Notch and the transforming growth factor β (TGF-β) signalling pathway, leading to increased levels of fibrotic proteins and collagen. Correspondingly, PS-MP treatment upregulated the expression of TLR4 and NOX2 and the level of reactive oxygen species (ROS) and increased the levels of fibrotic protein and collagen in mouse endometrial epithelial cells cultured in vitro. Conversely, inhibition of the TLR4/NOX2 signalling pathway effectively reduced the level of ROS in cells, weakened the upregulation of Notch and TGF-β signalling by PS-MPs, and efficiently reduced the expression of fibrotic and collagen genes. In summary, we demonstrated a new mechanism by which MPs induce uterine fibrosis in mice, that is, by inducing oxidative stress to activate the Notch and TGF-β signalling pathways by triggering the TLR4/NOX2 signalling axis. Targeting TLR4/NOX2 signalling may consequently prove to be an innovative therapeutic option that is effective in alleviating the reproductive toxicity of PS-MPs. Our study sheds new light on the reproductive toxicity of MPs and provides suggestions and references for comparative medicine and clinical medicine.
Collapse
Affiliation(s)
- Hao Wu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Tong Xu
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, PR China
| | - Ting Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
6
|
Li R, Jia Y, Kong X, Nie Y, Deng Y, Liu Y. Novel drug delivery systems and disease models for pulmonary fibrosis. J Control Release 2022; 348:95-114. [PMID: 35636615 DOI: 10.1016/j.jconrel.2022.05.039] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 12/19/2022]
Abstract
Pulmonary fibrosis (PF) is a serious and progressive lung disease which is possibly life-threatening. It causes lung scarring and affects lung functions including epithelial cell injury, massive recruitment of immune cells and abnormal accumulation of extracellular matrix (ECM). There is currently no cure for PF. Treatment for PF is aimed at slowing the course of the disease and relieving symptoms. Pirfenidone (PFD) and nintedanib (NDNB) are currently the only two FDA-approved oral medicines to slow down the progress of idiopathic pulmonary fibrosis, a specific type of PF. Novel drug delivery systems and therapies have been developed to improve the prognosis of the disease, as well as reduce or minimize the toxicities during drug treatment. The drug delivery routes for these therapies are various including oral, intravenous, nasal, inhalant, intratracheal and transdermal; although this is dependent on specific treatment mechanisms. In addition, researchers have also expanded current animal models that could not fully restore the clinicopathology, and developed a series of in vitro models such as organoids to study the pathogenesis and treatment of PF. This review describes recent advances on pathogenesis exploration, classifies and specifies the progress of drug delivery systems by their delivery routes, as well as an overview on the in vitro and in vivo models for PF research.
Collapse
Affiliation(s)
- Rui Li
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yizhen Jia
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Xiaohan Kong
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yichu Nie
- Clinical Research Institute, The First People's Hospital of Foshan, Foshan 528000, China
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China
| | - Yang Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou 510275, China; School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
7
|
Liu L, Sun Q, Davis F, Mao J, Zhao H, Ma D. Epithelial-mesenchymal transition in organ fibrosis development: current understanding and treatment strategies. BURNS & TRAUMA 2022; 10:tkac011. [PMID: 35402628 PMCID: PMC8990740 DOI: 10.1093/burnst/tkac011] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/16/2021] [Indexed: 01/10/2023]
Abstract
Organ fibrosis is a process in which cellular homeostasis is disrupted and extracellular matrix is excessively deposited. Fibrosis can lead to vital organ failure and there are no effective treatments yet. Although epithelial–mesenchymal transition (EMT) may be one of the key cellular mechanisms, the underlying mechanisms of fibrosis remain largely unknown. EMT is a cell phenotypic process in which epithelial cells lose their cell-to-cell adhesion and polarization, after which they acquire mesenchymal features such as infiltration and migration ability. Upon injurious stimulation in different organs, EMT can be triggered by multiple signaling pathways and is also regulated by epigenetic mechanisms. This narrative review summarizes the current understanding of the underlying mechanisms of EMT in fibrogenesis and discusses potential strategies for attenuating EMT to prevent and/or inhibit fibrosis. Despite better understanding the role of EMT in fibrosis development, targeting EMT and beyond in developing therapeutics to tackle fibrosis is challenging but likely feasible.
