1
|
Ghori FA, Wu Y, Lin X, He Y, Yu Q, Chen H, Xue G. Insight into simultaneous urea hydrolysis and total nitrogen removal in textile printing wastewater: Focus on the impact of sodium sulfate salinity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122551. [PMID: 39299128 DOI: 10.1016/j.jenvman.2024.122551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
The textile printing industry discharges large volumes of effluent containing high concentrations of urea and nitrogenous compounds. Anoxic-oxic (AO) treatment is a promising method for treating printing wastewater. However, the effect of sodium sulfate (Na2SO4) salinity on the urea hydrolysis and nitrogen removal simultaneously in the AO process has received little attention. In this study, five batch reactors were used to treat synthetic printing wastewater with high urea and nitrogen concentrations. A strategy was applied to increase the Na2SO4 concentration from 0 to 19 g/L in the anoxic stage of each reactor. The effect of Na2SO4 on urea hydrolysis, total nitrogen removal and COD removal, sludge characteristics, and bacterial community structure were investigated. The findings showed that urea hydrolysis increased with increasing Na2SO4 concentration. The main mechanism of urea removal was intracellular hydrolysis, with a urea removal efficiency (URE%) of approximately 98% in all batch reactors. In addition, under the stress of Na2SO4, the total nitrogen and COD removal performances were partially inhibited. The most significant removal performances after AO treatment were observed at 0 g/L Na2SO4, with nitrogen and COD removal efficiencies of 88% and 95%, respectively. When Na2SO4 concentration reached 19 g/L, the sludge settling performance and compactness were enhanced. The extracellular polymeric substance (EPS) components in the sludge were dependent on their ability of removing organics. Bacterial community diversity analysis revealed that the enrichment of the Proteobacteria, Firmicutes, and Gemmatimonadota phyla in the anoxic stages of batch reactors was related to intracellular urea hydrolysis. Bacteriodota and Chloroflexi were responsible for total nitrogen removal in all anoxic and oxic stages. This research will develop the understanding of Na2SO4 salinity impact on simultaneous urea hydrolysis and nitrogen removal during AO treatment process.
Collapse
Affiliation(s)
- Faheem Ahmed Ghori
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Ying Wu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Xumeng Lin
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Yueling He
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Qianjiang Yu
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Hong Chen
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.
| |
Collapse
|
2
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
3
|
Bruna N, Galliani E, Oyarzún P, Bravo D, Fuentes F, Pérez-Donoso JM. Biomineralization of lithium nanoparticles by Li-resistant Pseudomonas rodhesiae isolated from the Atacama salt flat. Biol Res 2022; 55:12. [PMID: 35296351 PMCID: PMC8925236 DOI: 10.1186/s40659-022-00382-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background The Atacama salt flat is located in northern Chile, at 2300 m above sea level, and has a high concentration of lithium, being one of the main extraction sites in the world. The effect of lithium on microorganism communities inhabiting environments with high concentrations of this metal has been scarcely studied. A few works have studied the microorganisms present in lithium-rich salt flats (Uyuni and Hombre Muerto in Bolivia and Argentina, respectively). Nanocrystals formation through biological mineralization has been described as an alternative for microorganisms living in metal-rich environments to cope with metal ions. However, bacterial lithium biomineralization of lithium nanostructures has not been published to date. In the present work, we studied lithium-rich soils of the Atacama salt flat and reported for the first time the biological synthesis of Li nanoparticles. Results Bacterial communities were evaluated and a high abundance of Cellulomonas, Arcticibacter, Mucilaginibacter, and Pseudomonas were determined. Three lithium resistant strains corresponding to Pseudomonas rodhesiae, Planomicrobium koreense, and Pseudomonas sp. were isolated (MIC > 700 mM). High levels of S2− were detected in the headspace of P. rodhesiae and Pseudomonas sp. cultures exposed to cysteine. Accordingly, biomineralization of lithium sulfide-containing nanomaterials was determined in P. rodhesiae exposed to lithium salts and cysteine. Transmission electron microscopy (TEM) analysis of ultrathin sections of P. rodhesiae cells biomineralizing lithium revealed the presence of nanometric materials. Lithium sulfide-containing nanomaterials were purified, and their size and shape determined by dynamic light scattering and TEM. Spherical nanoparticles with an average size < 40 nm and a hydrodynamic size ~ 44.62 nm were determined. Conclusions We characterized the bacterial communities inhabiting Li-rich extreme environments and reported for the first time the biomineralization of Li-containing nanomaterials by Li-resistant bacteria. The biosynthesis method described in this report could be used to recover lithium from waste batteries and thus provide a solution to the accumulation of batteries. Supplementary Information The online version contains supplementary material available at 10.1186/s40659-022-00382-6.
