1
|
Kim S, Cho S, Kim JH. CD1-mediated immune responses in mucosal tissues: molecular mechanisms underlying lipid antigen presentation system. Exp Mol Med 2023; 55:1858-1871. [PMID: 37696897 PMCID: PMC10545705 DOI: 10.1038/s12276-023-01053-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/02/2023] [Accepted: 05/07/2023] [Indexed: 09/13/2023] Open
Abstract
The cluster of differentiation 1 (CD1) molecule differs from major histocompatibility complex class I and II because it presents glycolipid/lipid antigens. Moreover, the CD1-restricted T cells that recognize these self and foreign antigens participate in both innate and adaptive immune responses. CD1s are constitutively expressed by professional and nonprofessional antigen-presenting cells in mucosal tissues, namely, the skin, lung, and intestine. This suggests that CD1-reactive T cells are involved in the immune responses of these tissues. Indeed, evidence suggests that these cells play important roles in diverse diseases, such as inflammation, autoimmune disease, and infection. Recent studies elucidating the molecular mechanisms by which CD1 presents lipid antigens suggest that defects in these mechanisms could contribute to the activities of CD1-reactive T cells. Thus, improving our understanding of these mechanisms could lead to new and effective therapeutic approaches to CD1-associated diseases. In this review, we discuss the CD1-mediated antigen presentation system and its roles in mucosal tissue immunity.
Collapse
Affiliation(s)
- Seohyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sumin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Bai F, Chen Z, Xu S, Han L, Zeng X, Huang S, Zhu Z, Zhou L. Wogonin attenuates neutrophilic inflammation and airway smooth muscle proliferation through inducing caspase-dependent apoptosis and inhibiting MAPK/Akt signaling in allergic airways. Int Immunopharmacol 2022; 113:109410. [DOI: 10.1016/j.intimp.2022.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
|
3
|
Yoo HJ, Kim NY, Kim JH. Current Understanding of the Roles of CD1a-Restricted T Cells in the Immune System. Mol Cells 2021; 44:310-317. [PMID: 33980746 PMCID: PMC8175153 DOI: 10.14348/molcells.2021.0059] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/20/2022] Open
Abstract
Cluster of differentiation 1 (CD1) is a family of cell-surface glycoproteins that present lipid antigens to T cells. Humans have five CD1 isoforms. CD1a is distinguished by the small volume of its antigen-binding groove and its stunted A' pocket, its high and exclusive expression on Langerhans cells, and its localization in the early endosomal and recycling intracellular trafficking compartments. Its ligands originate from self or foreign sources. There are three modes by which the T-cell receptors of CD1a-restricted T cells interact with the CD1a:lipid complex: they bind to both the CD1a surface and the antigen or to only CD1a itself, which activates the T cell, or they are unable to bind because of bulky motifs protruding from the antigen-binding groove, which might inhibit autoreactive T-cell activation. Recently, several studies have shown that by producing TH2 or TH17 cytokines, CD1a-restricted T cells contribute to inflammatory skin disorders, including atopic dermatitis, psoriasis, allergic contact dermatitis, and wasp/bee venom allergy. They may also participate in other diseases, including pulmonary disorders and cancer, because CD1a-expressing dendritic cells are also located in non-skin tissues. In this mini-review, we discuss the current knowledge regarding the biology of CD1a-reactive T cells and their potential roles in disease.