Collapse
Affiliation(s)
- Lexin Liu
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK.,Department of Nephrology and Urology, Pediatric Urolith Center, The Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, 310003, China
| | - Qizhe Sun
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Frank Davis
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Jianhua Mao
- Department of Nephrology, The Children Hospital of Zhejiang University, School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Hailin Zhao
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| | - Daqing Ma
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital, London, SW10 9NH, UK
| |
Collapse
|
8
|
Li L, Lv S, Li X, Liu J. Wnt-induced secreted proteins-1 play an important role in paraquat-induced pulmonary fibrosis. BMC Pharmacol Toxicol 2022; 23:21. [PMID: 35387687 PMCID: PMC8988378 DOI: 10.1186/s40360-022-00560-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background The objective of this article is to observe the expression of Wnt-induced secreted proteins-1 (WISP1) in paraquat (PQ)-induced pulmonary fibrosis (PF) to explore the role of WISP1. Methods Healthy individuals were included in the control group. Patients who had acute lung injury or PF were included in the PF group. Venous blood samples were collected from the patients on days 1 and 3 following PQ poisoning to detect the expression levels of the WISP1 gene and protein concentration. Any changes in the patients’ blood gas analysis index were reviewed. In addition, chest computed tomography (CT) and x-ray images were observed to evaluate the relationship between WISP1 expression and disease severity. Results The expression of the WISP1 gene and the serum WISP1 protein concentration were higher in patients with PQ poisoning combined with PF than in patients without PF (P < 0.01). Serum PQ concentration was positively correlated with WISP1 gene expression (r = 0.621, P < 0.01), and serum WISP1 protein concentration (r = 0.596, P < 0.01) was considered a risk factor [odds ratio (OR) = 4.356, P < 0.05] for PQ-induced PF. Concurrently, the results of the adjusted and non-adjusted OR value for WISP1 gene expression and WISP1 protein concentration on day 1 was, respectively, as follows: OR = 12.797, 95% confidence interval (CI) (2.478–66.076), P = 0.002, OR’ = 11.353, P = 0.005; and OR = 1.545, 95% CI (1.197–1.995), P = 0.001, OR’ = 1.487, P = 0.003. The CT scan of a 20-year-old male with PQ-induced PF (20 ml) was observed, and it showed a typical hyaline-like lesion in the lungs on day 22 after poisoning; on day 33 after poisoning, the lungs showed localised consolidation combined with air bronchography. Conclusion The expression of WISP1 was higher in the patients with PQ-induced PF compared with the patients without PF. Accordingly, WISP1 plays an important role in PQ-induced PF.
Collapse
Affiliation(s)
- Lanrong Li
- Emergency Department, Linyi People's Hospital, Linyi, China
| | - Shengnan Lv
- Outpatient Department, Linyi People's Hospital, Linyi, China
| | - Xin Li
- Outpatient Department, Linyi People's Hospital, Linyi, China
| | - Jingyan Liu
- Emergency Department, Longgang District People's Hospital of Shenzhen, No. 53 of Aixin Road, Longgang District, Shenzhen, 518115, Guangdong Province, China.
| |
Collapse
|
9
|
Yi JH, Zhang ZC, Zhang MB, He X, Lin HR, Huang HW, Dai HB, Huang YW. Role of epithelial-to-mesenchymal transition in the pulmonary fibrosis induced by paraquat in rats. World J Emerg Med 2021; 12:214-220. [PMID: 34141037 DOI: 10.5847/wjem.j.1920-8642.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This study aims to explore the characteristics of the epithelial-to-mesenchymal transition (EMT) process and its underlying molecular mechanisms in the period of paraquat (PQ)-induced pulmonary fibrosis (PF). METHODS Picrosirius red staining and collagen volume fraction were utilized to evaluate the pathological changes of PQ-induced PF in rats. Immunohistochemistry, Western blot, and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) were used to measure the protein and gene expression of EMT markers, EMT-associated transcription factors, and regulators of EMT-related pathways, respectively. RESULTS The collagen deposition in the alveolar septum and increased PF markers were characteristics of pathological changes in PQ-induced PF, reached a peak on day 14 after PQ poisoning, and then decreased on day 21. The protein and gene expression of the fibrosis marker, EMT markers, transcription factors, and regulators of EMT-related signaling pathways significantly increased at different time points after PQ poisoning compared with corresponding controls (P<0.05), and most of them reached a peak on day 14, followed by a decrease on day 21. The gene expression of EMT markers was significantly correlated with PF markers, transcription factors, and regulators of EMT-related signaling pathways (P<0.05). The mRNA expression of transcription factors was significantly correlated with that of TGF-β1 and Smad2 (P<0.05 or P<0.01), instead of Wnt2 and β-catenin (P>0.05). CONCLUSIONS EMT process plays a role in the PQ-induced PF, in which most PF and EMT markers have a peak phenomenon, and its underlying molecular mechanisms might be determined by further studies.