Collapse
Affiliation(s)
- N Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Av. República # 330, Santiago, Chile
| | - E Galliani
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Av. República # 330, Santiago, Chile
| | - P Oyarzún
- Laboratorio de Análisis de Sólidos, Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Santiago, Chile
| | - D Bravo
- Laboratorio de Microbiología Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - F Fuentes
- Escuela de Geología, Facultad de Ciencias, Universidad Mayor, Av. Manuel Montt 367, Santiago, Chile
| | - J M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Av. República # 330, Santiago, Chile.
| |
Collapse
|
4
|
Shen L, Liu Y, Allen MA, Xu B, Wang N, Williams TJ, Wang F, Zhou Y, Liu Q, Cavicchioli R. Linking genomic and physiological characteristics of psychrophilic Arthrobacter to metagenomic data to explain global environmental distribution. MICROBIOME 2021; 9:136. [PMID: 34118971 PMCID: PMC8196931 DOI: 10.1186/s40168-021-01084-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Microorganisms drive critical global biogeochemical cycles and dominate the biomass in Earth's expansive cold biosphere. Determining the genomic traits that enable psychrophiles to grow in cold environments informs about their physiology and adaptive responses. However, defining important genomic traits of psychrophiles has proven difficult, with the ability to extrapolate genomic knowledge to environmental relevance proving even more difficult. RESULTS Here we examined the bacterial genus Arthrobacter and, assisted by genome sequences of new Tibetan Plateau isolates, defined a new clade, Group C, that represents isolates from polar and alpine environments. Group C had a superior ability to grow at -1°C and possessed genome G+C content, amino acid composition, predicted protein stability, and functional capacities (e.g., sulfur metabolism and mycothiol biosynthesis) that distinguished it from non-polar or alpine Group A Arthrobacter. Interrogation of nearly 1000 metagenomes identified an over-representation of Group C in Canadian permafrost communities from a simulated spring-thaw experiment, indicative of niche adaptation, and an under-representation of Group A in all polar and alpine samples, indicative of a general response to environmental temperature. CONCLUSION The findings illustrate a capacity to define genomic markers of specific taxa that potentially have value for environmental monitoring of cold environments, including environmental change arising from anthropogenic impact. More broadly, the study illustrates the challenges involved in extrapolating from genomic and physiological data to an environmental setting. Video Abstract.
Collapse
Affiliation(s)
- Liang Shen
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, 730000, China.
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Baiqing Xu
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ninglian Wang
- College of Urban and Environmental Science, Northwest University, Xian, 710069, China
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Feng Wang
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuguang Zhou
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing Liu
- China General Microbiological Culture Collection Center (CGMCC), Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| |
Collapse
|
5
|
Premkrishnan BNV, Heinle CE, Uchida A, Purbojati RW, Kushwaha KK, Putra A, Santhi PS, Khoo BWY, Wong A, Vettath VK, Drautz-Moses DI, Junqueira ACM, Schuster SC. The genomic characterisation and comparison of Bacillus cereus strains isolated from indoor air. Gut Pathog 2021; 13:6. [PMID: 33516253 PMCID: PMC7847026 DOI: 10.1186/s13099-021-00399-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022] Open
Abstract
Background Bacillus cereus is ubiquitous in nature, found in environments such as soil, plants, air, and part of the insect and human gut microbiome. The ability to produce endospores and biofilms contribute to their pathogenicity, classified in two types of food poisoning: diarrheal and emetic syndromes. Here we report gap-free, whole-genome sequences of two B. cereus strains isolated from air samples and analyse their emetic and diarrheal potential. Results Genome assemblies of the B. cereus strains consist of one chromosome and seven plasmids each. The genome size of strain SGAir0260 is 6.30-Mb with 6590 predicted coding sequences (CDS) and strain SGAir0263 is 6.47-Mb with 6811 predicted CDS. Macrosynteny analysis showed 99% collinearity between the strains isolated from air and 90.2% with the reference genome. Comparative genomics with 57 complete B. cereus genomes suggests these strains from air are closely associated with strains isolated from foodborne illnesses outbreaks. Due to virulence potential of B. cereus and its reported involvement in nosocomial infections, antibiotic resistance analyses were performed and confirmed resistance to ampicillin and fosfomycin, with susceptibility to ciprofloxacin, tetracycline and vancomycin in both strains. Conclusion Phylogenetic analysis combined with detection of haemolytic (hblA, hblC, and hblD) and non-haemolytic (nheA, nheB, and nheC) enterotoxin genes in both air-isolated strains point to the diarrheic potential of the air isolates, though not emetic. Characterization of these airborne strains and investigation of their potential disease-causing genes could facilitate identification of environmental sources of contamination leading to foodborne illnesses and nosocomial infections transported by air.
