1
|
Zhou J, Barnard E, Cabrini S, Munechika K, Schwartzberg A, Weber-Bargioni A. Integrating collapsible plasmonic gaps on near-field probes for polarization-resolved mapping of plasmon-enhanced emission in 2D material. OPTICS EXPRESS 2023; 31:20440-20448. [PMID: 37381438 DOI: 10.1364/oe.490112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/16/2023] [Indexed: 06/30/2023]
Abstract
Scanning near-field optical microscopy (SNOM) is an important technique used to study the optical properties of material systems at the nanoscale. In previous work, we reported on the use of nanoimprinting to improve the reproducibility and throughput of near-field probes including complicated optical antenna structures such as the 'campanile' probe. However, precise control over the plasmonic gap size, which determines the near-field enhancement and spatial resolution, remains a challenge. Here, we present a novel approach to fabricating a sub-20 nm plasmonic gap in a near-field plasmonic probe through the controlled collapse of imprinted nanostructures using atomic layer deposition (ALD) coatings to define the gap width. The resulting ultranarrow gap at the apex of the probe provides a strong polarization-sensitive near-field optical response, which results in an enhancement of the optical transmission in a broad wavelength range from 620 to 820 nm, enabling tip-enhanced photoluminescence (TEPL) mapping of 2-dimensional (2D) materials. We demonstrate the potential of this near-field probe by mapping a 2D exciton coupled to a linearly polarized plasmonic resonance with below 30 nm spatial resolution. This work proposes a novel approach for integrating a plasmonic antenna at the apex of the near-field probe, paving the way for the fundamental study of light-matter interactions at the nanoscale.
Collapse
|
2
|
Zhou J, Gashi A, Riminucci F, Chang B, Barnard E, Cabrini S, Weber-Bargioni A, Schwartzberg A, Munechika K. Sharp, high numerical aperture (NA), nanoimprinted bare pyramid probe for optical mapping. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:033902. [PMID: 37012819 DOI: 10.1063/5.0104012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/02/2023] [Indexed: 06/19/2023]
Abstract
The ability to correlate optical hyperspectral mapping and high resolution topographic imaging is critically important to gain deep insight into the structure-function relationship of nanomaterial systems. Scanning near-field optical microscopy can achieve this goal, but at the cost of significant effort in probe fabrication and experimental expertise. To overcome these two limitations, we have developed a low-cost and high-throughput nanoimprinting technique to integrate a sharp pyramid structure on the end facet of a single-mode fiber that can be scanned with a simple tuning-fork technique. The nanoimprinted pyramid has two main features: (1) a large taper angle (∼70°), which determines the far-field confinement at the tip, resulting in a spatial resolution of 275 nm, an effective numerical aperture of 1.06, and (2) a sharp apex with a radius of curvature of ∼20 nm, which enables high resolution topographic imaging. Optical performance is demonstrated through evanescent field distribution mapping of a plasmonic nanogroove sample, followed by hyperspectral photoluminescence mapping of nanocrystals using a fiber-in-fiber-out light coupling mode. Through comparative photoluminescence mapping on 2D monolayers, we also show a threefold improvement in spatial resolution over chemically etched fibers. These results show that the bare nanoimprinted near-field probes provide simple access to spectromicroscopy correlated with high resolution topographic mapping and have the potential to advance reproducible fiber-tip-based scanning near-field microscopy.
Collapse
Affiliation(s)
- Junze Zhou
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Arian Gashi
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Fabrizio Riminucci
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Boyce Chang
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Edward Barnard
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Stefano Cabrini
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Alexander Weber-Bargioni
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Adam Schwartzberg
- Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA
| | - Keiko Munechika
- HighRI Optics, Inc., 5401 Broadway Ter 304, Oakland, California 94618, USA
| |
Collapse
|
3
|
The Effect of Incubation near an Inversely Oriented Square Pyramidal Structure on Adsorption Properties of Horseradish Peroxidase. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12084042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incubation of a solution of horseradish peroxidase (HRP) enzyme either below the apex or near the base of an inversely oriented square pyramid (inverted square pyramid; ISP) has been found to influence the enzyme’s aggregation and adsorption properties. The HRP enzyme is used herein as a model object due to its importance in analytical chemistry applications. Atomic force microscopy (AFM) is employed to investigate the HRP’s adsorption on mica substrates at the single-molecule level. Conventional spectrophotometry is used in parallel as a reference method for the determination of the HRP’s enzymatic activity. Using AFM, we reveal a significant change in the adsorption properties of HRP on mica substrates after the incubation of the HRP solutions either above the base or below the apex of the ISP in comparison with the control HRP solution. The same situation is observed after the incubation of the enzyme solution above the center of the ISP’s base. Here, the enzymatic activity of HRP remained unaffected in both cases. Since pyramidal structures of positive and inverted orientation are employed in biosensor devices, it is important to take into account the results obtained herein in the development of highly sensitive biosensor systems, in which pyramidal structures are employed as sensor (such as AFM probes) or construction elements.
