1
|
Xu Q, Zhang X, Hao M, Dang X, Xu Q, Cyganek L, Akin I, Tang D, Liao B, Zhou X, Lan H. Esophageal Cancer-Related Gene-4 Contributes to Lipopolysaccharide-Induced Ion Channel Dysfunction in hiPSC-Derived Cardiomyocytes. J Inflamm Res 2024; 17:10183-10197. [PMID: 39649417 PMCID: PMC11624686 DOI: 10.2147/jir.s470828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/22/2024] [Indexed: 12/10/2024] Open
Abstract
Background and Purpose Esophageal cancer-related gene-4 (ECRG4) participate in inflammation process and can interact with the innate immunity complex TLR4-MD2-CD14 on human granulocytes. In addition, ECRG4 participate in modulation of ion channel function and electrical activity of cardiomyocytes. However, the exact mechanism is unknown. This study aimed to test our hypothesis that ECRG4 contributes to inflammation-induced ion channel dysfunctions in cardiomyocytes. Methods Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) generated from three donors were treated with lipopolysaccharide (LPS) to establish an endotoxin-induced inflammatory model. Immunostaining, real-time PCR, and patch-clamp techniques were used for the study. Results ECRG4 was detected in hiPSC-CMs at different differentiation time. LPS treatment increased ECRG4 expression in hiPSC-CMs. Knockdown of ECRG4 decreased the expression level of Toll-Like-Receptor 4 (TLR4, a LPS receptor) and its associated genes and inflammatory cytokines. Furthermore, ECRG4 knockdown shortened the action potential duration (APD) and intercepted LPS-induced APD prolongation by enhancing ISK (small conductance calcium-activated K channel current) and attenuating INCX (Na/Ca exchanger current). Overexpression of ECRG4 mimicked LPS effects on ISK and INCX, which could be prevented by NFκB signaling blockers. Conclusion This study demonstrated that LPS effects on cardiac ion channel function were mediated by the upregulation of ECRG4, which affects NFκB signaling. Our findings support the roles of ECRG4 in inflammatory responses and the ion channel dysfunctions induced by LPS challenge.
Collapse
Affiliation(s)
- Qiang Xu
- School of Basic Medical Science, Southwest Medical University, Luzhou, People’s Republic of China
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
| | - Xiangjie Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Maolin Hao
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Xitong Dang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - QianQian Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| | - Lukas Cyganek
- Stem Cell Unit, Clinic for Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Ibrahim Akin
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Mannheim, Germany
| | - Dan Tang
- The First People’s Hospital of Longquanyi District, Chengdu/West China Longquan Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Bin Liao
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xiaobo Zhou
- First Department of Medicine, Faculty of Medicine, University Medical Centre Mannheim (UMM), University of Heidelberg, Mannheim, Germany
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
- DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg, Mannheim, Germany
| | - Huan Lan
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, People’s Republic of China
| |
Collapse
|
2
|
Wang C, He J, Chen C, Luo W, Dang X, Mao L. A potential role of human esophageal cancer-related gene-4 in cardiovascular homeostasis. Gene 2024; 894:147977. [PMID: 37956966 DOI: 10.1016/j.gene.2023.147977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/10/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Human esophageal cancer related gene-4 (ECRG-4) encodes a 148-aminoacid pre-pro-peptide that can be processed tissue-dependently into multiple small peptides possessing multiple functions distinct from, similar to, or opposite to the tumor suppressor function of the full-length Ecrg4. Ecrg-4 is covalently bound to the cell surface through its signal peptide, colocalized with the innate immunity complex (TLR4-CD14-MD2), and functions as a 'sentinel' molecule in the maintenance of epithelium and leukocyte homeostasis, meaning that the presence of Ecrg-4 on the cell surface signals the maintained homeostasis, whereas the loss of Ecrg-4 due to tissue injury activates pro-inflammatory and tissue proliferative responses, and the level of Ecrg-4 gradually returns to its pre-injury level upon wound healing. Interestingly, Ecrg-4 is also highly expressed in the heart and its conduction system, endothelial cells, and vascular smooth muscle cells. Accumulating evidence has shown that Ecrg-4 is involved in cardiac rate/rhythm control, the development of atrial fibrillation, doxorubicin-induced cardiotoxicity, the ischemic response of the heart and hypoxic response in the carotid body, the pathogenesis of atherosclerosis, and likely the endemic incidence of idiopathic dilated cardiomyopathy. These preliminary discoveries suggest that Ecrg-4 may function as a 'sentinel' molecule in cardiovascular system as well. Here, we briefly review the basic characteristics of ECRG-4 as a tumor suppressor gene and its regulatory functions on inflammation and apoptosis; summarize the discoveries about its distribution in cardiovascular system and involvement in the development of CVDs, and discuss its potential as a novel therapeutic target for the maintenance of cardiovascular system homeostasis.