Collapse
Affiliation(s)
- Hyun Jung Yoo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Na Young Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Ji Hyung Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| |
Collapse
|
4
|
Sharma M, Zhang S, Niu L, Lewinsohn DM, Zhang X, Huang S. Mucosal-Associated Invariant T Cells Develop an Innate-Like Transcriptomic Program in Anti-mycobacterial Responses. Front Immunol 2020; 11:1136. [PMID: 32582206 PMCID: PMC7295940 DOI: 10.3389/fimmu.2020.01136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022] Open
Abstract
Conventional T cells exhibit a delayed response to the initial priming of peptide antigens presented by major histocompatibility complex (MHC) proteins. Unlike conventional T cells, mucosal-associated invariant T (MAIT) cells quickly respond to non-peptidic metabolite antigens presented by MHC-related protein 1 (MR1). To elucidate the MR1-dependent activation program of MAIT cells in response to mycobacterial infections, we determined the surface markers, transcriptomic profiles, and effector responses of activated human MAIT cells. Results revealed that mycobacterial-incubated antigen-presenting cells stimulated abundant human CD8+ MAIT cells to upregulate the co-expression of CD69 and CD26, as a combinatorial activation marker. Further transcriptomic analyses demonstrated that CD69+CD26++ CD8+MAIT cells highly expressed numerous genes for mediating anti-mycobacterial immune responses, including pro-inflammatory cytokines, cytolytic molecules, NK cell receptors, and transcription factors, in contrast to inactivated counterparts CD69+/−CD26+/− CD8+MAIT cells. Gene co-expression, enrichment, and pathway analyses yielded high statistical significance to strongly support that activated CD8+ MAIT cells shared gene expression and numerous pathways with NK and CD8+ T cells in activation, cytokine production, cytokine signaling, and effector functions. Flow cytometry detected that activated CD8+MAIT cells produced TNFα, IFNγ, and granulysin to inhibit mycobacterial growth and fight mycobacterial infection. Together, results strongly support that the combinatorial activation marker CD69+CD26++ labels the activated CD8+MAIT cells that develop an innate-like activation program in anti-mycobacterial immune responses. We speculate that the rapid production of anti-mycobacterial effector molecules facilitates MAIT cells to fight early mycobacterial infection in humans.
Collapse
Affiliation(s)
- Manju Sharma
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Shuangmin Zhang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Liang Niu
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - David M Lewinsohn
- Pulmonary & Critical Care Medicine, Oregon Health & Science University, Portland, OR, United States
| | - Xiang Zhang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Genomics, Epigenomics and Sequencing Core, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Shouxiong Huang
- Division of Environmental Genetics and Molecular Toxicology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Immunobiology Graduate Program, Cincinnati Children's Hospital, Cincinnati, OH, United States
| |
Collapse
|
5
|
Walsh KB, Zhang X, Zhu X, Wohleb E, Woo D, Lu L, Adeoye O. Intracerebral Hemorrhage Induces Inflammatory Gene Expression in Peripheral Blood: Global Transcriptional Profiling in Intracerebral Hemorrhage Patients. DNA Cell Biol 2019; 38:660-669. [PMID: 31120332 PMCID: PMC6909779 DOI: 10.1089/dna.2018.4550] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/03/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023] Open
Abstract
To perform global transcriptome profiling using RNA-seq in the peripheral blood of intracerebral hemorrhage (ICH) patients. In 11 patients with ICH, peripheral blood was collected within 24 h of symptom onset or last known well, and a second blood draw occurred 72 h (±6) after the first. RNA-seq identified differentially expressed genes (DEGs) between the first and second samples. Biological pathway enrichment analysis was performed with Ingenuity® Pathway Analysis (IPA). A total of 16,640 genes were identified and 218 were significant DEGs after ICH (false discovery rate <0.1). IPA identified 97 disease and functional categories that were significantly upregulated (z-score >2) post-ICH; 46 categories were specifically related to immune cell activation, 22 to general cellular activation processes, and 4 to other inflammation-related responses. In the canonical pathway and network analysis, inflammatory mediators of particular importance included interleukin-8, NF-κB, ERK1/2, and members of the integrin class. ICH induced peripheral blood gene expression at 72 to 96 h compared with 0 to 24 h from symptom onset. DEGs that were highly expressed included those related to inflammation and activation of the immune response. Further research is needed to determine whether these changes affect outcomes and may represent new therapeutic targets.