Collapse
Affiliation(s)
- Balakrishnan N V Premkrishnan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cassie E Heinle
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Akira Uchida
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rikky W Purbojati
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kavita K Kushwaha
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Alexander Putra
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Puramadathil Sasi Santhi
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Benjamin W Y Khoo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Anthony Wong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Vineeth Kodengil Vettath
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Daniela I Drautz-Moses
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ana Carolina M Junqueira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Stephan C Schuster
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
6
|
Hu D, Li S, Li Y, Peng J, Wei X, Ma J, Zhang C, Jia N, Wang E, Wang Z. Streptomyces sp. strain TOR3209: a rhizosphere bacterium promoting growth of tomato by affecting the rhizosphere microbial community. Sci Rep 2020; 10:20132. [PMID: 33208762 PMCID: PMC7675979 DOI: 10.1038/s41598-020-76887-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 10/30/2020] [Indexed: 12/29/2022] Open
Abstract
Aiming at revealing the possible mechanism of its growth promoting effect on tomato, the correlations among Streptomyces sp. TOR3209 inoculation, rhizobacteriome, and tomato growth/production traits were investigated in this study. By analyses of Illumina sequencing and plate coating, differences in rhizosphere microbial communities were found in different growth stages and distinct inoculation treatments. The plant biomass/fruit yields and relative abundances of families Flavobacteriaceae, Sphingobacteriaceae, Polyangiaceae and Enterobacteriaceae in treatments T (tomato inoculated with TOR3209) and TF (tomato inoculated with TOR3209 + organic fertilizer) were higher than that in the controls (CK and CK+ organic fertilizer), respectively. The analysis of Metastats and LEfSe revealed that the genera Flavobacterium and Sorangium in seedling stage, Klebsiella in flowering stage, Collimonas in early fruit setting stage, and genera Micrococcaceae, Pontibacte and Adhaeribacter in late fruit setting stage were the most representative rhizobacteria that positively responded to TOR3209 inoculation. By cultivation method, five bacterial strains positively correlated to TOR3209 inoculation were isolated from rhizosphere and root endosphere, which were identified as tomato growth promoters affiliated to Enterobacter sp., Arthrobacter sp., Bacillus subtilis, Rhizobium sp. and Bacillus velezensis. In pot experiment, TOR3209 and B. velezensis WSW007 showed joint promotion to tomato production, while the abundance of inoculated TOR3209 was dramatically decreased in rhizosphere along the growth of tomato. Conclusively, TOR3209 might promote the tomato production via changing of microbial community in rhizosphere. These findings provide a better understanding of the interactions among PGPR in plant promotion.
Collapse
Affiliation(s)
- Dong Hu
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Shuhong Li
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Ying Li
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Jieli Peng
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xiaoyan Wei
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Jia Ma
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Cuimian Zhang
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Nan Jia
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, C.P. 11340, Mexico City, Mexico
| | - Zhanwu Wang
- Key Laboratory of Plants Genetic Engineering Center, Institute of Genetics and Physiology (Hebei Agricultural Products Quality and Safety Research Center), Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, 050000, People's Republic of China.
