1
|
Shi ZY, Li CY, Chen RY, Shi JJ, Liu YJ, Lu JF, Yang GJ, Chen J. The emerging role of deubiquitylating enzyme USP21 as a potential therapeutic target in cancer. Bioorg Chem 2024; 147:107400. [PMID: 38688196 DOI: 10.1016/j.bioorg.2024.107400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Although certain members of the Ubiquitin-specific peptidases (USPs) have been recognized as promising therapeutic targets for various diseases, research progress regarding USP21 has been relatively sluggish in its early stages. USP21 is a crucial member of the USPs subfamily, involved in diverse cellular processes such as apoptosis, DNA repair, and signal transduction. Research findings from the past decade demonstrate that USP21 mediates the deubiquitination of multiple well-known target proteins associated with critical cellular processes relevant to both disease and homeostasis, particularly in various cancers.This reviewcomprehensively summarizes the structure and biological functions of USP21 with an emphasis on its role in tumorigenesis, and elucidates the advances on the discovery of tens of small-molecule inhibitors targeting USP21, which suggests that targeting USP21 may represent a potential strategy for cancer therapy.
Collapse
Affiliation(s)
- Zhen-Yuan Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chang-Yun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Ru-Yi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jin-Jin Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Yan-Jun Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jian-Fei Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Guan-Jun Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
2
|
Wei M, Duan P, Zhao S, Gou B, Wang Y, Yang N, Ma Y, Ma Z, Zhang G, Wei B. Genome-wide identification of RUB activating enzyme and conjugating enzyme gene families and their expression analysis under abiotic stresses in Capsicum annuum. PROTOPLASMA 2023; 260:821-837. [PMID: 36322293 DOI: 10.1007/s00709-022-01816-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 10/22/2022] [Indexed: 06/16/2023]
Abstract
NEDD8/RUB, as a ubiquitin-like protein, participates in the post-translational modification of protein and requires unique E1, E2, and E3 enzymes to bind to its substrate. The RUB E1 activating enzyme and E2 conjugating enzyme play a significant role in the neddylation. However, it is unknown whether RUB E1 and E2 exist in pepper and what its function is. In this study, a total of three putative RUB E1 and five RUB E2 genes have been identified in the pepper genome. Subsequently, their physical and chemical properties, gene structure, conserved domains and motifs, phylogenetic relationship, and cis-acting elements were analyzed. The structure and conserved domain of RUB E1 and E2 are similar to that of Arabidopsis and tomato. The RUB E1 and E2 genes were randomly distributed on seven chromosomes, and there were two pairs of collinearity between pepper and Arabidopsis and eight pairs of collinearity between pepper and tomato. Phylogenetic analysis reveals that RUB E1 and E2 genes of pepper have a closer relationship with that of tomato, potato, and Nicotiana attenuate. The cis-elements of RUB E1 and E2 genes contained hormone response and stress response. RUB E1 and E2 genes were expressed in at least one tissue and CaRCE1.3 and CaRCE2.1 were exclusively expressed in flowers and anthers. Moreover, the expression of RUB E1 genes (CaECR1, CaAXR1.1, and CaAXR1.2) and RUB E2 genes (CaRCE1.1, CaRCE1.2, and CaRCE2.1) was increased to varying degrees under low-temperature, drought, salt, ABA, and IAA treatments, while CaRCE1.3 and CaRCE2.2 were down-regulated under low-temperature treatment. In addition, these genes were hardly expressed under MeJA treatment. In summary, this study provides a theoretical foundation to explore the role of RUB E1 and E2 in the response of plants to stress.
