1
|
Chikina A, Lechermann F, Husanu MA, Caputo M, Cancellieri C, Wang X, Schmitt T, Radovic M, Strocov VN. Orbital Ordering of the Mobile and Localized Electrons at Oxygen-Deficient LaAlO 3/SrTiO 3 Interfaces. ACS NANO 2018; 12:7927-7935. [PMID: 29995384 DOI: 10.1021/acsnano.8b02335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Interfacing different transition-metal oxides opens a route to functionalizing their rich interplay of electron, spin, orbital, and lattice degrees of freedom for electronic and spintronic devices. Electronic and magnetic properties of SrTiO3-based interfaces hosting a mobile two-dimensional electron system (2DES) are strongly influenced by oxygen vacancies, which form an electronic dichotomy, where strongly correlated localized electrons in the in-gap states (IGSs) coexist with noncorrelated delocalized 2DES. Here, we use resonant soft-X-ray photoelectron spectroscopy to prove the eg character of the IGSs, as opposed to the t2g character of the 2DES in the paradigmatic LaAlO3/SrTiO3 interface. We furthermore separate the d xy and d xz/d xz orbital contributions based on deeper consideration of the resonant photoexcitation process in terms of orbital and momentum selectivity. Supported by a self-consistent combination of density functional theory and dynamical mean field theory calculations, this experiment identifies local orbital reconstruction that goes beyond the conventional eg- vs-t2g band ordering. A hallmark of oxygen-deficient LaAlO3/SrTiO3 is a significant hybridization of the eg and t2g orbitals. Our findings provide routes for tuning the electronic and magnetic properties of oxide interfaces through "defect engineering" with oxygen vacancies.
Collapse
Affiliation(s)
- Alla Chikina
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| | - Frank Lechermann
- Institut für Theoretische Physik , Universität Hamburg , Jungiusstrasse 9 , Hamburg DE-20355 , Germany
| | - Marius-Adrian Husanu
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
- National Institute of Materials Physics , Atomistilor 405A , Magurele RO-077125 , Romania
| | - Marco Caputo
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| | - Claudia Cancellieri
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
- Empa, Swiss Federal Laboratories for Materials Science & Technology , Ueberlandstrasse 129 , Duebendorf CH-8600 , Switzerland
| | - Xiaoqiang Wang
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| | - Thorsten Schmitt
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| | - Milan Radovic
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| | - Vladimir N Strocov
- Swiss Light Source, Paul Scherrer Institute , Villigen CH-5232 , Switzerland
| |
Collapse
|