Collapse
Affiliation(s)
- Jian-Hua Yi
- Emergency Department, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Zhao-Cai Zhang
- Scientific Research Department, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Mei-Bian Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 301051, China
| | - Xin He
- Shangyu People's Hospital, Shaoxing 312300, China
| | - Hao-Ran Lin
- Pharmacy Department, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hai-Wen Huang
- Scientific Research Department, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Hai-Bin Dai
- Pharmacy Department, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yu-Wen Huang
- Pharmacy Department, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
10
|
Gao F, Zhang Y, Yang Z, Wang M, Zhou Z, Zhang W, Ren Y, Han X, Wei M, Sun Z, Nie S. Arctigenin Suppressed Epithelial-Mesenchymal Transition Through Wnt3a/β-Catenin Pathway in PQ-Induced Pulmonary Fibrosis. Front Pharmacol 2020; 11:584098. [PMID: 33390951 PMCID: PMC7772408 DOI: 10.3389/fphar.2020.584098] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/20/2020] [Indexed: 11/20/2022] Open
Abstract
Arctigenin (ATG), a major bioactive substance of Fructus Arctii, counters renal fibrosis; however, whether it protects against paraquat (PQ)-induced lung fibrosis remains unknown. The present study was to determine the effect of ATG on PQ-induced lung fibrosis in a mouse model and the underlying mechanism. Firstly, we found that ATG suppressed PQ-induced pulmonary fibrosis by blocking the epithelial-mesenchymal transition (EMT). ATG reduced the expressions of Vimentin and α-SMA (lung fibrosis markers) induced by PQ and restored the expressions of E-cadherin and Occludin (two epithelial markers) in vivo and in vitro. Besides, the Wnt3a/β-catenin signaling pathway was significantly activated in PQ induced pulmonary fibrosis. Further analysis showed that pretreatment of ATG profoundly abrogated PQ-induced EMT-like phenotypes and behaviors in A549 cells. The Wnt3a/β-catenin signaling pathway was repressed by ATG treatment. The overexpression of Wnt3a could weaken the therapeutic effect of ATG in A549 cells. These findings suggested that ATG could serve as a new therapeutic candidate to inhibit or even reverse EMT-like changes in alveolar type II cells during PQ-induced lung fibrosis, and unraveled that the Wnt3a/β-catenin pathway might be a mechanistic tool for ATG to control pulmonary fibrosis.
Collapse
Affiliation(s)
- Fei Gao
- Department of Emergency Medicine, Jinling Clinical College of Nanjing Medical University, Nanjing, China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.,Department of Emergency Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yun Zhang
- Department of Emergency Medicine, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhiyi Zhou
- Department of Pathology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xiaoqin Han
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mei Wei
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shinan Nie
- Department of Emergency Medicine, Jinling Clinical College of Nanjing Medical University, Nanjing, China.,Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
11
|
Lee E, Kang MJ, Kim JH, Lee SH, Lee SY, Cho HJ, Yoon J, Jung S, Park Y, Oh DK, Hong SB, Hong SJ. NOTCH1 Pathway is Involved in Polyhexamethylene Guanidine-Induced Humidifier Disinfectant Lung Injuries. Yonsei Med J 2020; 61:186-191. [PMID: 31997628 PMCID: PMC6992453 DOI: 10.3349/ymj.2020.61.2.186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/29/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022] Open
Abstract
An outbreak of fatal humidifier disinfectant lung injuries (HDLI) occurred in Korea. Human studies on mechanisms underlying HDLI have yet to be conducted. This study aimed to investigate methylation changes and their potential role in HDLI after exposure to HDs containing polyhexamethylene guanidine-phosphate. DNA methylation analysis was performed in blood samples from 10 children with HDLI and 10 healthy children using Infinium Human MethylationEPIC BeadChip. Transcriptome analysis was performed using lung tissues from 5 children with HDLI and 5 controls. Compared to healthy controls, 92 hypo-methylated and 79 hyper-methylated CpG sites were identified in children with HDLI at the statistical significance level of |Δβ|>0.2 and p<0.05. NOTCH1 was identified as a candidate network hub gene in cases. NOTCH1 transcripts significantly increased in lung tissues from HDLI cases compared to unexposed controls (p=0.05). NOTCH1 may play an important role in pulmonary fibrosis of HDLI.