Collapse
Affiliation(s)
- Min Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Panpan Duan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Shufang Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Bingdiao Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yongfu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Nan Yang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Zhengbao Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
3
|
An T, Lu Y, Yan X, Hou J. Insights Into the Properties, Biological Functions, and Regulation of USP21. Front Pharmacol 2022; 13:944089. [PMID: 35846989 PMCID: PMC9279671 DOI: 10.3389/fphar.2022.944089] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/14/2022] [Indexed: 11/20/2022] Open
Abstract
Deubiquitylating enzymes (DUBs) antagonize ubiquitination by removing ubiquitin from their substrates. The role of DUBs in controlling various physiological and pathological processes has been extensively studied, and some members of DUBs have been identified as potential therapeutic targets in diseases ranging from tumors to neurodegeneration. Ubiquitin-specific protease 21 (USP21) is a member of the ubiquitin-specific protease family, the largest subfamily of DUBs. Although USP21 was discovered late and early research progress was slow, numerous studies in the last decade have gradually revealed the importance of USP21 in a wide variety of biological processes. In particular, the pro-carcinogenic effect of USP21 has been well elucidated in the last 2 years. In the present review, we provide a comprehensive overview of the current knowledge on USP21, including its properties, biological functions, pathophysiological roles, and cellular regulation. Limited pharmacological interventions for USP21 have also been introduced, highlighting the importance of developing novel and specific inhibitors targeting USP21.
Collapse
Affiliation(s)
- Tao An
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yanting Lu
- College of TCM, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xu Yan
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingjing Hou
- Department of Gastrointestinal Surgery, School of Medicine, Institute of Gastrointestinal Oncology, Zhongshan Hospital of Xiamen University, Xiamen University, Xiamen, China
- *Correspondence: Jingjing Hou,
| |
Collapse
|
4
|
Ruidiaz SF, Dreier JE, Hartmann-Petersen R, Kragelund BB. The disordered PCI-binding human proteins CSNAP and DSS1 have diverged in structure and function. Protein Sci 2021; 30:2069-2082. [PMID: 34272906 PMCID: PMC8442969 DOI: 10.1002/pro.4159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/30/2022]
Abstract
Intrinsically disordered proteins (IDPs) regularly constitute components of larger protein assemblies contributing to architectural stability. Two small, highly acidic IDPs have been linked to the so-called PCI complexes carrying PCI-domain subunits, including the proteasome lid and the COP9 signalosome. These two IDPs, DSS1 and CSNAP, have been proposed to have similar structural propensities and functions, but they display differences in their interactions and interactome sizes. Here we characterized the structural properties of human DSS1 and CSNAP at the residue level using NMR spectroscopy and probed their propensities to bind ubiquitin. We find that distinct structural features present in DSS1 are completely absent in CSNAP, and vice versa, with lack of relevant ubiquitin binding to CSNAP, suggesting the two proteins to have diverged in both structure and function. Our work additionally highlights that different local features of seemingly similar IDPs, even subtle sequence variance, may endow them with different functional traits. Such traits may underlie their potential to engage in multiple interactions thereby impacting their interactome sizes.
Collapse
Affiliation(s)
- Sarah F Ruidiaz
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jesper E Dreier
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Rasmus Hartmann-Petersen
- REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,The Linderstrøm Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.,REPIN, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
5
|
Karpiyevich M, Adjalley S, Mol M, Ascher DB, Mason B, van der Heden van Noort GJ, Laman H, Ovaa H, Lee MCS, Artavanis-Tsakonas K. Nedd8 hydrolysis by UCH proteases in Plasmodium parasites. PLoS Pathog 2019; 15:e1008086. [PMID: 31658303 PMCID: PMC6837540 DOI: 10.1371/journal.ppat.1008086] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 11/07/2019] [Accepted: 09/16/2019] [Indexed: 11/19/2022] Open
Abstract
Plasmodium parasites are the causative agents of malaria, a disease with wide public health repercussions. Increasing drug resistance and the absence of a vaccine make finding new chemotherapeutic strategies imperative. Components of the ubiquitin and ubiquitin-like pathways have garnered increased attention as novel targets given their necessity to parasite survival. Understanding how these pathways are regulated in Plasmodium and identifying differences to the host is paramount to selectively interfering with parasites. Here, we focus on Nedd8 modification in Plasmodium falciparum, given its central role to cell division and DNA repair, processes critical to Plasmodium parasites given their unusual cell cycle and requirement for refined repair mechanisms. By applying a functional chemical approach, we show that deNeddylation is controlled by a different set of enzymes in the parasite versus the human host. We elucidate the molecular determinants of the unusual dual ubiquitin/Nedd8 recognition by the essential PfUCH37 enzyme and, through parasite transgenics and drug assays, determine that only its ubiquitin activity is critical to parasite survival. Our experiments reveal interesting evolutionary differences in how neddylation is controlled in higher versus lower eukaryotes, and highlight the Nedd8 pathway as worthy of further exploration for therapeutic targeting in antimalarial drug design. Ubiquitin and ubiquitin-like post-translational modifications are evolutionarily conserved and involved in fundamental cellular processes essential to all eukaryotes. As such, enzymatic components of these pathways present attractive targets for therapeutic intervention for both chronic and communicable diseases. Nedd8 modification of cullin ubiquitin E3 ligases is critical to the viability of eukaryotic organisms and mediates cell cycle progression and DNA damage repair. Given the complex lifecycle and unusual replication mechanisms of the malaria parasite, one would expect neddylation to be of central importance to its survival, yet little is known about this pathway in Plasmodium. Here we present our findings on how Nedd8 removal is controlled in Plasmodium falciparum and how this pathway differs to that of its human host.