Collapse
|
4
|
Meng Y, Chen Y, Lu L, Ding Y, Cusano A, Fan JA, Hu Q, Wang K, Xie Z, Liu Z, Yang Y, Liu Q, Gong M, Xiao Q, Sun S, Zhang M, Yuan X, Ni X. Optical meta-waveguides for integrated photonics and beyond. LIGHT, SCIENCE & APPLICATIONS 2021; 10:235. [PMID: 34811345 PMCID: PMC8608813 DOI: 10.1038/s41377-021-00655-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 05/13/2023]
Abstract
The growing maturity of nanofabrication has ushered massive sophisticated optical structures available on a photonic chip. The integration of subwavelength-structured metasurfaces and metamaterials on the canonical building block of optical waveguides is gradually reshaping the landscape of photonic integrated circuits, giving rise to numerous meta-waveguides with unprecedented strength in controlling guided electromagnetic waves. Here, we review recent advances in meta-structured waveguides that synergize various functional subwavelength photonic architectures with diverse waveguide platforms, such as dielectric or plasmonic waveguides and optical fibers. Foundational results and representative applications are comprehensively summarized. Brief physical models with explicit design tutorials, either physical intuition-based design methods or computer algorithms-based inverse designs, are cataloged as well. We highlight how meta-optics can infuse new degrees of freedom to waveguide-based devices and systems, by enhancing light-matter interaction strength to drastically boost device performance, or offering a versatile designer media for manipulating light in nanoscale to enable novel functionalities. We further discuss current challenges and outline emerging opportunities of this vibrant field for various applications in photonic integrated circuits, biomedical sensing, artificial intelligence and beyond.
Collapse
Affiliation(s)
- Yuan Meng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Yizhen Chen
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing and School of Information, Science and Technology, Fudan University, Shanghai, 200433, China
| | - Longhui Lu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yimin Ding
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Andrea Cusano
- Optoelectronic Division, Department of Engineering, University of Sannio, I-82100, Benevento, Italy
| | - Jonathan A Fan
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Qiaomu Hu
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kaiyuan Wang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenwei Xie
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen, 518060, China
| | - Zhoutian Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Yuanmu Yang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
| | - Qiang Liu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Mali Gong
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Qirong Xiao
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084, Beijing, China.
- Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084, Beijing, China.
| | - Shulin Sun
- Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing and School of Information, Science and Technology, Fudan University, Shanghai, 200433, China.
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, China.
| | - Minming Zhang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| | - Xiaocong Yuan
- Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen, 518060, China
| | - Xingjie Ni
- Department of Electrical Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
5
|
Wolff A. Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation? BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:965-983. [PMID: 34621610 PMCID: PMC8450971 DOI: 10.3762/bjnano.12.73] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Electron backscatter diffraction (EBSD) is a powerful characterization technique which allows the study of microstructure, grain size, and orientation as well as strain of a crystallographic sample. In addition, the technique can be used for phase analysis. A mirror-flat sample surface is required for this analysis technique and different polishing approaches have been used over the years. A commonly used approach is the focused ion beam (FIB) polishing. Unfortunately, artefacts that can be easily induced by Ga FIB polishing approaches are seldom published. This work aims to provide a better understanding of the underlying causes for artefact formation and to assess if the helium ion microscope is better suited to achieve the required mirror-flat sample surface when operating the ion source with Ne instead of He. Copper was chosen as a test material and polished using Ga and Ne ions with different ion energies as well as incident angles. The results show that crystal structure alterations and, in some instances, phase transformation of Cu to Cu3Ga occurred when polishing with Ga ions. Polishing with high-energy Ne ions at a glancing angle maintains the crystal structure and significantly improves indexing in EBSD measurements. By milling down to a depth equaling the depth of the interaction volume, a steady-state condition of ion impurity concentration and number of induced defects is reached. The EBSD measurements and Monte Carlo simulations indicate that when this steady-state condition is reached more quickly, which can be achieved using high-energy Ne ions at a glancing incidence, then the overall damage to the specimen is reduced.