Collapse
Affiliation(s)
- Kyle B. Walsh
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, Ohio
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio
- University of Cincinnati Neurobiology Research Center, Cincinnati, Ohio
| | - Daniel Woo
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, Ohio
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Long Lu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, Ohio
| | - Opeolu Adeoye
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, Ohio
- Department of Emergency Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
6
|
Walsh KB, Zhang X, Zhu X, Wohleb E, Woo D, Lu L, Adeoye O. Intracerebral hemorrhage induces monocyte-related gene expression within six hours: Global transcriptional profiling in swine ICH. Metab Brain Dis 2019; 34:763-774. [PMID: 30796715 PMCID: PMC6910870 DOI: 10.1007/s11011-019-00399-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/13/2019] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is a severe neurological disorder with no proven treatment. Our prior research identified a significant association with monocyte level and ICH mortality. To advance our understanding, we sought to identify gene expression after ICH using a swine model to test the hypothesis that ICH would induce peripheral blood mononuclear cell (PBMC) gene expression. In 10 pigs with ICH, two PBMC samples were drawn from each with the first immediately prior to ICH induction and the second six hours later. RNA-seq was performed with subsequent bioinformatics analysis using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Ingenuity® Pathway Analysis (IPA). There were 182 significantly upregulated and 153 significantly down-regulated differentially expressed genes (DEGs) after ICH. Consistent with findings in humans, significant GO and KEGG pathways were primarily related to inflammation and the immune response. Five genes, all upregulated post-ICH and known to be associated with monocyte activation, were repeatedly DEGs in the significant KEGG pathways: CD14, TLR4, CXCL8, IL-18, and CXCL2. In IPA, the majority of upregulated disease/function categories were related to inflammation and immune cell activation. TNF and LPS were the most significantly activated upstream regulators, and ERK was the most highly connected node in the top network. ICH induced changes in PBMC gene expression within 6 h of onset related to inflammation, the immune response, and, more specifically, monocyte activation. Further research is needed to determine if these changes affect outcomes and may represent new therapeutic targets.
Collapse
Affiliation(s)
- Kyle B Walsh
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA.
- Department of Emergency Medicine, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0769, USA.
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoting Zhu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Eric Wohleb
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- University of Cincinnati Neurobiology Research Center, Cincinnati, OH, USA
| | - Daniel Woo
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Long Lu
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, USA
| | - Opeolu Adeoye
- University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA
- Department of Emergency Medicine, University of Cincinnati, College of Medicine, 231 Albert Sabin Way, Cincinnati, OH, 45267-0769, USA
| |
Collapse
|
7
|
Song Y, Nahrgang J, Tollefsen KE. Transcriptomic analysis reveals dose-dependent modes of action of benzo(a)pyrene in polar cod (Boreogadus saida). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:176-189. [PMID: 30408666 DOI: 10.1016/j.scitotenv.2018.10.261] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
Polar cod (Boreogadus saida) has been used as a model Arctic species for hazard assessment of environmental stressors such as polycyclic aromatic hydrocarbons (PAHs). However, most of the PAH studies using polar cod rely on targeted biomarker-based analysis thus may not adequately address the complexity of the toxic mechanisms of the stressors. The present study was performed to develop a broad-content transcriptomic platform for polar cod and apply it for understanding the toxic mechanisms of a model PAH, benzo(a)pyrene (BaP). Hepatic transcriptional analysis using a combination of high-density polar cod oligonucleotide microarray and quantitative real-time RT-PCR was conducted to characterize the stress responses in polar cod after 14d repeated dietary exposure to 0.4 (Low) and 20.3 μg/g fish/feeding (High) BaP doses. Bile metabolic analysis was performed to identify the storage of a key BaP hepatic biotransformation product, 3-hydroxybenzo(a)pyrene (3-OH-BaP). The results clearly showed that 3-OH-BaP was detected in the bile of polar cod after both Low and High BaP exposure. Dose-dependent hepatic stress responses were identified, with Low BaP suppressing genes involved in the defense mechanisms and High BaP inducing genes associated with these pathways. The results suggested that activation of the aryl hydrocarbon receptor signaling, induction of oxidative stress, DNA damage and apoptosis were the common modes of action (MoA) of BaP between polar cod or other vertebrates, whereas induction of protein degradation and disturbance of mitochondrial functions were proposed as novel MoAs. Furthermore, conceptual toxicity pathways were proposed for BaP-mediated effects in Arctic fish. The present study has for the first time reported a transcriptome-wide analysis using a polar cod-specific microarray and suggested novel MoAs of BaP. The analytical tools, bioinformatics solutions and mechanistic knowledge generated by this study may facilitate mechanistically-based hazard assessment of environmental stressors in the Arctic using this important fish as a model species.