Collapse
Affiliation(s)
- Eun Lee
- Department of Pediatrics, Chonnam National University Hospital, Chonnam National University Medical School, Gwangju, Korea
| | - Mi Jin Kang
- Asan Medical Center, Asan Institute for Life Sciences, Environmental Health Center, Seoul, Korea
| | - Jeong Hyun Kim
- Department of Medicine, University of Ulsan Collage of Medicine, Seoul, Korea
| | - Seung Hwa Lee
- Asan Medical Center, Asan Institute for Life Sciences, Environmental Health Center, Seoul, Korea
| | - So Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyun Ju Cho
- Department of Pediatrics, International St. Mary's hospital, Catholic Kwandong University College of Medicine, Incheon, Korea
| | - Jisun Yoon
- Department of Pediatrics, Mediplex Hospital, Incheon, Korea
| | - Sungsu Jung
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Yangsoon Park
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Dong Kyu Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, Seoul, Korea
| | - Sang Bum Hong
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Soo Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Environmental Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
12
|
Jeong MH, Kim HR, Park YJ, Chung KH. Akt and Notch pathways mediate polyhexamethylene guanidine phosphate-induced epithelial-mesenchymal transition via ZEB2. Toxicol Appl Pharmacol 2019; 380:114691. [PMID: 31348943 DOI: 10.1016/j.taap.2019.114691] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/18/2022]
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p), an antimicrobial additive, was used as a humidifier disinfectant in Korea and caused severe lung injuries, including lung fibrosis, in hundreds of victims. As PHMG-p-induced lung fibrosis is different from that induced by known fibrogenic agents such as bleomycin, it is important to understand the molecular mechanisms underlying this effect. A recent study showed that epithelial-mesenchymal transition (EMT) could play key roles in PHMG-p-induced pulmonary fibrosis. Therefore, we aimed to characterize the molecular mechanisms associated with PHMG-p-induced EMT. We observed EMT, macrophage infiltration, and fibrosis in mouse lung tissues after intratracheal instillation of PHMG-p. Furthermore, PHMG-p-induced EMT was observed in A549 cells by the evaluation of cell morphology and quantitation of mRNA and protein expression. The use of EMT inhibitors revealed that PHMG-p induced EMT through the activation of Akt and Notch signaling. Moreover, the transcription factor ZEB2 was observed in PHMG-p-treated A549 cells and mouse lungs. The results indicated that upstream regulators, including Akt and Notch 1, acted as intracellular effectors that triggered ZEB2 expression after exposure to PHMG-p. Attenuation of PHMG-p-induced EMT following inhibition or silencing of Akt and Notch signaling or ZEB2 implied that PHMG-p-induced EMT was a result of Akt, Notch, and ZEB2 activation. Our findings showed that PHMG-p induced EMT through Akt/Notch signaling pathways and that ZEB2 played an important role in PHMG-p-induced lung toxicity. This study will help to understand the mechanisms of action of PHMG-p associated with lung fibrogenesis.
Collapse
Affiliation(s)
- Mi Ho Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Gyeongsangbuk-do 38430, Republic of Korea
| | - Yong Joo Park
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea.
| |
Collapse
|
13
|
MicroRNA-34a inhibits epithelial-mesenchymal transition of lens epithelial cells by targeting Notch1. Exp Eye Res 2019; 185:107684. [PMID: 31158382 DOI: 10.1016/j.exer.2019.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 04/16/2019] [Accepted: 05/28/2019] [Indexed: 01/08/2023]
Abstract
Posterior capsule opacification (PCO) is a common long-term complication of modern cataract surgery. The epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is a crucial process in the development of PCO. The purpose of this study is to investigate the role of microRNA-34a (miR-34a) in the regulation of EMT and its target gene. Human LECs were treated with TGFβ2 to induce EMT as a model for PCO. The mRNA levels of miR-34a and EMT markers were examined by real-time quantitative polymerase chain reaction (qPCR). The expression level of miR-34a was downregulated, whereas that of Notch1 was upregulated in TGFβ2-induced EMT of LECs. Overexpression of miR-34a by transfection with miR-34a inhibited EMT of LECs and reduced the expression of Notch1; while, inhibition of miR-34a upregulated the expression of both Notch1 and its ligand Jagged1 in LECs. Luciferase reporter assays revealed that Notch1 gene was direct target of miR-34a. Moreover, DAPT, a specific inhibitor of Notch signaling pathway, reversed LEC-EMT. In addition, the expression level of miR-34a was downregulated, whereas that of Notch1 was upregulated in capsular opacification from cataract samples. MiR-34a can negatively regulate EMT of LECs by targeting Notch1. Therefore, miR-34a/Notch1 could serve as a potential therapeutic approach for the treatment of PCO.