Collapse
Affiliation(s)
- Annalena Wolff
- Central Analytical Research Facility, Institute for Future Environments, Queensland University of Technology, 2 George St, Brisbane 4000, QLD, Australia
| |
Collapse
|
6
|
Ivanov YD, Pleshakova TO, Shumov ID, Kozlov AF, Ivanova IA, Valueva AA, Ershova MO, Tatur VY, Stepanov IN, Repnikov VV, Ziborov VS. AFM study of changes in properties of horseradish peroxidase after incubation of its solution near a pyramidal structure. Sci Rep 2021; 11:9907. [PMID: 33972657 PMCID: PMC8110588 DOI: 10.1038/s41598-021-89377-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
In our present paper, the influence of a pyramidal structure on physicochemical properties of a protein in buffer solution has been studied. The pyramidal structure employed herein was similar to those produced industrially for anechoic chambers. Pyramidal structures are also used as elements of biosensors. Herein, horseradish peroxidase (HRP) enzyme was used as a model protein. HRP macromolecules were adsorbed from their solution onto an atomically smooth mica substrate, and then visualized by atomic force microscopy (AFM). In parallel, the enzymatic activity of HRP was estimated by conventional spectrophotometry. Additionally, attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) has been employed in order to find out whether or not the protein secondary structure changes after the incubation of its solution either near the apex of a pyramid or in the center of its base. Using AFM, we have demonstrated that the incubation of the protein solution either in the vicinity of the pyramid’s apex or in the center of its base influences the physicochemical properties of the protein macromolecules. Namely, the incubation of the HRP solution in the vicinity of the top of the pyramidal structure has been shown to lead to an increase in the efficiency of the HRP adsorption onto mica. Moreover, after the incubation of the HRP solution either near the top of the pyramid or in the center of its base, the HRP macromolecules adsorb onto the mica surface predominantly in monomeric form. At that, the enzymatic activity of HRP does not change. The results of our present study are useful to be taken into account in the development of novel biosensor devices (including those for the diagnosis of cancer in humans), in which pyramidal structures are employed as sensor, noise suppression or construction elements.
Collapse
Affiliation(s)
- Yuri D Ivanov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, Moscow, 119121, Russia. .,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya st. 13 Bd.2, Moscow, 125412, Russia.
| | - Tatyana O Pleshakova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, Moscow, 119121, Russia
| | - Ivan D Shumov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, Moscow, 119121, Russia
| | - Andrey F Kozlov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, Moscow, 119121, Russia
| | - Irina A Ivanova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, Moscow, 119121, Russia
| | - Anastasia A Valueva
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, Moscow, 119121, Russia
| | - Maria O Ershova
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, Moscow, 119121, Russia
| | - Vadim Yu Tatur
- Foundation of Perspective Technologies and Novations, Moscow, 115682, Russia
| | - Igor N Stepanov
- Foundation of Perspective Technologies and Novations, Moscow, 115682, Russia
| | | | - Vadim S Ziborov
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, Moscow, 119121, Russia.,Joint Institute for High Temperatures of the Russian Academy of Sciences, Izhorskaya st. 13 Bd.2, Moscow, 125412, Russia
| |
Collapse
|
7
|
Morozov YM, Lapchuk AS, Gorbov IV, Yao SL, Le ZC. Optical plasmon nanostrip probe as an effective ultrashort pulse delivery system. OPTICS EXPRESS 2019; 27:13031-13052. [PMID: 31052834 DOI: 10.1364/oe.27.013031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
In this paper, we analyze the ultrafast temporal and spectral responses of optical fields in tapered and metalized optical fibers (MOFs) and optical plasmon nanostrip probes (NPs). Computational experiment shows that output pulses of the NPs are virtually unchanged in shape and duration for input pulses with a duration of >1 fs and are not sensitive to changes in the parameters of the probe (such as convergence angle and taper length), while local enhancement of the electric field intensity reaches 300 times at the NP apex. Compared with the NPs, MOFs lead to significant output pulse distortions, even for input pulses with a duration of 10 fs. In addition, the temporal response at the MOF apex is critically sensitive to changes in MOF parameters and cannot provide any significant local enhancement of the electric field. These findings reveal the high potential of optical plasmon nanostrip probes as an ultrashort pulse delivery system to nanometer-size areas and indicate that its usage can be promising for a wide variety of techniques studying ultrafast processes in nanoscopic volumes.