| |
Collapse
|
7
|
Liu Y, Shen L, Zeng Y, Xing T, Xu B, Wang N. Genomic Insights of Cryobacterium Isolated From Ice Core Reveal Genome Dynamics for Adaptation in Glacier. Front Microbiol 2020; 11:1530. [PMID: 32765445 PMCID: PMC7381226 DOI: 10.3389/fmicb.2020.01530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 06/12/2020] [Indexed: 11/30/2022] Open
Abstract
Glacier is the dominant cold habitat in terrestrial environments, providing a model ecosystem to explore extremophilic strategies and study early lives on Earth. The dominant form of life in glaciers is bacteria. However, little is known about past evolutionary processes that bacteria underwent during adaptation to the cryosphere and the connection of their genomic traits to environmental stressors. Aiming to test the hypothesis that bacterial genomic content and dynamics are driven by glacial environmental stressors, we compared genomes of 21 psychrophilic Cryobacterium strains, including 14 that we isolated from three Tibetan ice cores, to their mesophilic counterparts from the same family Microbacteriaceae of Actinobacteria. The results show that psychrophilic Cryobacterium underwent more dynamic changes in genome content, and their genomes have a significantly higher number of genes involved in stress response, motility, and chemotaxis than their mesophilic counterparts (P < 0.05). The phylogenetic birth-and-death model imposed on the phylogenomic tree indicates a vast surge in recent common ancestor of psychrophilic Cryobacterium (gained the greatest number of genes by 1,168) after the division of the mesophilic strain Cryobacterium mesophilum. The expansion in genome content brought in key genes primarily of the categories “cofactors, vitamins, prosthetic groups, pigments,” “monosaccharides metabolism,” and “membrane transport.” The amino acid substitution rates of psychrophilic Cryobacterium strains are two orders of magnitude lower than those in mesophilic strains. However, no significantly higher number of cold shock genes was found in psychrophilic Cryobacterium strains, indicating that multi-copy is not a key factor for cold adaptation in the family Microbacteriaceae, although cold shock genes are indispensable for psychrophiles. Extensive gene acquisition and low amino acid substitution rate might be the strategies of psychrophilic Cryobacterium to resist low temperature, oligotrophy, and high UV radiation on glaciers. The exploration of genome evolution and survival strategies of psychrophilic Cryobacterium deepens our understanding of bacterial cold adaptation.
Collapse
Affiliation(s)
- Yongqin Liu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Liang Shen
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yonghui Zeng
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Tingting Xing
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Baiqing Xu
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Ninglian Wang
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.,College of Urban and Environmental Science, Northwest University, Xi'an, China
| |
Collapse
|
8
|
Yakimovich KM, Engstrom CB, Quarmby LM. Alpine Snow Algae Microbiome Diversity in the Coast Range of British Columbia. Front Microbiol 2020; 11:1721. [PMID: 33013720 PMCID: PMC7485462 DOI: 10.3389/fmicb.2020.01721] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/30/2020] [Indexed: 01/31/2023] Open
Abstract
Snow algae blooms contain bacteria, fungi, and other microscopic organisms. We surveyed 55 alpine snow algae blooms, collecting a total of 68 samples, from 12 mountains in the Coast Range of British Columbia, Canada. We used microscopy and rDNA metabarcoding to document biodiversity and query species and taxonomic associations. Across all samples, we found 173 algal, 2,739 bacterial, 380 fungal, and 540 protist/animalia operational taxonomic units (OTUs). In a previous study, we reported that most algal species were distributed along an elevational gradient. In the current study, we were surprised to find no corresponding distribution in any other taxa. We also tested the hypothesis that certain bacterial and fungal taxa co-occur with specific algal taxa. However, despite previous evidence that particular genera co-occur, we found no significant correlations between taxa across our 68 samples. Notably, seven bacterial, one fungal, and two cercozoan OTUs were widely distributed across our study regions. Taken together, these data suggest that any mutualisms with algae may not be taxon specific. We also report evidence of snow algae predation by rotifers, tardigrades, springtails, chytrid fungi, and ciliates, establishing the framework for a complex food web.
Collapse
Affiliation(s)
- Kurt M Yakimovich
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Casey B Engstrom
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
9
|
Gupta AB, Gaultier NE, Aung NW, Purbojati RW, Oliveira EL, Wong A, Panicker D, Putra A, Uchida A, Drautz-Moses DI, Schuster SC. Complete Genome Sequence of Penicillium oxalicum Strain SGAir0226 Isolated from Outdoor Tropical Air in Singapore. Mycopathologia 2020; 185:591-594. [PMID: 32270395 DOI: 10.1007/s11046-019-00422-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/20/2019] [Indexed: 11/28/2022]
Abstract
Penicillium oxalicum strain SGAir0226 was isolated from a tropical air sample collected in Singapore. The complete genome was assembled from long reads obtained from single-molecule real-time sequencing and was further polished and error corrected using short read sequencing data. The assembly comprises 20 contigs with a total length of 30.7 Mb. The genome was predicted to contain 8310 protein-coding genes, 237 tRNAs and 83 rRNAs.