Collapse
|
14
|
Notch1 promotes the pericyte-myofibroblast transition in idiopathic pulmonary fibrosis through the PDGFR/ROCK1 signal pathway. Exp Mol Med 2019; 51:1-11. [PMID: 30902967 PMCID: PMC6430797 DOI: 10.1038/s12276-019-0228-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/02/2018] [Accepted: 09/19/2018] [Indexed: 11/17/2022] Open
Abstract
The goals of this study were to investigate the role of the Notch1/PDGFRβ/ROCK1 signaling pathway in the pathogenesis of pulmonary fibrosis and to explore the possibility of treating fibrosis by targeting Notch1. Lung tissues from patients with pulmonary fibrosis were examined for the expression of Notch1/PDGFRβ/ROCK1 using RT-qPCR, western blotting, and immunostaining. Cultured mouse lung pericytes were transfected with Notch1-overexpressed vectors or shRNA targeting PDGFRβ/ROCK1 to examine cell behaviors, including proliferation, cell cycle arrest, and differentiation toward myofibroblasts. Finally, a mouse pulmonary fibrosis model was prepared, and a Notch1 inhibitor was administered to observe tissue morphology and pericyte cell behaviors. Human pulmonary fibrotic tissues presented with overexpression of Notch1, PDGFRβ, and ROCK1, in addition to a prominent transition of pericytes into myofibroblasts. In cultured mouse lung pericytes, overexpression of Notch1 led to the accelerated proliferation and differentiation of cells, and it also increased the expression of the PDGFRβ and ROCK1 proteins. The knockdown of PDGFRβ/ROCK1 in pericytes remarkably suppressed pericyte proliferation and differentiation. As further substantiation, the administration of a Notch1 inhibitor in a mouse model of lung fibrosis inhibited the PDGFRβ/ROCK1 pathway, suppressed pericyte proliferation and differentiation, and alleviated the severity of fibrosis. Our results showed that the Notch1 signaling pathway was aberrantly activated in pulmonary fibrosis, and this pathway may facilitate disease progression via mediating pericyte proliferation and differentiation. The inhibition of the Notch1 pathway may provide one promising treatment strategy for pulmonary fibrosis. A cell membrane protein called Notch1, which binds to signaling molecules outside cells and then alters the activity of genes inside the cells, might be a promising target for drugs to treat the lung damage of pulmonary fibrosis. This condition, generally of unknown cause, involves thickening, stiffening and scarring of lung tissue. It can lead to serious breathing difficulties and eventually death, especially in people aged over 70. Hui Wang and colleagues at Central South University, Changsha, investigated the significance of the Notch1 signaling pathway by examining lung tissue from patients and manipulating the activity of the pathway in mouse cells. They conclude that Notch1 signaling is activated in pulmonary fibrosis. Drugs that could inhibit the pathway, for example by binding to the Notch1 protein, might open a promising new avenue toward treatment.
Collapse
|
15
|
Rodrigues da Silva M, Schapochnik A, Peres Leal M, Esteves J, Bichels Hebeda C, Sandri S, Pavani C, Ratto Tempestini Horliana AC, Farsky SHP, Lino-dos-Santos-Franco A. Beneficial effects of ascorbic acid to treat lung fibrosis induced by paraquat. PLoS One 2018; 13:e0205535. [PMID: 30395570 PMCID: PMC6218022 DOI: 10.1371/journal.pone.0205535] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/20/2018] [Indexed: 01/08/2023] Open
Abstract
Paraquat (PQ) is one of the most widely employed herbicides that is used worldwide and it causes severe toxic effects in humans and animals. A PQ exposition can lead to pulmonary fibrosis (PF) and the mechanisms seem to be linked to oxidative stress, although other pathways have been suggested. Antioxidants can be useful as a therapy, although interventions with this kind of system are still controversial. Hence, this study has investigated the role of ascorbic acid (vitamin C) post-treatment on PQ-induced PF in male C57/BL6 mice. Pulmonary fibrosis was induced by a single PQ injection (10mg/kg; i.p.). The control group received a PQ vehicle. Seven days after the PQ or vehicle injections, the mice received vitamin C (150 mg/kg, ip, once a day) or the vehicle, over the following 7 days. Twenty-four hours after the last dose of vitamin C or the vehicle, the mice were euthanized and their bronchoalveolar lavage fluid (BALF) and their lungs were collected. The data obtained showed that vitamin C reduced the cellular recruitment, the secretion of IL-17 –a cytokine involved in neutrophils migration, TGF-β–a pro-fibrotic mediator and the collagen deposition. Moreover, vitamin C elevated the superoxide dismutase (SOD) and catalase levels, both antioxidant enzymes, but it did not alter the tracheal contractile response that was evoked by methacholine. Therefore, the researchers have highlighted the mechanisms of vitamin C as being non-invasive and have suggested it as a promising tool to treat lung fibrosis when it is induced by a PQ intoxication.
Collapse
Affiliation(s)
- Marcia Rodrigues da Silva
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Adriana Schapochnik
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Mayara Peres Leal
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Janete Esteves
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Cristina Bichels Hebeda
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | - Silvana Sandri
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil, Brazil
| | - Christiane Pavani
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
| | | | - Sandra H. P. Farsky
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil, Brazil
| | - Adriana Lino-dos-Santos-Franco
- Post Graduate Program in Biophotonics Applied to Health Sciences, University Nove de Julho (UNINOVE), São Paulo, Brazil
- * E-mail:
| |
Collapse
|
16
|
Zheng Q, Tong M, Ou B, Liu C, Hu C, Yang Y. Isorhamnetin protects against bleomycin-induced pulmonary fibrosis by inhibiting endoplasmic reticulum stress and epithelial-mesenchymal transition. Int J Mol Med 2018; 43:117-126. [PMID: 30387812 PMCID: PMC6257865 DOI: 10.3892/ijmm.2018.3965] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to determine whether isorhamnetin (Isor), a natural antioxidant polyphenol, has antifibrotic effects in a murine model of bleomycin-induced pulmonary fibrosis. A C57 mouse model of pulmonary fibrosis was established by intraperitoneal injection of a single dose of bleomycin (3.5 U/kg), and then Isor (10 and 30 mg/kg) was administered intragastrically. The level of fibrosis was assessed by hematoxylin and eosin and Sirius red staining. α-smooth muscle actin and type I collagen levels in lung tissues were determined by western blotting and immunohistochemistry (IHC). Epithelial-mesenchymal transition (EMT), endoplasmic reticulum stress (ERS) and related signaling pathways were examined by western blotting and IHC. In vitro, human bronchial epithelial cells (HBECs) and A549 cells were treated with transforming growth factor (TGF)β1 with or without Isor, and collagen deposition and the expression levels of EMT- and ERS-related genes or proteins were analyzed by reverse transcription-quantitative polymerase chain reaction, western blotting, and immunofluorescence. The results demonstrated that Isor inhibited bleomycin-induced collagen deposition, reduced type I collagen and α-SMA expression, and alleviated EMT and ERS in vivo. Furthermore, incubation of HBECs and A549 cells with TGFβ1 activated EMT and ERS, and this effect was reversed by Isor. In conclusion, Isor treatment attenuated bleomycin-induced EMT and pulmonary fibrosis and suppressed bleomycin-induced ERS and the activation of PERK signaling.