Collapse
|
8
|
Xu J, Li K, Zhang S, Lu X, Shi N, Tan Z, Lu Y, Liu N, Zhang B, Liang Z. Field-enhanced nanofocusing of radially polarized light by a tapered hybrid plasmonic waveguide with periodic grooves. APPLIED OPTICS 2019; 58:588-592. [PMID: 30694249 DOI: 10.1364/ao.58.000588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
This study reports the field-enhanced nanofocusing of radially polarized light by tapered hybrid plasmonic waveguide (THPW) with periodic grooves. The THPW consists of a conical high-index dielectric cone, a sandwiched low-index dielectric thin layer, and a metal cladding. The axially symmetric 3D finite element method is used to investigate the nanofocusing effect. Under radially polarized illumination at 632.8 nm, strongly enhanced nanofocusing occurs. The hybrid plasmonic structure effectively reduces the energy loss and improves the field enhancement nearly 554 times. Furthermore, periodic grooves are constructed on the metallic surface of the THPW, satisfying the phase-matching condition, and they couple the light energy from the inside to the outside. Finally, an optimized nanofocusing performance with field enhancement of approximately 1810 times is obtained. The results offer an important reference for designing related photonic devices, and the proposed scheme could be potentially exploited in the application of light-matter interactions.
Collapse
|
9
|
Ehtaiba JM, Gordon R. Template-stripped nanoaperture tweezer integrated with optical fiber. OPTICS EXPRESS 2018; 26:9607-9613. [PMID: 29715909 DOI: 10.1364/oe.26.009607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
We demonstrate an optical trapping technique that integrates the light guiding of an optical fiber with the field localization of a nanoaperture in a gold film. A key innovation of our technique is to use template-stripping for easy planar fabrication without the need for nanofabrication on the tip itself. As a proof of principle, we demonstrate the trapping of 20 nm and 30 nm polystyrene nanoparticles in solution, as observed by a jump in the transmitted laser intensity through the aperture. We use the finite difference time domain technique to simulate this intensity jump with the addition of a nanoparticle in the aperture, showing reasonable agreement with the experimental data. This simple nano-aperture optical fiber tip eliminates the need for a microscope setup while allowing for trapping nanoparticles, so it is anticipated to have applications in biology (e.g. viruses), biophysics (e.g. protein interactions), physics (e.g. quantum emitters), and chemistry (e.g. colloidal particles).
Collapse
|
10
|
Dunn RC. Scanning resonator microscopy integrating phase sensitive detection. APPLIED OPTICS 2017; 56:9716-9723. [PMID: 29240117 DOI: 10.1364/ao.56.009716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
Scanning resonator microscopy (SRM) is a scanning probe technique that uses a small, optical resonator attached to the end of a conventional atomic force microscopy cantilever to simultaneously measure optical and topography properties of sample surfaces. In SRM, whispering gallery mode (WGM) resonances excited in the attached optical resonator shift in response to changes in surface refractive index (RI), providing a mechanism for mapping RI with high spatial resolution. In our initial report, the SRM tip was excited with a fixed excitation wavelength during sample scanning, which limits the approach. An improved method based on a wavelength modulation coupled with phase sensitive detection is reported here. This results in real-time characterization of WGM spectral shifts while eliminating complications arising from measurements based solely on signal intensity. This improved approach, combined with a modified tip design enabling integration of smaller resonators, is shown to enhance signal-to-noise and lead to sub-100 nm spatial resolution in the SRM optical image. The improved capabilities are demonstrated through measurements on thin dielectric and polymer films.
Collapse
|
11
|
Koshelev A, Munechika K, Cabrini S. Hybrid photonic-plasmonic near-field probe for efficient light conversion into the nanoscale hot spot. OPTICS LETTERS 2017; 42:4339-4342. [PMID: 29088158 DOI: 10.1364/ol.42.004339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
In this Letter, we present a design and simulations of the novel hybrid photonic-plasmonic near-field probe. Near-field optics is a unique imaging tool that provides optical images with resolution down to tens of nanometers. One of the main limitations of this technology is its low light sensitivity. The presented hybrid probe solves this problem by combining a campanile plasmonic probe with the photonic layer, consisting of the diffractive optic element (DOE). The DOE is designed to match the plasmonic field at the broad side of the campanile probe with the fiber mode. This makes it possible to optimize the size of the campanile tip to convert light efficiently into the hot spot. The simulations show that the hybrid probe is ∼540 times more efficient compared with the conventional campanile on average in the 600-900 nm spectral range.
Collapse
|