Collapse
Affiliation(s)
- Chaoying Wang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Jianghui He
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Chunyue Chen
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Wenjun Luo
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China.
| | - Liang Mao
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, China; Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
3
|
Zhang Z, Wang W, Zhang Y, You X, Wu J. A potential link between aberrant expression of ECRG4 and atrial fibrillation. Front Oncol 2023; 13:1031128. [PMID: 36910669 PMCID: PMC9992723 DOI: 10.3389/fonc.2023.1031128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
Esophageal cancer-related gene-4 (ECRG4), a 148-amino acid propertied and new tumor suppressor, is initially cloned from the normal esophageal epithelium. ECRG4 was found to be expressed not only in esophageal tissues but also in cardiomyocytes. Previous studies demonstrated that ECRG4 is constitutively expressed in esophageal epithelial cells, and its degree of downregulation is directly proportional to prognosis in patients with esophageal cancer. In the heart, ECRG4 shows greater expression in the atria than in the ventricles, which accounts for its heterogeneity. Downregulation of ECRG4 expression level correlates with esophageal cancer, as well as myocardial injuries and arrhythmias. As a result, this review summarizes the possible susceptibility gene, ECRG4 and its associated molecular mechanisms in cancer patients with atrial fibrillation and myocardial injury. The review begins by describing ECRG4's biological background, discusses its expression in the cardiovascular system, lists the clinical and animal research related to the downregulation of ECRG4 in atrial fibrillation, and focuses on its potential role in atrial fibrillation. Downregulation of ECRG4 may increase the risk of atrial fibrillation by affecting ion channels, MMPs expression and inflammatory response. We will then discuss how ECRG4 can be used in the treatment of tumors and arrhythmias, and provide a novel possible strategy to reduce the occurrence of perioperative cardiovascular adverse events in patients with tumors such as esophageal cancer and gastric cancer.
Collapse
Affiliation(s)
- Zuojing Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yuxin Zhang
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xingji You
- School of Medicine, Shanghai University, Shanghai, China
| | - Jingxiang Wu
- Department of Anesthesiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Long D, Chen C, Li W, Peng W, Li D, Zhou R, Dang X. Cardiac Expression of Esophageal Cancer-Related Gene-4 is Regulated by Sp1 and is a Potential Early Target of Doxorubicin-Induced Cardiotoxicity. Cardiovasc Toxicol 2022; 22:404-418. [PMID: 35129819 DOI: 10.1007/s12012-022-09722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022]
Abstract
Esophageal Cancer-Related Gene 4 (Ecrg4) expressed in cardiomyocytes and the cardiac conduction system is downregulated during cardiac ischemia and atrial fibrillation. To explore whether Ecrg4 plays any role in doxorubicin (DOX)-induced cardiotoxicity. Rats and neonatal rat cardiomyocytes (NRCMs) were employed to study the effect of DOX on Ecrg4 transcription. Bioinformatics combined with promoter analysis were used to map the rat Ecrg4 promoter. ChIP assay was used to evaluate the binding of Sp1 to the Ecrg4 promoter. Transient transfection was used to study the effect of Sp1 on the expression of endogenous Ecrg4. DOX decreased endogenous Ecrg4 gene expression in the heart and cultured NRCMs. In silico analysis showed that the 5'UTR immediately upstream of the start codon ATG, harbors a putative promoter that is GC-rich, and contains CpG islands, multiple overlapping Sp1sites. Transcription is initiated mainly on the 'C' at - 15. Serial 5'-deletion combined with dual-luciferase assays showed that the rat Ecrg4 core promoter resides at - 1/- 800. Sp1 transactivated Ecrg4 gene, which was almost abolished by DOX. Furthermore, ChIP assay showed that Sp1 specifically bound to the Ecrg4 promoter was interrupted by DOX. Finally, DOX suppressed Sp1 protein expression, and restoration of Sp1 increased Ecrg4 expression that was resistant to DOX-induced Ecrg4 downregulation. Importantly, cardiomyocyte-specific loss of Ecrg4 significantly enriched the differentially expressed proteins in the signaling pathways commonly involved in DOX-induced cardiotoxicity. Our results indicate that Sp1 mediates DOX-induced suppression of Ecrg4, which may contribute indirectly to its cardiotoxicity.