Collapse
Affiliation(s)
- Qing Zheng
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming Tong
- Department of Infectious Diseases, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Baiqing Ou
- Department of Geriatrics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Cuizhong Liu
- Department of Geriatrics, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Changping Hu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410078, P.R. China
| | - Yu Yang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
17
|
Kim HR, Shin DY, Chung KH. A review of current studies on cellular and molecular mechanisms underlying pulmonary fibrosis induced by chemicals. ENVIRONMENTAL HEALTH AND TOXICOLOGY 2018; 33:e2018014-0. [PMID: 30286590 PMCID: PMC6182244 DOI: 10.5620/eht.e2018014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 09/19/2018] [Indexed: 05/04/2023]
Abstract
Several studies showed that the inflammatory and fibrotic responses induced by polyhexamethylene guanidine phosphate (PHMG-p) were similar to those observed for idiopathic pulmonary fibrosis in South Korea in 2011. "Omic" technologies can be used to understand the mechanisms underlying chemical-induced diseases. Studies to determine the toxicity of chemicals may facilitate understanding of the mechanisms underlying the development of pulmonary fibrosis at a molecular level; thus, such studies may provide information about the toxic characteristics of various substances. In this review, we have outlined the cellular and molecular mechanisms underlying idiopathic pulmonary fibrosis and described pulmonary fibrosis induced by various chemicals, including bleomycin, paraquat, and PHMG-p, based on the results of studies performed to date.
Collapse
Affiliation(s)
- Ha Ryong Kim
- College of Pharmacy, Daegu Catholic University, Gyeongsan, Gyeongsangbuk-do 38430, Republic of Korea
| | - Da Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Corresponding author: Kyu Hyuck Chung School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 16419, Korea. E-mail:
| |
Collapse
|
18
|
Wei L, Wang Y, Lin L, Zhang L, Shi Y, Xiang P, Cao S, Shen M, Yang P. Identification of potential serum biomarkers of acute paraquat poisoning in humans using an iTRAQ quantitative proteomic. RSC Adv 2018; 8:10598-10609. [PMID: 35540476 PMCID: PMC9078879 DOI: 10.1039/c7ra12956d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/28/2019] [Accepted: 03/07/2018] [Indexed: 12/18/2022] Open
Abstract
Paraquat (PQ) poisoning has high mortality rates in many countries. Due to it readily being absorbed through the gastrointestinal tract and rapidly excreted in the urine, few biomarkers possess satisfactory specificity and sensitivity in diagnostic and forensic practices. To investigate serum biomarkers in patients with PQ poisoning, pooled sera was analyzed using a proteomic approach based on iTRAQ coupled LC-MS/MS. Of the 413 proteins identified with high confidence, 81 were found to be differentially expressed (1.5-fold change) in the sera of patients with PQ poisoning. The differential expression pattern of 4 of these proteins was validated by enzyme-linked immunosorbent assay (ELISA) in clinical samples. A sera sample from a PQ poisoning patient has shown relatively increased abundance of S100A8 and S100A9. The overexpression of S100A8 and S100A9 was further validated in the lung tissue of PQ-treated rat associated with lung damage. Meanwhile, we identified another two down-expressed proteins, transferrin receptor protein 1 (TfR1) and serum amyloid P-component (SAP), which may be also practicable in human clinical samples as PQ poisoning serum biomarkers. Furthermore, receiver operating characteristic curve analysis confirmed that the expression levels of S100 alarmins, TfR1 and SAP in patient serum could provide a discriminatory diagnostic test for predicting PQ poisoning in patients. Therefore, our results suggest that increased serum levels of S100 alarmins and decreased serum levels of TfR1 and SAP may constitute potential biomarkers for the prediction of PQ poisoning in humans, and might be novel therapeutic targets in PQ poisoning.