Collapse
Affiliation(s)
- Anjali Bansal Gupta
- Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Nicolas E Gaultier
- Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Ngu War Aung
- Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Rikky W Purbojati
- Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Elaine L Oliveira
- Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Anthony Wong
- Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Deepa Panicker
- Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Alexander Putra
- Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Akira Uchida
- Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Daniela I Drautz-Moses
- Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore
| | - Stephan C Schuster
- Nanyang Technological University, Singapore Centre for Environmental Life Sciences Engineering, Singapore, Singapore.
| |
Collapse
|
10
|
Abstract
Soil ecosystems harbor diverse microorganisms and yet remain only partially characterized as neither single-cell sequencing nor whole-community sequencing offers a complete picture of these complex communities. Thus, the genetic and metabolic potential of this "uncultivated majority" remains underexplored. To address these challenges, we applied a pooled-cell-sorting-based mini-metagenomics approach and compared the results to bulk metagenomics. Informatic binning of these data produced 200 mini-metagenome assembled genomes (sorted-MAGs) and 29 bulk metagenome assembled genomes (MAGs). The sorted and bulk MAGs increased the known phylogenetic diversity of soil taxa by 7.2% with respect to the Joint Genome Institute IMG/M database and showed clade-specific sequence recruitment patterns across diverse terrestrial soil metagenomes. Additionally, sorted-MAGs expanded the rare biosphere not captured through MAGs from bulk sequences, exemplified through phylogenetic and functional analyses of members of the phylum Bacteroidetes Analysis of 67 Bacteroidetes sorted-MAGs showed conserved patterns of carbon metabolism across four clades. These results indicate that mini-metagenomics enables genome-resolved investigation of predicted metabolism and demonstrates the utility of combining metagenomics methods to tap into the diversity of heterogeneous microbial assemblages.IMPORTANCE Microbial ecologists have historically used cultivation-based approaches as well as amplicon sequencing and shotgun metagenomics to characterize microbial diversity in soil. However, challenges persist in the study of microbial diversity, including the recalcitrance of the majority of microorganisms to laboratory cultivation and limited sequence assembly from highly complex samples. The uncultivated majority thus remains a reservoir of untapped genetic diversity. To address some of the challenges associated with bulk metagenomics as well as low throughput of single-cell genomics, we applied flow cytometry-enabled mini-metagenomics to capture expanded microbial diversity from forest soil and compare it to soil bulk metagenomics. Our resulting data from this pooled-cell sorting approach combined with bulk metagenomics revealed increased phylogenetic diversity through novel soil taxa and rare biosphere members. In-depth analysis of genomes within the highly represented Bacteroidetes phylum provided insights into conserved and clade-specific patterns of carbon metabolism.
Collapse
|
11
|
Uchida A, Kim HL, Purbojati RW, Vettath VK, Gupta AB, Houghton JNI, Chénard C, Wong A, Clare ME, Kushwaha KK, Panicker D, Putra A, Heinle CE, Premkrishnan BNV, Junqueira ACM, Drautz-Moses DI, Schuster SC. Complete genome of Enterobacter sichuanensis strain SGAir0282 isolated from air in Singapore. Gut Pathog 2020; 12:12. [PMID: 32127921 PMCID: PMC7045367 DOI: 10.1186/s13099-020-00350-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/15/2020] [Indexed: 03/12/2023] Open
Abstract
Background Enterobacter cloacae complex (ECC) bacteria, such as E. cloacae, E. sichuanensis, E. kobei, and E. roggenkampii, have been emerging as nosocomial pathogens. Many strains isolated from medical clinics were found to be resistant to antibiotics, and in the worst cases, acquired multidrug resistance. We present the whole genome sequence of SGAir0282, isolated from the outdoor air in Singapore, and its relevance to other ECC bacteria by in silico genomic analysis. Results Complete genome assembly of E. sichuanensis strain SGAir0282 was generated using PacBio RSII and Illumina MiSeq platforms, and the datasets were used for de novo assembly using Hierarchical Genome Assembly Process (HGAP) and error corrected with Pilon. The genome assembly consisted of a single contig of 4.71 Mb and with a G+C content of 55.5%. No plasmid was detected in the assembly. The genome contained 4371 coding genes, 83 tRNA and 25 rRNA genes, as predicted by NCBI's Prokaryotic Genome Annotation Pipeline (PGAP). Among the genes, the antibiotic resistance related genes were included: Streptothricin acetdyltransferase (SatA), fosfomycin resistance protein (FosA) and metal-dependent hydrolases of the beta-lactamase superfamily I (BLI). Conclusion Based on whole genome alignment and phylogenetic analysis, the strain SGAir0282 was identified to be Enterobacter sichuanensis. The strain possesses gene clusters for virulence, disease and defence, that can also be found in other multidrug resistant ECC type strains.