Collapse
Affiliation(s)
- Dandan Long
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Chunyue Chen
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Wei Li
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Wanling Peng
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Dongmei Li
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China
| | - Rui Zhou
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education, Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 1-1 Xianglin Road, Longmatan District, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
5
|
Liu L, Yu Y, Hu LL, Dong QB, Hu F, Zhu LJ, Liang Q, Yu LL, Bao HH, Cheng XS. Potential Target Genes in the Development of Atrial Fibrillation: A Comprehensive Bioinformatics Analysis. Med Sci Monit 2021; 27:e928366. [PMID: 33741890 PMCID: PMC7989062 DOI: 10.12659/msm.928366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background Atrial fibrillation (AF) is the most prevalent arrhythmia worldwide. Although it is not life-threatening, the accompanying rapid and irregular ventricular rate can lead to hemodynamic deterioration and obvious symptoms, especially the risk of cerebrovascular embolism. Our study aimed to identify novel and promising genes that could explain the underlying mechanism of AF development. Material/Methods Expression profiles GSE41177, GSE79768, and GSE14975 were acquired from the Gene Expression Omnibus Database. R software was used for identifying differentially expressed genes (DEGs), and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were subsequently performed. A protein–protein interaction network was constructed in Cytoscape software. Next, a least absolute shrinkage and selection operator (LASSO) model was constructed and receiver-operating characteristic curve analysis was conducted to assess the specificity and sensitivity of the key genes. Results We obtained 204 DEGs from the datasets. The DEGs were mostly involved in immune response and cell communication. The primary pathways of the DEGs were related to the course or maintenance of autoimmune and chronic inflammatory diseases. The top 20 hub genes (high scores in cytoHubba) were selected in the PPI network. Finally, we identified 6 key genes (FCGR3B, CLEC10A, FPR2, IGSF6, S100A9, and S100A12) via the LASSO model. Conclusions We present 6 target genes that are potentially involved in the molecular mechanisms of AF development. In addition, these genes are likely to serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Liang Liu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Yun Yu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Long-Long Hu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Quan-Bin Dong
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Feng Hu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Ling-Juan Zhu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Qian Liang
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Ling-Ling Yu
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Hui-Hui Bao
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| | - Xiao-Shu Cheng
- Department of Cardiology, Second Affiliated Hospital, and Research Institute of Cardiovascular Diseases, Nanchang University, Nanchang, Jiangxi, China (mainland)
| |
Collapse
|
6
|
Potential functions of esophageal cancer-related gene-4 in the cardiovascular system. Front Med 2019; 13:639-645. [PMID: 31468282 DOI: 10.1007/s11684-019-0701-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/21/2019] [Indexed: 02/07/2023]
Abstract
Esophageal cancer-related gene-4 (Ecrg4) is cloned from the normal epithelium of the esophagus. It is constitutively expressed in quiescent epithelial cells and downregulated during tumorigenesis, and Ecrg4 expression levels are inversely correlated with the malignant phenotype of tumor cells, validating that Ecrg4 is a real tumor suppressor gene. Unlike other tumor suppressor genes that usually encode membrane or intracellular proteins, Ecrg4 encodes a 148-amino acid pre-pro-peptide that is tethered on the cell surface in epithelial cells, specialized epithelial cells, and human leukocytes, where it can be processed tissue dependently into several small peptides upon cell activation. Ecrg4 is expressed in a wide variety of other cells/tissues, including cardiomyocytes and conduction system of the heart, the glomus cells of the carotid body, adrenal glands, choroid plexus, and leukocytes among others, where it exerts distinct functions, such as promoting/suppressing inflammation, inducing neuron senescence, stimulating the hypothalamus-pituitary-adrenal axis, maintaining the stemness of stem cells, participating in the rhythm and rate control of the heart, and possibly gauging the responsiveness of the cardiovascular system (CVS) to hypoxia, in addition to tumor suppression. Here, we briefly review the latest discoveries on Ecrg4 and its underlying molecular mechanisms as a tumor suppressor and focus on the emerging roles of Ecrg4 in the CVS.
Collapse
|
7
|
ECRG4: a new potential target in precision medicine. Front Med 2018; 13:540-546. [PMID: 30003403 DOI: 10.1007/s11684-018-0637-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/27/2018] [Indexed: 12/28/2022]
Abstract
Given the rapid development in precision medicine, tremendous efforts have been devoted to discovering new biomarkers for disease diagnosis and treatment. Esophageal cancer-related gene-4 (ECRG4), which is initially known as a new candidate tumor suppressor gene, is emerging as a sentinel molecule for gauging tissue homeostasis. ECRG4 is unique in its cytokine-like functional pattern and epigenetically-regulated gene expression pattern. The gene can be released from the cell membrane upon activation and detected in liquid biopsy, thus offering considerable potential in precision medicine. This review provides an updated summary on the biology of ECRG4, with emphasis on its important roles in cancer diagnosis and therapy. The future perspectives of ECRG4 as a potential molecular marker in precision medicine are also discussed in detail.
Collapse
|
8
|
The unrecognized role of tumor suppressor genes in atrial fibrillation. Gene 2018; 642:26-31. [DOI: 10.1016/j.gene.2017.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/25/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023]
|