Collapse
Affiliation(s)
- Liming Wei
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University Shanghai China
- Shanghai Songjiang District Central Hospital Shanghai China
| | - Yi Wang
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University Shanghai China
| | - Ling Lin
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University Shanghai China
| | - Lei Zhang
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University Shanghai China
| | - Yan Shi
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice Shanghai China
| | - Ping Xiang
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice Shanghai China
| | - Shujun Cao
- Shanghai Songjiang District Central Hospital Shanghai China
| | - Min Shen
- Shanghai Key Laboratory of Forensic Medicine, Shanghai Forensic Service Platform, Institute of Forensic Science, Ministry of Justice Shanghai China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences & Department of Chemistry, Fudan University Shanghai China
| |
Collapse
|
19
|
Vongphouttha C, Zhu J, Deng S, Tai W, Wu W, Li Z, Lei W, Wang Y, Dong Z, Zhang T. Rapamycin protects against paraquat-induced pulmonary epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. Exp Ther Med 2018; 15:3045-3051. [PMID: 29599839 DOI: 10.3892/etm.2018.5795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/17/2017] [Indexed: 12/26/2022] Open
Abstract
Paraquat (PQ) is a herbicide that is widely used in developing countries, and pulmonary fibrosisis one of the most typical features of PQ poisoning. The molecular mechanism underlying PQ toxicity is largely unknown, which makes it difficult to treat. In the present study, western blot analysis, reverse transcription-quantitative polymerase chain reaction and fluorescent immunostaining were used to analyze the effects of rapamycin on PQ-induced epithelial-mesenchymal transition (EMT) in A549 and MRC-5 cells. It was revealed that rapamycin significantly downregulated the mesenchymal cell marker, α-smooth muscle actin, and significantly upregulated the epithelial cell marker, E-cadherin, at mRNA and protein expression levels compared with the PQ group. Treatment with PQ significantly increased Wnt1, low-density lipoprotein receptor-related protein (LRP)5, LRP6 and β-catenin expression levels in A549 cells, while rapamycin significantly inhibited these effects of PQ. Activation of the Wnt signaling pathway using lithium chloride attenuated the inhibitory effects of rapamycin on PQ-induced EMT. In conclusion, rapamycin protects against PQ-induced pulmonary EMT via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Chanthasone Vongphouttha
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Jie Zhu
- Department of Internal Medicine, Beijing Capital International Airport Hospital, Beijing 100621, P.R. China
| | - Shuhao Deng
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wenjuan Wu
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zhenkun Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Wen Lei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Yin Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Zhaoxing Dong
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| | - Tao Zhang
- Department of Respiratory Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
20
|
Zhang Z, Qu J, Zheng C, Zhang P, Zhou W, Cui W, Mo X, Li L, Xu L, Gao J. Nrf2 antioxidant pathway suppresses Numb-mediated epithelial-mesenchymal transition during pulmonary fibrosis. Cell Death Dis 2018; 9:83. [PMID: 29362432 PMCID: PMC5833372 DOI: 10.1038/s41419-017-0198-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022]
Abstract
Epithelial mesenchymal transition (EMT) is a key progression that promotes pulmonary fibrosis (PF). Numb, a phosphotyrosine-binding domain (PTB) protein, is implicated with EMT. Nuclear factor erythroid 2-related factor2 (Nrf2) and its downstream proteins heme oxygenase-1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1) constitute an important pathway of antioxidant defense signal for protecting against PF. It remains elusive whether Nrf2 antioxidant pathway and Numb have a potential relationship in EMT-mediated PF. Here, we observed the effects of Nrf2 pathway and Numb on bleomycin(BLM)-induced PF in Nrf2-knockout (Nrf2-/-) and wild-type (WT) mice. Meanwhile, rat type II alveolar epithelial cells line (RLE-6TN) and human epithelial cells line (A549) were both treated with an Nrf2 activator sulforaphane (SFN), or transfected siRNAs of Nrf2 and Numb to unravel roles of Nrf2 pathway, Numb and the link between them on transforming growth factor β1 (TGF-β1)-induced EMT. We found BLM-induced lung fibrosis were more severe in Nrf2-/- mice compared to WT mice with reduced expressions of HO-1 and NQO1. Numb was enhanced with down-regulated expressions of Nrf2 in BLM groups and further increased in Nrf2-/- groups. In vitro, given exogenous TGF-β1 on RLE-6TN and A549 up-regulated Numb expressions, accompanied with down-regulations of Nrf2 and its target proteins HO-1 and NQO1. Transfected with Nrf2 and Numb siRNAs further aggravated and relieved the progression of EMT, respectively. Inversely, activating Nrf2 pathway by SFN reduced the expression of Numb and EMT-related protein. Moreover, Numb deficiency by siRNA relieved the protection of activating Nrf2 against EMT. In conclusion, activating Nrf2 antioxidant pathway suppresses EMT during PF via inhibiting the abnormal expression of Numb. These findings provide insight into PF pathogenesis and a basis for novel treatment approaches.