Collapse
Affiliation(s)
- You Song
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway.
| | - Jasmine Nahrgang
- UiT The Arctic University of Norway, Faculty of Biosciences, Fisheries and Economics, Dept. of Arctic and Marine Biology, N-9037 Tromsø, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen 21, N-0349 Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Dept. for Environmental Sciences, Post box 5003, N-1432 Ås, Norway.
| |
Collapse
|
8
|
Sharma M, Zhang X, Huang S. Integrate Imaging Flow Cytometry and Transcriptomic Profiling to Evaluate Altered Endocytic CD1d Trafficking. J Vis Exp 2018. [PMID: 30417862 DOI: 10.3791/57528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Populational analyses of the morphological and functional alteration of endocytic proteins are challenging due to the demand of image capture at a single cell level and statistical image analysis at a populational level. To overcome this difficulty, we used imaging flow cytometry and transcriptomic profiling (RNA-seq) to determine altered subcellular localization of the cluster of differentiation 1d protein (CD1d) associated with impaired endocytic gene expression in human dendritic cells (DCs), which were exposed to the common lipophilic air pollutant benzo[a]pyrene. The colocalization of CD1d and endocytic marker Lamp1 proteins from thousands of cell images captured with imaging flow cytometry was analyzed using IDEAS and ImageJ-Fiji programs. Numerous cellular images with co-stained CD1d and Lamp1 proteins were visualized after gating on CD1d+Lamp1+ DCs using IDEAS. The enhanced CD1d and Lamp1 colocalization upon BaP exposure was further demonstrated using thresholded scatterplots, tested with Mander's coefficients for co-localized intensity, and plotted based on the percentage of co-localized areas using ImageJ-Fiji. Our data provide an advantageous instrumental and bioinformatic approach to measure protein colocalization at both single and populational cellular levels, supporting an impaired functional outcome of transcriptomic alteration in pollutant-exposed human DCs.
Collapse
Affiliation(s)
- Manju Sharma
- Department of Environmental Health, University of Cincinnati College of Medicine
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati College of Medicine;
| | - Shouxiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine;
| |
Collapse
|
9
|
Ryu S, Park JS, Kim HY, Kim JH. Lipid-Reactive T Cells in Immunological Disorders of the Lung. Front Immunol 2018; 9:2205. [PMID: 30319649 PMCID: PMC6168663 DOI: 10.3389/fimmu.2018.02205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/05/2018] [Indexed: 11/13/2022] Open
Abstract
Regulation of T cell-mediated immunity in the lungs is critical for prevention of immune-related lung disorders and for host protection from pathogens. While the prevalent view of pulmonary T cell responses is based on peptide recognition by antigen receptors, called T cell receptors (TCR), on the T cell surface in the context of classical major histocompatibility complex (MHC) molecules, novel pathways involving the presentation of lipid antigens by cluster of differentiation 1 (CD1) molecules to lipid-reactive T cells are emerging as key players in pulmonary immune system. Whereas, genetic conservation of group II CD1 (CD1d) in mouse and human genomes facilitated numerous in vivo studies of CD1d-restricted invariant natural killer T (iNKT) cells in lung diseases, the recent development of human CD1-transgenic mice has made it possible to examine the physiological roles of group I CD1 (CD1a-c) molecules in lung immunity. Here, we discuss current understanding of the biology of CD1-reactive T cells with a specific focus on their roles in several pulmonary disorders.
Collapse
Affiliation(s)
- Seungwon Ryu
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Joon Seok Park
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, United States
| | - Hye Young Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| | - Ji Hyung Kim
- College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
10
|
Kim D, Chen Z, Zhou LF, Huang SX. Air pollutants and early origins of respiratory diseases. Chronic Dis Transl Med 2018; 4:75-94. [PMID: 29988883 PMCID: PMC6033955 DOI: 10.1016/j.cdtm.2018.03.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Indexed: 12/13/2022] Open
Abstract
Air pollution is a global health threat and causes millions of human deaths annually. The late onset of respiratory diseases in children and adults due to prenatal or perinatal exposure to air pollutants is emerging as a critical concern in human health. Pregnancy and fetal development stages are highly susceptible to environmental exposure and tend to develop a long-term impact in later life. In this review, we briefly glance at the direct impact of outdoor and indoor air pollutants on lung diseases and pregnancy disorders. We further focus on lung complications in later life with early exposure to air pollutants. Epidemiological evidence is provided to show the association of prenatal or perinatal exposure to air pollutants with various adverse birth outcomes, such as preterm birth, lower birth weight, and lung developmental defects, which further associate with respiratory diseases and reduced lung function in children and adults. Mechanistic evidence is also discussed to support that air pollutants impact various cellular and molecular targets at early life, which link to the pathogenesis and altered immune responses related to abnormal respiratory functions and lung diseases in later life.
Collapse
Affiliation(s)
- Dasom Kim
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45249, USA
| | - Zi Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lin-Fu Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shou-Xiong Huang
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH 45249, USA
| |
Collapse
|