Collapse
Affiliation(s)
- Akira Uchida
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Hie Lim Kim
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,2Asian School of the Environment, Nanyang Technological University, Singapore, Singapore
| | - Rikky W Purbojati
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Vineeth Kodengil Vettath
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Anjali B Gupta
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - James N I Houghton
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Caroline Chénard
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Anthony Wong
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Megan E Clare
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Kavita K Kushwaha
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Deepa Panicker
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Alexander Putra
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Cassie E Heinle
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Balakrishnan N V Premkrishnan
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Ana Carolina M Junqueira
- 3Departamento de Genética, Instituto de Biologia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela I Drautz-Moses
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Stephan C Schuster
- 1Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore.,4School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
12
|
Complete Genome Sequence of Rhodococcus sp. Strain SGAir0479, Isolated from Indoor Air Collected in Singapore. Microbiol Resour Announc 2019; 8:8/40/e00622-19. [PMID: 31582433 PMCID: PMC6776762 DOI: 10.1128/mra.00622-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The complete genome sequence of Rhodococcus sp. strain SGAir0479 is presented here. This organism was isolated from an air sample collected in an indoor location in Singapore. The consensus assembly generated one chromosome of 4.86 Mb (G+C content of 69.8%) and one plasmid of 104,493 bp. The complete genome sequence of Rhodococcus sp. strain SGAir0479 is presented here. This organism was isolated from an air sample collected in an indoor location in Singapore. The consensus assembly generated one chromosome of 4.86 Mb (G+C content of 69.8%) and one plasmid of 104,493 bp.
Collapse
|
13
|
Complete Genome Sequence of Citricoccus sp. Strain SGAir0253, Isolated from Indoor Air in Singapore. Microbiol Resour Announc 2019; 8:8/37/e00606-19. [PMID: 31515336 PMCID: PMC6742787 DOI: 10.1128/mra.00606-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Citricoccus sp. strain SGAir0253 was isolated from indoor air collected in Singapore. Its genome sequence was assembled using single-molecule real-time sequencing. It comprises one chromosome of 3.32 Mb and two plasmids of 137 kb and 99 kb. The genome consists of 2,950 protein-coding genes, 49 tRNAs, and 9 rRNAs. Citricoccus sp. strain SGAir0253 was isolated from indoor air collected in Singapore. Its genome sequence was assembled using single-molecule real-time sequencing. It comprises one chromosome of 3.32 Mb and two plasmids of 137 kb and 99 kb. The genome consists of 2,950 protein-coding genes, 49 tRNAs, and 9 rRNAs.
Collapse
|
14
|
Complete Genome Sequence of Enterococcus faecalis Strain SGAir0397, Isolated from a Tropical Air Sample Collected in Singapore. Microbiol Resour Announc 2019; 8:8/33/e00593-19. [PMID: 31416866 PMCID: PMC6696641 DOI: 10.1128/mra.00593-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Enterococcus faecalis strain SGAir0397 was isolated from a tropical air sample collected in Singapore. Its genome was assembled using single-molecule real-time sequencing data and comprises one circular chromosome with a length of 2.69 Mbp. The genome contains 2,595 protein-coding genes, 59 tRNAs, and 12 rRNAs. Enterococcus faecalis strain SGAir0397 was isolated from a tropical air sample collected in Singapore. Its genome was assembled using single-molecule real-time sequencing data and comprises one circular chromosome with a length of 2.69 Mbp. The genome contains 2,595 protein-coding genes, 59 tRNAs, and 12 rRNAs.
Collapse
|