Collapse
Affiliation(s)
- Zhihui Zhang
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jiao Qu
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116023, China
- School of Pharmacy, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Cheng Zheng
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Panpan Zhang
- School of Pharmacy, Dalian Medical University, Dalian, Liaoning, 116044, China
| | - Wencheng Zhou
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Wenhui Cui
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiaoting Mo
- School of Pharmacy, Anhui Medical University, Hefei, Anhui, 230032, China
| | - Liucheng Li
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Liang Xu
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Jian Gao
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
- The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116023, China.
| |
Collapse
|
21
|
Ma J, Sun F, Chen B, Tu X, Peng X, Wen C, Hu L, Wang X. Tissue metabolic changes for effects of pirfenidone in rats of acute paraquat poisoning by GC-MS. Toxicol Ind Health 2017; 33:887-900. [DOI: 10.1177/0748233717731959] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We developed a metabolomic method to evaluate the effect of pirfenidone on rats with acute paraquat (PQ) poisoning, through the analysis of various tissues (lung, liver, kidney, and heart), by gas chromatography–mass spectrometry (GC-MS). Thirty-eight rats were randomly divided into a control group, an acute PQ (20 mg kg−1) poisoning group, a pirfenidone (20 mg kg−1) treatment group, and a pirfenidone (40 mg kg−1) treatment group. Partial least squares-discriminate analysis (PLS-DA) revealed metabolic alterations in rat tissue samples from the two pirfenidone treatment groups after acute PQ poisoning. The PLS-DA 3D score chart showed that the rats in the acute PQ poisoning group were clearly distinguished from the rats in the control group. Also, the two pirfenidone treatment groups were distinguished from the acute PQ poisoning group and control group. Additionally, the pirfenidone (40 mg kg−1) treatment group was separated farther than the pirfenidone (20 mg kg−1) treatment group from the acute PQ poisoning group. Evaluation of the pathological changes in the rat tissues revealed that treatment with pirfenidone appeared to decrease pulmonary fibrosis in the acute PQ poisoning rats. The results indicate that pirfenidone induced beneficial metabolic alterations in the tissues of rats with acute PQ poisoning. Rats with acute PQ poisoning exhibited a certain reduction in biochemical indicators after treatment with pirfenidone, indicating that pirfenidone could protect liver and kidney function. Accordingly, the developed metabolomic approach proved to be useful to elucidate the effect of pirfenidone in rats of acute PQ poisoning.
Collapse
Affiliation(s)
- Jianshe Ma
- School of Basic Medicine, Wenzhou Medical University, Wenzhou, China
| | - Fa Sun
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Bingbao Chen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Xiaoting Tu
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Xiufa Peng
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Congcong Wen
- Laboratory Animal Centre, Wenzhou Medical University, Wenzhou, China
| | - Lufeng Hu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xianqin Wang
- Analytical and Testing Center, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
22
|
Xu Y, Tai W, Qu X, Wu W, Li Z, Deng S, Vongphouttha C, Dong Z. Rapamycin protects against paraquat-induced pulmonary fibrosis: Activation of Nrf2 signaling pathway. Biochem Biophys Res Commun 2017. [PMID: 28624451 DOI: 10.1016/j.bbrc.2017.06.074] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Paraquat (PQ) is a widely used herbicide indeveloping countries worldwide, and pulmonary fibrosis is one of the most typical features of PQ poisoning. The molecular mechanism of PQ toxicity especially how to treat PQ-induced pulmonary fibrosis is still largely unknown. In animal model of pulmonary fibrosis, we used HE staining, western blotting assay and Real-time PCR assay to analyze the effects of rapamycin on the PQ-induced epithelial mesenchymal transition (EMT). We found that PQ induced the pulmonary fibrosis using HE staining and Masson's staining, and up-regulated the activity of HYP and the mRNA expressions of Collagen I and III (COL-1and COL-3) in pulmonary tissues. We also found that rapamycin down-regulated the mesenchymal cell marker Vimentin and up-regulated the epithelial cell marker E-cadherin both in mRNA and protein levels compared with PQ group. And the EMT associated transcription factor Snail was decreased by rapamycin treatment compared with PQ group. And PQ decreased the Nrf2 expression both in mRNA and protein levels, and rapamycin inhibited these effects of PQ. SFN, a activator of Nrf2, could inhibit the EMT and the expression of Snail. And knockdowon of Nrf2 could abolish the inhibitory effects of rapamycin of PQ-induced EMT. In conclusion, rapamycin protects against paraquat-induced pulmonary fibrosis by activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yiheng Xu
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Wenlin Tai
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Xiaoyuan Qu
- Department of Clinical Laboratory, Yunnan Molecular Diagnostic Center, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Wenjuan Wu
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - ZhenKun Li
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Shuhao Deng
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Chanthasone Vongphouttha
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Zhaoxing Dong
- Department of Respiratory, The 2nd Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|