Collapse
Affiliation(s)
- Maryia Karpiyevich
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Sophie Adjalley
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Marco Mol
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - David B. Ascher
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry, University of Melbourne, Melbourne, Australia
| | - Bethany Mason
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | - Heike Laman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Huib Ovaa
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Marcus C. S. Lee
- Parasites and Microbes Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | | |
Collapse
|
6
|
Nepravishta R, Ferrentino F, Mandaliti W, Mattioni A, Weber J, Polo S, Castagnoli L, Cesareni G, Paci M, Santonico E. CoCUN, a Novel Ubiquitin Binding Domain Identified in N4BP1. Biomolecules 2019; 9:biom9070284. [PMID: 31319543 PMCID: PMC6681339 DOI: 10.3390/biom9070284] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin binding domains (UBDs) are modular elements that bind non-covalently to ubiquitin and act as downstream effectors and amplifiers of the ubiquitination signal. With few exceptions, UBDs recognize the hydrophobic path centered on Ile44, including residues Leu8, Ile44, His68, and Val70. A variety of different orientations, which can be attributed to specific contacts between each UBD and surface residues surrounding the hydrophobic patch, specify how each class of UBD specifically contacts ubiquitin. Here, we describe the structural model of a novel ubiquitin-binding domain that we identified in NEDD4 binding protein 1 (N4BP1). By performing protein sequence analysis, mutagenesis, and nuclear magnetic resonance (NMR) spectroscopy of the 15N isotopically labeled protein, we demonstrate that a Phe-Pro motif in N4BP1 recognizes the canonical hydrophobic patch of ubiquitin. This recognition mode resembles the molecular mechanism evolved in the coupling of ubiquitin conjugation to endoplasmic-reticulum (ER) degradation (CUE) domain family, where an invariant proline, usually following a phenylalanine, is required for ubiquitin binding. Interestingly, this novel UBD, which is not evolutionary related to CUE domains, shares a 40% identity and 47% similarity with cullin binding domain associating with NEDD8 (CUBAN), a protein module that also recognizes the ubiquitin-like NEDD8. Based on these features, we dubbed the region spanning the C-terminal 50 residues of N4BP1 the CoCUN domain, for Cousin of CUBAN. By performing circular dichroism and 15N NMR chemical shift perturbation of N4BP1 in complex with ubiquitin, we demonstrate that the CoCUN domain lacks the NEDD8 binding properties observed in CUBAN. We also show that, in addition to mediating the interaction with ubiquitin and ubiquitinated substrates, both CUBAN and CoCUN are poly-ubiquitinated in cells. The structural and the functional characterization of this novel UBD can contribute to a deeper understanding of the molecular mechanisms governing N4BP1 function, providing at the same time a valuable tool for clarifying how the discrimination between ubiquitin and the highly related NEDD8 is achieved.
Collapse
Affiliation(s)
- Ridvan Nepravishta
- School of Pharmacy East Anglia, University of Norwich, Norwich NR4 7TJ, UK
| | | | - Walter Mandaliti
- Department of Chemical Sciences and Technologies, Tor Vergata University, 00133 Rome, Italy
| | - Anna Mattioni
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| | - Janine Weber
- IFOM, The FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Simona Polo
- IFOM, The FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Luisa Castagnoli
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| | - Gianni Cesareni
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
- DIPO, Dipartimento di Oncologia ed Emato-oncologia, Università degli Studi di Milano, 20122 Milan, Italy
- Fondazione Santa Lucia Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, Tor Vergata University, 00133 Rome, Italy
| | - Elena Santonico
- Department of Biology, University of Tor Vergata, 00133 Rome, Italy. (G.C.)
| |
Collapse
|
7
|
Terse VL, Gosavi S. The Sensitivity of Computational Protein Folding to Contact Map Perturbations: The Case of Ubiquitin Folding and Function. J Phys Chem B 2018; 122:11497-11507. [PMID: 30234303 DOI: 10.1021/acs.jpcb.8b07409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ubiquitin is a small model protein, commonly used in protein folding experiments and simulations. We simulated ubiquitin using a well-tested structure-based model coarse-grained to a Cα level (Cα-SBM) and found that the simulated folding route did not agree with the experimentally observed one. Simulating the Cα-SBM with a cutoff contact map, instead of a screened contact map, switched the folding route with the new route matching the experimental route. Thus, the simulated folding of ubiquitin is sensitive to contact map definition. The screened contact map, which is used in folding simulations because it captures protein folding cooperativity, removes contacts in which the atoms in contact are occluded by a third atom and is less sensitive to the value of the cutoff distance in well-packed regions of the protein. In sparsely packed regions, the larger cutoff distance creates bridging contacts between atoms which are separated by voids. Such contacts do not seem to affect the folding of most proteins, including those of the ubiquitin fold. However, the surface of ubiquitin has several protruding functional side chains which naturally create bridging contacts. Together, our results show that subtle structural features of a protein that may not be apparent by mere observation can be identified by comparing folding simulations of SBMs in which these features are differently encoded. When such structural features are preserved for functional reasons, differences in computational folding can be leveraged to identify functional features. Notably, such features are accessible to a gradation of SBMs even in commonly studied proteins such as ubiquitin.
Collapse
Affiliation(s)
- Vishram L Terse
- Simons Centre for the Study of Living Machines , National Centre for Biological Sciences , Tata Institute of Fundamental Research, Bangalore 560065 , India
| | - Shachi Gosavi
- Simons Centre for the Study of Living Machines , National Centre for Biological Sciences , Tata Institute of Fundamental Research, Bangalore 560065 , India
| |
Collapse
|
8
|
Zhu HQ, Gao FH. The Molecular Mechanisms of Regulation on USP2's Alternative Splicing and the Significance of Its Products. Int J Biol Sci 2017; 13:1489-1496. [PMID: 29230097 PMCID: PMC5723915 DOI: 10.7150/ijbs.21637] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/10/2017] [Indexed: 01/06/2023] Open
Abstract
Ubiquitin-specific protease 2 (USP2) has a regulatory function in cell growth or death and is involved in the pathogenesis of various diseases. USP2 gene can generate 7 splicing variants through alternative splicing, and 5 variants respectively as USP2-201, USP2-202, USP2-204, USP2-205, USP2-206 can encode proteins. The influence of circadian rhythm, nutrition and androgen on specific signaling molecules or cytokines can regulate the alternative splicing of USP2. Specifically, PKC activator, IL-1β, TNF-α, PDGF-BB, TGF-β1 are all regulatory factors for USP2's alternative splicing. USP2-201 plays a crucial role in cell cycle progression, and is also of great significance in EGFR recycling. USP2-202 can activate apoptosis signaling pathway to participate in cell apoptosis, and USP2-204 can induce cell anti-virus reaction to decrease. In general, we collect and summarize the factors involved in the alternative splicing of USP2 in this review to further understand the mechanism behind the USP2's alternative splicing.
Collapse
Affiliation(s)
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhi Zao Ju Rd, Shanghai, China
| |
Collapse
|